
Data-Flow Based Detection of Loop Bounds

Christoph Cullmann and Florian Martin
AbsInt Angewandte Informatik GmbH

Science Park 1, D-66123 Saarbrücken, Germany
{cullmann,florian}@absint.com, http://www.absint.com

Abstract

To calculate the WCET of a program, safe upper bounds
on the number of loop iterations for all loops in the program
are needed. As the manual annotation of all loops with such
bounds is difficult and time consuming, the WCET analyzer
aiT originally developed by Saarland University and AbsInt
GmbH uses static analysis to determine the needed bounds
as far as possible.

This paper describes a novel data-flow based analysis
for aiT to calculate the needed loop bounds on the assem-
bler level. The new method is compared with a pattern
based loop analysis already in use by this tool.

1. Introduction

To calculate the WCET for a program, safe upper bounds
for the iterations of all included loops must be known. To
get a precise WCET estimation, lower bounds should be
known, too.

As programs tend to contain many loops with bounds de-
pending on the call sites of the surrounding routine, relying
on user annotations for loop bounds would cause too much
work for the user. Beside that, there is also the inherent
danger that user-annotated bounds could contain errors, as
they need to be kept up to date while the application code is
changing. ThereforeaiT aims at deriving safe loop bounds
automatically by using a static analysis.

Until now, a pattern-based approach for loop bound de-
tection is used. This method needs adjustments for all sup-
ported compilers and in some cases even different optimiza-
tion levels. While experience has shown that this works
well for many simple loops, no bounds are detectable for
more complex loops with multiple modifications of the loop
counter inside one iteration.

To overcome these restrictions, we introduced a new
method for loop bound detection that uses an interproce-
dural data-flow analysis to derive loop invariants from the
semantics of the instructions. This new analysis does not

depend on the used compiler or optimization level but only
on the semantics of the instruction set for the target ma-
chine. It is able to handle loops with multiple exits and
multiple modifications of the loop counter per iteration in-
cluding modifications in procedures called from the loop.
Additional, it detects and handles overflows of size limited
datatypes.

In this section, we describe the techniques behind the
old and new loop analyses, compare their results, and pro-
vide insight on how the new analysis will be used inaiT.
First we start in Section2 with introducing the common ba-
sis of both analyses. In Section3 two small examples for
loops are shown that will be used later as running exam-
ples to illustrate the application of both analyses. Section4
will cover the pattern-based approach. Then we introduce
the new data-flow based approach in Section5 and com-
pare both analyses in Section6. Finally we show how the
new analysis is integrated into the WCET AnalyzeraiT in
Section7.

2. Common Basis for Both Analyses

As both loop analyses have been developed to be used
as part of the WCET AnalyzeraiT, they are using theaiT
framework presented in [3]. In particular, they operate on a
control flow graph which is reconstructed from the machine
executable (see [10]) and in which all loops have been trans-
formed to tail-recursive routines by a loop transformation
(described in [7]). The next section will show two example
loop routines, which are used in the subsequent description
of both analyses. A loop iteration equals one execution of
the loop routine.

While theaiT framwork and the presented loop analy-
ses work on the compiled executables, there are other ap-
proachs that work on the level of the programming lan-
guage. For example in [6] and [5] a framework is described
that works on the C sources of a program to calculate a
WCET and the therefore needed loop bounds.

To avoid code duplication, the analyses use the existing
value analyzer of the framework to query the addresses of

1



while (r31 < 16) // 0x100044
{

r31 = r31 + 1; // 0x10004c
}

Figure 1. A loop with one loop test and single increment

memory accesses and to obtain knowledge about the con-
tents of accessed registers and memory cells. As the value
analysis produces integer intervals as approximations for
addresses and memory contents, both loop analyses use in-
tervals for their calculations, too. Beside this, the loop
analyses query the value analysis for infeasible control-flow
edges, i.e. edges that are not taken in any run of the pro-
gram. This information is used in both analyses to exclude
unreachable loops from loop bound detection. For more de-
tails about the value analysis please refer to [9]. The value
analysis information allows separate analysis of the loops
for each calling context and monitoring the loop counter
even if it is a global variable, a function parameter or modi-
fied over a pointer, which is important as shown in [8].

The analyses take into account that programs often con-
tain nested loops for which the iteration bounds of the inner
loops depend on the iteration bounds of outer loops. There-
fore both analyses sort the loops by their nesting depth and
analyze them from the outside to the inside. After handling
one nesting depth, value analysis is restarted with the new
derived loop bounds as input to get more precise informa-
tion while looking for the bounds of the inner loops.

As value analysis gets more precise if it also knows the
lower bound of a loop, both analyses output not only the
safe upper bounds needed to calculate any WCET, but in-
tervals that are guaranteed to contain all possibilities for the
number of loop iterations.

3. Running Examples

To illustrate the working of the two loop analyses, two
simple loops found in programs for thePowerPCarchitec-
ture are chosen as examples. Figures1 and2 show the cor-
responding loop routines.

Both loops use machine register 31 as their loop counter.
We assume for the upcoming calculations and analyses that
this register contains the value zero before the first loop it-

eration.
The loop in Figure1 is a simple loop incrementing its

loop counter in each iteration by exactly one. The loop is
first entered with counter value 0, then with value 1, etc. un-
til it reaches 16. When it is entered with counter value 16,
the testr31 < 16 fails for the first time so that there are no
further loop iterations. Therefore, there are exactly 17 loop
iterations. The loop analysis should thus return the inter-
val [17, 17] (the most precise answer) or any larger interval
containing 17 (correct, but imprecise).

The loop in Figure2 is similar, but a counter increment
of one or two is possible, as the control flow forks into two
branches inside the loop routine. The safe upper bound is
still 17 as in the first example, but the lower bound is now
only 9. The result of the loop analysis should thus be[9, 17]
or any larger interval.

4. The Pattern-Based Approach

The current loop analysis inaiT uses patterns to detect
the loop bounds for common loop variants. These patterns
are handcrafted for the supported compilers and their dif-
ferent optimization levels. Some intraprocedural analyses
are used to handle the matching, like intraprocedural slic-
ing and dominator/postdominator analysis.

A typical loop pattern to detect loops generated by C
compilers fromfor -loops consists of the following con-
ditions:

• The loop is only left by one conditional branch;

• the same compare of a register with a constant sets the
condition for this branch in each iteration;

• the register that is compared is incremented by a con-
stant value at the same instruction in each iteration;

• the start value of the register is known by the value
analysis.

2



while (r31 < 16) // 0x100048
{

if (r30 == 0) // 0x100050
{

r31 = r31 + 1; // 0x100058
}
else
{

r31 = r31 + 2; // 0x100060
}

}

Figure 2. A loop with one loop test and two different increments

To match even such a simple pattern, multiple internal
subanalyses must be performed. For this example pattern,
the following steps would be needed:

• Check for a conditional branch instruction that domi-
nates and postdominates the recursive call of the loop
routine;

• slice backwards from the branch inside the loop rou-
tine to find the compare instruction modifying the con-
dition flag evaluated by the branch instruction;

• test whether it is a compare of a register with a con-
stant;

• slice backwards from the compare instruction to find
all instructions modifying the registers/memory cells
used in the compare instruction;

• test whether only one instruction is found in the last
step and whether it is a constant addition/subtraction;

• test whether this one instruction dominates and post-
dominates the compare instruction;

• query the value analysis for the start value of the used
register;

• calculate the bounds by using the now known start/end
value and increment.

If we apply this pattern to our example loop of Figure1,
we get a match, as this loop is left only by a conditional
branch after the compare of the loop counter with some con-
stant and the loop counter is incremented in each round by
one. The resulting bound would be[17, 17], which is in this
case the optimal solution.

The slightly more complex loop of Figure2 is not
matched by this pattern, as the loop counter is not incre-
mented in each iteration by the same instruction, but by
two different addi instructions in two different control-
flow branches. Therefore no loop bound can be determined
and thus no WCET is obtained.

Given how many steps are already needed for this sim-
ple pattern and that all this needs to be done by handwritten
code, it is clear that bigger patterns to handle more complex
loops, like the one shown above, are time consuming to im-
plement correctly and to maintain. This illustrates the need
for a new kind of loop analysis, which will be presented in
the next section.

5. Improved Loop Analysis Based on Data-
Flow Analysis

To enhance the loop bound detection for more complex
loops and to avoid the dependencies on compiler versions
and optimization levels, a new loop bound analysis based
on data-flow analysis was designed. The following provides
a brief introduction to this new method. More information

3



can be found in [2].
A run of the new analysis consists of the following

phases:

1. Classification of all loops;

2. Detection of possible loop counters;

3. Data-flow analysis to derive the invariants;

4. Analysis of the loop tests to calculate the loop bounds.

5.1. Loop classification

In the first phase, loops are classified using informa-
tion obtained from value analysis. Loops that can never
be reached are excluded from further analysis and get the
safe bound[0, 0] as the corresponding loop routines are
never called. For the remaining loops, the algorithm checks
whether value analysis already knows after how many re-
cursive calls their loop routine cannot be called again. If
this number is known, it can be taken as a safe upper bound
for the loop, even if the further stages fail to produce results.

5.2. Search for possible loop counters

For the loops that still need to be analyzed, a simple
intraprocedural analysis is run to search all registers and
memory cells accessed inside the loop routine. Then it is
checked whether value analysis knows their start value, i.e.
their value before the first call of the loop routine. The reg-
isters and memory cells with known start value are consid-
ered as potential loop counters. They are further examined
by a data-flow analysis to derive loop invariants (see be-
low). Loops without any detected loop counter must remain
unbounded.

Our first example loop (Figure1) only accesses register
31. For our second example (Figure2), the intraprocedu-
ral analysis would find registers 30 and 31. Assuming that
value analysis only knows the start value of register 31, this
register would be the only potential loop counter in both
loops.

5.3. Invariant analysis

This data-flow analysis is the core of the improved loop
analysis. For each potential loop counter detected in the
previous phase, it calculates for each program point of the
loop routine a set of expressions, called invariants, that indi-
cate how the counter is modified from the entry of the loop
routine to this point in each iteration.

The analysis uses a special language for the expressions,
IVALA. Variables inIVALA expressions describe registers
or memory cells, including information about the register

number or memory address and the data size in bytes. The
loop counter in our examples would be expressed inIVALA
as(register , 31, 4), as it is register 31, which is 4 byte wide.

The language allows to express assignment between
variables, assignment of a constant integer interval to a vari-
able, and modification of a variable by adding a constant
integer interval. This seems to be very restrictive, as other
modifications like non-constant addition or any kind of mul-
tiplication are not supported, but the evaluation in the next
section will show that it is sufficient to detect most loop
bounds in a program, as the most common loops are count-
ing loops. Besides, this restriction serves to keep the com-
plexities of invariant analysis and of the subsequent bound
calculation within reasonable bounds.

For the loop routine of our first example shown in Fig-
ure1 the analysis would e.g. calculate the following expres-
sion set for the ingoing edge of the recursive call of the loop
routine:

{(register , 31, 4) = (register , 31, 4)◦ + [1, 1]}

where (register , 31, 4)◦ is a placeholder for the value of
(register , 31, 4) at the beginning of the loop iteration. The
expression indicates that register 31 is incremented by ex-
actly one in each iteration. For the example in Figure2 the
analysis would calculate:

{(register , 31, 4) = (register , 31, 4)◦ + [1, 2]}

This provides the information that the register is incre-
mented by one or two.

5.4. Evaluation of the loop tests and bound
calculation

In this phase, for each loop all existing loop tests will be
evaluated. A loop test is a basic block with a conditional
branch leaving the loop routine. For each test a bound will
be calculated. All these bounds are then combined to one
bound for the whole loop. The following steps are needed
to calculate the bound for a loop test:

• The branch type is determined;

• the compare instruction evaluating the condition used
by the branch is searched;

• the variables used in the compare instruction are de-
tected;

• the flow-analysis results are used to get expressions for
the found variables;

• an equation system is built and solved to get the con-
crete loop bound.

4



A detailed description of this process can be found in [2].
For our first example (Figure1), this process would look

as follows:

• Inspection of the branch in basic block0x100044
yields that the loop is left on greater-equal.

• A search for the corresponding compare instruction
finds the first instruction in the block.

• As variable(register , 31, 4) and the constant integer
16 are used, the exit expression is(register , 31, 4) ≥
16.

• The flow-analysis will yield that(register , 31, 4) is in-
cremented by one in each iteration.

• The solver will compute the concrete bound[17, 17],
which is the optimal solution.

The handling of the second example is analogous, ex-
cept that the flow-analysis delivers an increment of[1, 2]
and therefore the solver would calculate the bound[9, 17].

Both examples show comparisons with integer constants
as loop test but comparisons of two variables are supported,
too, as long as the value analysis is able to detect a constant
interval for one of them.

6. Practical Evaluation

While the new analysis is more generic by design, we
still need to demonstrate that it is applicable to real-world
programs. Therefore an extensive evaluation with both code
from a compiler benchmarks suite and with real software
from the embedded-system world was performed in [2].

test optimal old analysis new analysis
do char001 [1,∞] [1,∞] [1,∞]
do char008 [16] [16] [16]
do char009 [16] [16] [1,∞]
do char010 [1, 16] [1, 16] [1,∞]
for char001 [17] [1,∞] [17]
for char017 [17] [17] [17]
for char049 [1] [1, 17] [1, 17]
for char058 [17] [1,∞] [17]
for char061 [9] [1,∞] [9]
for char062 [17] [1,∞] [17]
for int 001 [17] [1,∞] [17]
for int 017 [17] [17] [17]
for int 049 [1] [1, 17] [1, 17]
for int 058 [17] [1,∞] [17]
for int 061 [9] [1,∞] [9]
for int 062 [17] [1,∞] [17]

Table 1. Single loop synthetic tests, DiabData

The results show that the new analysis method works
for most loops equally well or better than the pattern-based
method. Only in some corner cases, the old analysis takes
the lead, as it has special patterns for them.

The runtime costs of both analyses are comparable: the
new analysis is slower than the pattern-based approach only
by a constant factor of at most three for some tests. Table2
shows measured runtimes of both analyses for four differ-
ent tasks out of industrial real-time software for aPowerPC
MPC755. The runtimes were measured on a 3.2 GHz Pen-
tium 4 with 2 GB RAM runningLinux.

test old analysis new analysis
mpc7551 43.54 63.75
mpc7552 3.82 9.25
mpc7553 0.53 0.77
mpc7554 0.47 0.69

Table 2. Runtimes of analyses in seconds

To show that the new analysis is compiler-independent,
Tables 1 and 3 present the results of both analyses for
code generated by theDiabData ([11]) and GNU C com-
piler ([4]), respectively. While both analyses work reason-
ably well for the DiabData compiler, only the data-flow
based analysis works for the GNU C compiler without ad-
justments. To obtain comparable results, the pattern-based
analysis would require additional effort to develop loop pat-
terns adapted to the code generated by the GNU C compiler.

test optimal old analysis new analysis
do char001 [1,∞] [1,∞] [1,∞]
do char008 [16] [1,∞] [16]
do char009 [16] [1,∞] [16]
do char010 [1, 16] [1,∞] [1, 16]
for char001 [17] [1,∞] [17]
for char017 [17] [1,∞] [17]
for char049 [1] [1,∞] [1, 17]
for char058 [17] [1,∞] [17]
for char061 [9] [1,∞] [9]
for char062 [17] [1,∞] [17]
for int 001 [17] [1,∞] [17]
for int 017 [17] [1,∞] [17]
for int 049 [1] [1,∞] [1, 17]
for int 058 [17] [1,∞] [17]
for int 061 [9] [1,∞] [9]
for int 062 [17] [1,∞] [17]

Table 3. Single loop synthetic tests, GNU

5



7. Summary and Outlook

As the evaluation has shown, both analyses have some
benefits in their own areas. While the pattern-based analysis
can keep the lead for special cornercases where handcrafted
patterns can play out their strength, the data-flow based
analysis works best for typical loops occurring in standard
programs. This flexibility of the new analysis is reached
by it’s expressions, which are powerful enough to handle
loops with multiple exits, multiple/conditional changes of
the loop counter and overflows of the used datatypes.

As aiT is aimed to provide the best loop bound detection
possible, both analyses will be used in combination. First
the fast pattern-based analysis is applied, and only for the
loops it is not able to handle, the more generic new anal-
ysis is run. This avoids any slow down for the analysis
of programs for which the old analysis already detected all
bounds, and enables the calculation of the WCET for pro-
grams with more complex loops.

This combined strategy is already in use for thePowerPC
andM32 architectures, with plans to extend it to theVAMP
architecture (described in [1]) in the near future.

References

[1] S. Beyer.Putting it all together - Formal Verification of the
VAMP. PhD thesis, Saarland University, Saarbrücken, 2005.

[2] C. Cullmann. Statische Berechnung sicherer Schleifengren-
zen auf Maschinencode. Diploma Thesis, Universität d.
Saarlandes, 2006.

[3] C. Ferdinand, F. Martin, C. Cullmann, M. Schlickling,
I. Stein, S. Thesing, and R. Heckmann. New Developments
in WCET Analysis. In T. Reps, M. Sagiv, and J. Bauer, edi-
tors,Program Analysis and Compilation, Theory and Prac-
tice: Essays dedicated to Reinhard Wilhelm, volume 4444
of LNCS, pages 12–52. Springer Verlag, 2007.

[4] GNU Project.GCC Version 3.3, 2006.
[5] J. Gustafsson, B. Lisper, C. Sandberg, and N. Bermudo. A

tool for automatic flow analysis of c-programs for wcet cal-
culation. In B. Werner, editor,In Eight IEEE International
Workshop on Object-Oriented Real-Time Dependable Sys-
tems, pages 106 – 112, Guadalajara, Mexico, January 2003.
IEEE.

[6] J. Gustafsson, B. Lisper, C. Sandberg, and L. Sjöberg. A
prototype tool for flow analysis of c programs. In G. Bernat,
editor,WCET 2002 Workshop, Vienna, June 2002.

[7] F. Martin, M. Alt, R. Wilhelm, and C. Ferdinand. Analysis
of Loops. InProceedings of the International Conference
on Compiler Construction (CC’98). Springer-Verlag, 1998.

[8] C. Sandberg. Inspection of industrial code for syntactical
loop analysis. InWCET 2004 Workshop, Catania, July 2004.

[9] M. Sicks. Adreßbestimmung zur Vorhersage des Verhaltens
von Daten-Caches. Diploma Thesis, Universität d. Saarlan-
des, 1997.

[10] H. Theiling. Extracting Safe and Precise Control Flow from
Binaries. InProceedings of the 7th Conference on Real-
Time Computing Systems and Applications, Cheju-do, South
Korea, December 2000.

[11] Windriver. DiabData C Compiler Version 4.4, 2006.

6


	. Introduction
	. Common Basis for Both Analyses
	. Running Examples
	. The Pattern-Based Approach
	. Improved Loop Analysis Based on Data-Flow Analysis
	. Loop classification
	. Search for possible loop counters
	. Invariant analysis
	. Evaluation of the loop tests and bound calculation

	. Practical Evaluation
	. Summary and Outlook

