
RTNS2010

TOULOUSE

18th International Conference
on Real-Time and Network Systems

2010
4 - 5

November
www.irit.fr/rtns2010

Workshop rtns

SPONSORS

France Section

C
on

ce
pt

io
n 

: L
.C

H
A

C
U

N
 -

IR
IT

 -
05

 6
1

55
 7

6
90

© 2010 IRIT Press (www.irit.fr) - ISBN : 978-2-917490-11-2 - EAN : 9782917490112

Foreword

This volume contains the papers presented in the 4rd Junior Researcher
Workshop on Real-Time Computing (JRWRTC’10), held in conjunction
with the 18th International Conference on Real Time and Network Sys-
tems (RTNS’10) on November 4-5 in Toulouse, France. As with the former
editions, the goal of the workshop is to bring together junior researchers –
mostly PhD students and post-docs – who work on real-time issues so they
can present and exchange their ideas and more generally review current
trends of the domain. Through a short presentation (including posters), the
participants will be able to discuss their current work with all conference
attendees.
We received around ten submissions, each of them were reviewed by three
members of the program committee. The papers encompass various themes,
from Worst-Case Execution Time (WCET) to Quality of Service (QoS) ana-
lysis, from specification and modeling to verification, etc. The committee
decided to accept seven of them.
We want to congratulate authors for the quality of their submissions to
JRWRTC’10. The programme committee members have also made a great
job in a limited amount of time, and we would definitely recommend the
work of any of them.

October 2010

Vandy Berten
Roman Bourgade

Xiaoting Li

3

4

Workshop Organization

Program Chairs

Vandy Berten, ULB, Bruxelles, Belgium
Roman Bourgade, IRIT, Toulouse, France
Xiaoting Li, IRIT-ENSEEIHT, Toulouse, France

Program Committee

Sebastian Altmeyer, Universität des Saarlandes, Germany
Moris Behnam, Mälardalen University, Sweden
Björn B. Brandenburg, University of North Carolina, USA
Christian Fotsing, LISI, Poitiers, France
Damien Hardy, IRISA, Rennes, France
Pi-Cheng Hsiu, Academia Sinica, Taiwan
Osmar Marchi dos Santos, University of York, UK
Mohamed Marouf, INRIA Rocquencourt, France
Patrick Meumeu Yomsi, ULB, Bruxelles, Belgium
Aurelien Monot, LORIA, Nancy, France
Vincent Nélis, ULB, Bruxelles, Belgium
Marco Paolieri, BSC, Spain
Chuan-Yue Yang, National Taiwan University, Taiwan

Special Thanks

Ludovic Chacun
Liliana Cucu-Grosjean
Christine Rochange
Jean-Luc Scharbarg

5

6

Table of Contents

Allocation-Site Aware Shape Analysis and Applications in Hard Real-Time
Systems . 7
Jörg Herter

Model-Based Approach for IMA Platform Early Exploration 11
Michaël Lafaye, David Faura, Marc Gatti and Laurent Pautet

Improved Sampling for Statistical Timing Analysis of Real-Time
Systems . 15
Dorin Maxim, Luca Santinelli and Liliana Cucu-Grosjean

Maximum Access Delay Evaluation in an IEEE 802.11e/AFDX Hybrid Net-
work . 19
Bafing C. Sambou, Fabrice Peyrard and Christian Fraboul

Worst Case End-to-End Delay Analysis of Switched Ethernet Using Timed
Automata . 23
Muhammad Adnan, Jean Luc Scharbarg, Jérôme Ermont and Christian Fra-
boul

Towards a Behavioral Modeling of Real-Time Kernel in a Model-Driven
Development Approach . 27
Cédrick Lelionnais and Jérôme Delatour

A Multi-Class Architecture for a Differentiated Execution of Real-Time
Transactions . 31
Sami Limam, Leila Baccouche, Bruno Sadeg and Henda Ben Ghezala

7

8

Allocation-Site Aware Shape Analysis and Applications in Hard Real-Time
Systems

Jörg Herter
Saarland University, Saarbrücken, Germany

jherter@cs.uni-saarland.de

Abstract

Shape analysis aims at determining invariants of heap-

allocated structures that arise during the execution of a

program. Current shape analysis techniques are state-

less, i.e. they only model the structures arising on the heap

and completely ignore their memory locations and where

they were allocated. This paper proposes an extended,

allocation-site aware shape analysis and briefly sketches

fields of applications for such an analysis in the area of

(hard) real-time systems.

1 Introduction

Shape analysis denotes a static program analysis that
determines the shape of—or invariants that hold for—the
heap at the different program points. Most recent ap-
proaches to shape analysis rely either on separation logic
[8] to express inferred properties of structures arising on
the heap [2], or they model the heap by 3-valued logical
structures [9]. The commonality of all approaches is that
they are stateless. I.e. they only model what heap struc-
tures may arise, not where, i.e. at what memory address,
they reside on the heap nor where and when, i.e. at what
allocation site and which invocation thereof, they were al-
located.

For the current field of applications for shape analy-
ses like checking data structure invariants [9, 2] and mem-
ory safety or even verifying partial program correctness
[7], information about where and when heap objects were
allocated is not required and it may hence be safely ab-
stracted from in order to increase performance. How-
ever, in a real-time setting, applications for allocation-site
aware shape analyses arise. Consider for example dy-
namic memory allocation in hard real-time applications.
To enable tight bounds on the worst-case execution-times
(WCET) of such programs, a WCET analysis must be able
to correctly classify most accesses to heap objects as cache
hits or cache misses. The cache mapping of objects de-
pends on their addresses in memory, i.e. where they reside
on the heap.

More concretely, we are currently aware of three ap-
proaches to enable the determination of tight WCET

bounds for programs using dynamic memory allocation.
Schoeberl proposes to use predictable hardware caches to
separate dynamically and statically allocated objects [10].
To support this approach, a static analysis would have to
associate (heap) objects with allocation sites (or just al-
location technique: static or dynamic) to decide in which
hardware cache an object may reside. Herter et al. pro-
pose to use a predictable memory allocator that takes as
an additional argument the cache set to which the returned
address shall be mapped [5]. As a result, the cache set
mapping becomes explicit and statically known. However,
for a WCET analysis to benefit from this, heap objects
need to be associated with invocations of the dynamic al-
locator, i.e. where and when they were allocated. The third
approach is only applicable to a subset of hard real-time
applications with statically derivable regularities in allo-
cation behavior and aims at removing dynamic allocation
completely by replacing it by precomputed memory ad-
dresses [4, 3]. This approach heavily relies on a precise
static analysis of the program to enable the computation
of good memory addresses. It also requires that heap ob-
jects can be associated with allocation sites. While a data
structure analysis [6] can be used to connect heap struc-
tures with allocation sites, an allocation-site aware shape
analysis as proposed in this paper can yield more precise
information resulting in a more efficient set of precom-
puted memory addresses.

The remainder of this paper is organized as follows.
Section 2 briefly introduces the framework for stateless
shape analysis via 3-valued logic as proposed in [9]. In
Section 3, we sketch how allocation-site awareness can
be incorporated into this framework. Section 4 discusses
static program analyses that would be enabled by or at
least profit from an allocation-site aware shape analysis.

2 Shape Analysis using 3-valued Logic

This section briefly summarizes the framework for
shape analysis via three-valued logic. For a detailed dis-
cussion, we refer to [9].

Two-valued logical structures can be used to describe
concrete heap states. Each heap allocated object is rep-
resented by a logical individual, each pointer variable by
a unary predicate that evaluates to true iff its argument

9

is the individual representing the heap object to which
the variable points. Field pointers referencing one heap
object from another are analogously modeled by binary
predicates. Additional so-called instrumentation predi-

cates can be defined to increase precision or performance
of the analysis. Properties of the heap can be formulated
as logical formulæ and checked by evaluating their defin-
ing formulæ on the logical structure describing the cur-
rent heap state. Effects of program statements on the heap
state are captured by predicate-update formulæ that state
how predicates are updated to yield a structure describ-
ing the heap state after execution of a program statement.
Figure 1(a) shows a graphical representation of a logical
structure describing three objects organized in a singly
linked list. Logical individuals are depicted as circles,
predicates evaluating to true as arrows. Predicates eval-
uating to false are not drawn.

x 1 2next 3next

1

2

next

3next

x

(a) (b)

Figure 1. Two shape graphs each depicting
3 objects organized in a singly linked list.

Applying the effects of the program statement
x = x→next ; modeled by predicate-update formulæ

x(v) ← ∃u.x(u) ∧ next(u, v)

next(u, v) ← next(u, v)

yields a structure as depicted in Figure 1(b).
A shape analysis of a given program/method can then

be implemented as a fixed point computation collecting
for each program state the set of logical structures describ-
ing all heap states that may arise there, starting with some
initial heap description for the starting point of the pro-
gram/method. However, an unbounded number of con-
crete heap description may arise at program points. We
therefore introduce abstract heap descriptions using three-
valued logical structures that can themselves represent a
possibly infinite number of concrete two-valued logical
structures. A concrete logical structure is abstracted by
partitioning the individuals into equivalence classes such
that all individuals within one class yield the same truth
values for a predefined set A of abstraction predicates.
The individuals of the abstracted structures correspond to
these equivalence classes. Abstract individuals that may
represent more than one concrete individual are called
summary nodes. Predicates not in A need to be reeval-
uated and may evaluate to the indefinite truth value 1/2
iff not all concrete individuals summarized by the abstract
individual evaluate to the same definite truth value. Ab-
stracting the structure from Figure 1(a) under A = {x}
results in the 3-valued logical structure depicted in Fig-
ure 2, where dotted arrows represent predicates evaluating
to 1/2 and summary nodes are drawn doubly circled.

x 1 2,3next

next

Figure 2. Abstract shape graph embedding
in particular the structure from Figure 1(a).

To model the effects of program statements on abstract
heap descriptions the same update formulæ as in the con-
crete setting are used and simply evaluated using 3-valued
logic. However, to increase precision, before applying up-
date formulæ the relevant parts of the structure are con-
cretized (focus or partial concretization). As focusing may
generate contradicting or less precise structures, after ap-
plication of the update formula, the resulting structures
are coerced into more precise structures and contradicting
structures are completely removed.

3 An Allocation-Site Aware Shape Analysis

In order to make the previously described framework
allocation-site aware, we associate with each heap object
where and when it was allocated. The number of alloca-
tion sites is statically known and for most programs very
small. Hence, to model where an object was allocated, we
introduce additional unary predicates allocm ∈ A such
that allocm(u) = 1 iff u was allocated at program loca-
tion m. Furthermore, to model when the object was al-
located, we construct a function t� : U �→ N that maps
individuals of a concrete structure to invocations of an al-
location site. In an abstract structure, we map to intervals
of possible invocations: t : U �→ I, where the set of in-
tervals is defined as I = {[l, u] |l ∈ N ∧ u ∈ N ∧ l ≤ u}.
Analogously, we can add functions s� and s to associate
heap objects with their (requested) sizes. Summarization
of two individuals v1 and v2 is adapted as follows. Let the
new summary node be vsm, then t(vsm) = t(v1) � t(v2)
and s(vsm) = s(v1) � s(v2) where [l1, u1] � [l2, u2] =
[min {l1, l2} ,max {u1, u2}]. The logical predicates are
reevaluated as in the stateless framework.

Consider the C program given in Listing 1. Figure 3
shows an abstract allocation-site aware shape graph de-
scribing the possible heap states occuring after executing
line 4. Being more precise than existing data structure
analysis, we can identify two data structures and associate
their objects precisely with the same occurrence of malloc
in program line 12.

In a real-time setting, shape analysis can be performed ar-
bitrarily precise. As in the general setting, we can add
instrumentation predicates to increase precision, but we
can also deactivate abstraction, i.e. summarization of in-
dividuals, completely as no unbounded structures may
arise due to known loop and recursion bounds. How-
ever, abstract heap structures are still desirable as they
may lead to significantly shorter analysis time. The fol-
lowing set of (instrumentation) predicates and additional

10

Listing 1. C program working on linked lists
1 int main() {
2 list ∗ p = buildList(16, ...);
3 list ∗ data = buildList(256, ...);
4 list ∗ x = data;
5 ...
6 }
7 list ∗ buildList(int size, ...) {
8 list ∗ result;
9 ...

10 while(...) {
11 ...
12 ... = malloc(sizeof(list));
13 ...
14 }
15 return result;
16 }
17 struct dll el ∗ copy(struct sll el ∗ src) {
18 struct dll el ∗ result;
19 ...
20 while (src != NULL) { /∗ loop bound exactly 256 ∗/

21 ... = malloc(...);
22 ...
23 free(...);
24 ...
25 }
26 ...
27 return result;
28 }

p
r_p

alloc_12
size [8,8]

site invoc. [1,1]

r_p
alloc_12
size [8,8]

site invoc. [2,16]

next

data r_data
r_x

alloc_12
size [8,8]

site invoc. [17,17]

r_data
r_x

alloc_12
size [8,8]

site invoc. [18,273]

next

x

next

next

Figure 3. Analysis result after execution of
line 4. site invoc corresponds to our t
function.

precision increasing techniques have shown good trade-
offs between precision and complexity of allocation-site
aware shape analyses. To separate different data struc-
tures, a predicate rx(v) modeling reachability from pro-
gram variables is used: rx(v) := ∃u.x(u) ∧ fr(u, v)∗,
where x and fr are predicates corresponding to pointer
variables and field references, respectively. Deallocated
objects are not removed but marked as freed by a unary
predicate deallocated(v). We further increase precision
of partial concretization w.r.t. numeric intervals by allow-
ing the analysis to mark predicates modeling field refer-
ences with superscripts < and >, indicating that, iff the
predicate evaluates to true, both arguments to the predi-
cate are allocated directly after or before each other at the
same allocation site. We also introduce an additional ab-
straction technique that substitutes in intervals of length

1, as in [5, 5], the numerical value by newly introduced
variables, yielding in the example the interval [i, i]. This
enables embedding of structures that differ only in numer-
ical values used as interval bounds. The shape graph de-
picted in Figure 4 is one of the 3 shape graphs arising after
execution of line 25, when embedding is extended as de-
scribed.

result
r_result

alloc_21
size [12,12]

site invoc. [s,s]

r_result
alloc_21

size [12,12]
site invoc. [s+1,i-2]

next<

next<

r_result
alloc_21

size [12,12]
site invoc. [i-1,i-1]

next<

src
r_ts

alloc_12
size [8,8]

site invoc. [i,i]

r_ts
alloc_12
size [8,8]

site invoc. [i+1,256]

next<

next<

deallocated
alloc_12
size [8,8]

site invoc. [1,i-1]

next<
next<

Figure 4. A possible heap state at line 25.

4 Applications

Applying an analysis as discussed in the previous sec-
tion yields sets of allocation-site aware shape graphs for
an analyzed program. Information extracted from these
graphs can be used to enable program transformations
that increase timing predictability and can even constitute
analysis results for other, subsumed analyses. This sec-
tion gives an overview on how information from shape
graphs can be of benefit and sketches the applications for
allocation-site aware shape analysis we identified so far.

4.1 Allocation Behavior Analysis
Our main motivation was to enable a more precise

timing analysis for hard real-time applications. For pro-
grams with statically derivable regularities in object life-
times, replacing dynamic memory allocation by a precom-
puted static allocation scheme yields many advantages.
The memory addresses of heap allocated objects become
known to the timing analysis and unpredictability intro-
duced by the memory allocator is removed together with
the allocator itself.

The precomputation of suitable memory addresses for
heap objects as proposed in [3] relies on a formal descrip-
tion of a program’s allocation behavior. This formal de-
scription is given by a six-tuple, (M,U,L,A, C,B). M is
the set containing all allocation sites and U contains upper
bounds on how often each allocation site may be reached,
i.e. how often this function call may be invoked. Addi-
tional knowledge about the relations between elements of
U , such as u1 < u2, is collected in the set L. For each
allocation site m, a function fm is constructed such that
fm(i) evaluates to an interval describing the size of the
memory block requested the i-th time allocation site m
is reached. A is the set of all such functions. The set R
where R =

�
(m, i) | m ∈ M ∧ i ∈ N≤um∈U

�
contains

all allocation requests that may occur during program ex-
ecution. C is a conflict function C : 2R �→ {0, 1} that

11

evaluates to 1 iff its argument requests at least two mem-
ory blocks with overlapping lifetimes. To exploit simple
cache placement heuristics, a bias function B is given as
B : (R × R) �→ {0, 1} where B(r1, r2) evaluates to 1 iff
the block requested in r1 is likely to be accessed prior to
the one requested in r2. While M can be directly extracted
from the program code, U and L are often provided by the
user. A is constructed from M , L, and the requested sizes.
These sizes, the conflict function C, and the bias function
B have to be derived by a static program analysis. The size
of a heap object—or requested memory block—is explic-
itly stored in the shape graphs. Functions B and C can
be extracted from an allocation-site aware shape analysis
as follows. B(r1, r2) evaluates to 1 iff there exists a field-
pointer predicate evaluating to true for the individuals rep-
resenting r1 to r2, C evaluates to 1 iff representatives of at
least two elements of its argument set are present in the
same shape graph and none is marked as deallocated.

4.2 Cache Analysis for Heap Allocated Objects
For programs from which we cannot statically remove

dynamic memory allocations, a cache-aware predictable
memory allocator may be used. Such an allocator as pro-
posed in [5] can be guided with respect to the cache set
mapping of returned addresses via an additional cache set
argument. Knowing to what cache sets the memory lo-
cations of heap objects are mapped, cache and subsequent
WCET analyses may be able to predict cache hits or cache
misses for accesses to dynamically allocated objects. Fail-
ing to be able to correctly classify a significant number of
memory accesses as cache hits or misses would result in
high overestimations of a program’s WCET. A shape anal-
ysis as proposed in this paper can be used to automatically
find suitable cache set arguments for allocated objects by
extracting program logical structures from the resulting
shape graphs (see Section 4.3) and applying a suitable
cache set mapping strategy to the respective structures.
Also, combining a cache analysis [1] with an allocation-
site aware shape analysis is current on-going work.

4.3 Combined Data Structure and Escape Analysis
Data Structure Analysis attempts to identify disjoint in-

stances of program logical data structures and their inter-
nal and external connectivity properties [6]. An escape
analysis categorizes objects into escaping and not escap-
ing their allocating function [11]. An object is said to
escape the function it was allocated in if it may still be
accessible after returning from this function. The aim of
such an analysis is typically to identify objects that can
be allocated on the stack instead of the heap to increase
program performance.

Both analysis results can be extracted from allocation-
site aware shape graphs. A program logical data struc-
ture can always be defined as a connected component of
the shape graph. With more knowledge about the data
structures used in a program, we can even introduce new
predicates to more precisely associate heap objects with

program logical data structures. To identify escaping ob-
jects, we check within the shape graphs occurring at the
exit point of functions whether objects allocated within
the function are reachable from returned, static or class
objects or also arguments to the analyzed function. Ob-
jects passed as arguments to functions called within the
analyzed method also escape. Reconsider Figure 3 de-
scribing all possible heap states after execution of line 4
of our example code, where an allocation-site aware shape
analysis was able to separate all heap allocated objects
into two disjoint data structures. Existing data structure
analyses like [6] yield a much less precise overapproxi-
mation associating all heap objects with one structure.

5 Conclusions

The current stateless shape analysis framework via 3-
valued logic can be extended to track information about
where and when heap objects were allocated as well as
their respective sizes. For applications of shape analysis
considered within the community so far, this additional
information is not necessary and only tends to increase
analysis times. However, for hard real-time programs, ap-
plications have emerged that depend on this additional in-
formation. Additionally, performance of static analyses is
less critical in this setting as the analyzed programs are
normally less complex and higher analysis times are justi-
fiable.

References

[1] M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm. Cache
behavior prediction by abstract interpretation. In SAS ’96,
London, UK, 1996. Springer-Verlag.

[2] B.-Y. E. Chang and X. Rival. Relational inductive shape
analysis. In POPL ’08, New York, NY, USA, 2008. ACM.

[3] J. Herter and S. Altmeyer. Precomputing memory loca-
tions for parametric allocations. In WCET’10, 2010.

[4] J. Herter and J. Reineke. Making dynamic memory alloca-
tion static to support WCET analyses. In WCET’09, 2009.

[5] J. Herter, J. Reineke, and R. Wilhelm. CAMA: Cache-
aware memory allocation for WCET analysis. In Proceed-

ings Work-In-Progress Session of the 20th Euromicro Con-

ference on Real-Time Systems, 2008.
[6] C. Lattner and V. Adve. Data structure analysis: A fast and

scalable context-sensitive heap analysis. Technical report,
University of Illinois at Urbana-Champaign, 2003.

[7] T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting
static analysis to work for verification: A case study. In
ISSTA, 2000.

[8] J. Reynolds. Separation logic: A logic for shared mutable
data structures. IEEE Computer Society, 2002.

[9] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape anal-
ysis via 3-valued logic. ACM Transactions on Program-

ming Languages and Systems, 24(3), 2002.
[10] M. Schoeberl. Time-predictable cache organization. In

STFSSD ’09, Washington, DC, USA, 2009.
[11] J. Whaley and M. Rinard. Compositional pointer and es-

cape analysis for java programs. SIGPLAN Not., 34(10),
1999.

12

Model-based approach for IMA platform early exploration

Abstract

The avionics platform are now developed according
to the Integrated Modular Avionics concept, allowing
one processing module to host some applications in
order to reduce weight, space and costs. This concept
increases the development and certification complexity,
while time to market tends to decrease. So new
development processes are needed. Model-based
approaches are now mature enough to design
embedded critical systems and perform architecture
exploration.

In this paper we propose a new modeling approach
that aim to size an execution platform architecture (OS
and hardware) according to the applications it has to
process, and achieve early platform exploration.

Keywords :

1. Introduction

M D E

A D L

2. State Of The Art

13

3. Integrated Modular Avionics Platform

Figure 1. IMA platform

Figure 2. ARINC 653 spatial partitioning

4. IMA Platform Modeling

4.1. Overview

14

Figure 3. Modeling Approach

4.2. Applications modeling

Figure 4. Application modeling.

Figure 5. Example of Major Frame

4.3. High level system modeling with AADL

15

4.4. Platform integration by generation

Figure 6. Dram automata example with timing
annotations

5. Platform Simulation and Results

6. Conclusion

References

INCOSE MBSE Focus Group

4th European Congress ERTS
Embedded Real Time Software,

CM
SIGAda Ada Letters

Center for Embedded Computer
Systems, University of California

16

Improved sampling for statistical timing analysis of real-time systems ∗

Abstract

The guaranteeing of timing constraints is the main pur-
pose of analyses for real-time systems. The satisfaction of
these constraints could be verified deterministically using
worst-case scenarios that introduce a certain pessimism.
This pessimism could be decreased by using statistical es-
timations of certain parameters as it is the case for worst-
case execution times. In this paper, we address the problem
of sampling applied to the distributions of worst-case exe-
cution times. The presented sampling techniques are inves-
tigated in order to provide the respect of timing constraints
and to insure a low level of pessimism.

1 Introduction

2 Related work

∗

Contribution of the paper

Organization of the paper

3 Problem statement and associated model

τ = {τ1, τ2, · · · , τn}
n

Oi

Ti Di

pi jth τi

Oi + (j − 1)Ti

Oi + (j − 1)Ti + Di

pi

17

Ci

τi

Ci =

(

ck

P (C = ck)

)

k∈{1,··· ,ki}

ck ∈ [cmin
i , cmax

i] ki ∈ N∗

Ci

cmin
i cmax

i

τi (Oi, Ci, Ti, Di, pi)

Ci

Ci

Ci Cj

ki ∗ kj

ki

Ci

Given a distribution of n values, how do we select
k significant values out of n and how do we redistribute the
probabilities so that the analysis is still accurate?

R

Definition 3.1 . An exact ran-
dom variable defines the exact results of a probabilistic
analysis.

R′

R

4 Real-time sampling

Ci τi k
ki

k

k

k

4.1 Selecting the k samples

k n
Ci choos-

ing the k values with the highest probabilities

k − 1
k

4.2 Probability re-distribution

distributing the remaining probabilities to the k se-

18

lected values

k

Algorithm 1
k

Input: Ci k
Output: Cnew

i

j = 1
m = 1
p = 0
while j ≤ ki do

p = p + P (Ci = cj)
if j then

cnew
m = cj P (Cnew

i = cj) = p p = 0
m = m + 1

end if
j = j + 1

end while

P (Ci = ci) Ci

ci1−1 ci2 i1 i2

ci2 Cnew
i

k

4.3 Safety

C

Lemma 4.1 . The HiRS re-sampling
mechanism is safe.

Proof.

X ′ X
R(X) R

X X

1

X ′

XR XR % X ′ % X

5 Example

1 10

C =
(

1 2 3 4 5 6 7 8 9 10

0.05 0.04 0.2 0.05 0.22 0.05 0.3 0.04 0.04 0.01

)

,

k = 4 10

!

19

0.05 0.04

0.2
0.05

0.22

0.05

0.3

0.04 0.04 0.01
1 2 3 4 5 6 7 8 9 10

0.05 0.04

0.2

0.05

0.22

0.05

0.3

0.04 0.04

0.29

1 2 3 4 5 6 7 8 9 10

0.29 0.27
0.35

0.09

1 2 3 4 5 6 7 8 9 10

Figure 1. The example distribution with two
different re-samplings.

4
10 3

7
0.3 5

0.22 3 0.2

4

C =

(

3 5 7 10
0.2 0.22 0.30 0.29

)

,

1
2 3 0.29 =
0.2 + 0.05 + 0.04

Cnew =

(

3 5 7 10
0.29 0.27 0.35 0.09

)

,

0.09

6 Conclusions and future work

k

References

40

20

Maximum Access Delay Evaluation in an IEEE 802.11e/AFDX Hybrid
Network

Bafing Sambou, Fabrice Peyrard, Christian Fraboul
IRIT/INPT-ENSEEIHT, University of Toulouse, France

2 rue Charles Camichel 31071 Toulouse, France
{Bafing-Cyprien.Sambou, Fabrice.Peyrard, Christian.Fraboul}@irit.fr

Abstract

Our goal is to design an IEEE 802.11e/AFDX hybrid
network, then ensure the requirements of AFDX traffics in
an IEEE 802.11e wireless communication medium. AFDX
traffic constraints are temporal (a bounded delay and a
bounded jitter). In this paper we present the maximum ac-
cess delay of AFDX traffics in 801.11e wireless network
with our scheduler named AWS (AFDX Wireless Sched-
uler). AWS is based on the classification of flows (priority
class), on the retransmission management of frames, on
the deadline of frames and on the maximal jitter. The per-
formance evaluations show that we have a shorter max-
imum access delay for the most constraining flows with
AWS compared to the Reference Scheduler (RS). The per-
formance evaluations are performed under three scenar-
ios (overloaded network, loaded network and moderately
loaded network).

1. Introduction

The avionics systems are subject to very strict con-
straints to ensure working of hardware and software re-
sources [1]. Several on-ground maintenances are per-
formed on the on-board equipments in order to detect
possible dysfunction. These tests may require the dis-
mantling of equipments. This represents a cost in man-
power and the aircraft will be ground for a longer dura-
tion. Thus, to facilitate the ground maintenance of equip-
ments, our goal is to provide a wireless communication
medium based on IEEE 802.11e standard, which allows
us to perform the on-ground tests without the dismantling
of equipments. For this, we design a hybrid network IEEE
802.11e/AFDX (Avionics Full DupleX switched ether-
net). However, the use of the IEEE 802.11e WLAN [5]
in an aeronautical context is a real challenge, due to the
nature of the wireless communication radio, especially
for: (1) the QoS, (2) non-deterministic access to wireless
medium, (3) packet losses, (4) transmission errors and (5)
share of channel.

In this paper we propose an access method based on
the HCCA (HCF Controlled Channel Access) in order to:

(1) reduce the access delay to wireless medium for flows
with the most stringent requirements, (2) to control the jit-
ter (3) and to avoid that frames reach their deadline. We
use the HCCA access method because it offers us a larger
flexibility of scheduling than the EDCA (Enhanced Dis-
tributed Channel Access) access method.

Note that, several enhancements have been proposed
by the scientific committee to improve the performances
of the Reference Scheduler (RS) and the admission con-
trol unit. In [6], they carry an estimate of the queues
transmission length to determine the duration of TXOP for
each QSTA (QoS STAtion), therefore there are no polling
management and no jitter management. In [3], the Wire-
less Timed Token Protocol (WTTP) uses a list of Round
Robin where nodes are placed only when they have frames
at transmit. The reference duration of one round is equal
to the smallest delays of the flows; in order to transmit
all frames before their deadlines. In [7], the authors use
the ”Token Bucket” algorithm to regulate the input traf-
fic for each station. From this assumption, they compute
the maximal delay and propose an optimization of service
interval. In [2], the Real-Time HCCA scheduler (RTH) is
a periodic scheduling algorithm based both on the Earli-
est Deadline First (EDF) algorithm and on the Stack Re-
source Policy (SRP). Their aim is to design a scheduling
algorithm that provides, to flows, fixed amounts over fixed
periods. In [6], [3], [7], and [2] the authors have not taken
into account the jitter and the additional traffic due to the
retransmission of lost packets. In this paper we propose
an algorithm based on flow classification (priority class),
on deadline, on a jitter and on a policy for managing the
retransmission of losted packets.

The paper is organized as follow; in Section II, we
present the AFDX network. In Section III, we present
the IEEE 802.11e standard. In section IV we present
the topology of the IEEE 802.11e/AFDX hybrid network.
Afterward, in section V, we propose our scheduling al-
gorithm AWS for the IEEE 802.11e/AFDX hybrid wire-
less network and their performance evaluations. Finally,
in Section VI, we give the conclusion.

21

2. AFDX network

AFDX is described specifically by Part 7 of the AR-
INC 664 Specification [1], as a special case of a profiled
version of an IEEE 802.3 network utilizing IP address-
ing and related transport protocols. AFDX is faced to
deterministic requirements which regard: (1) a low and
bounded latency, (2) a low and bounded jitter, (3) an ab-
sence of data losses (4) and ensure the order of transmit-
ted messages [4]. One example of AFDX network topol-
ogy is illustrated in figure 1. The main function of the
End-System (ES) is to provide services, which guarantee
a secure and reliable data exchange to the application soft-
ware. Its services must meet a guaranteed bandwidth and
bounded latency, and a given maximal jitter. The ES uses
the Virtual Link (VL) notion to regulate traffic data flows
and exchanges Ethernet frames. At the output of the ES,
each flow associated with a VL is characterized by two
parameters: (1) Bandwidth Allocation Gap (BAG) and (2)
Jitter. The BAG represents the minimum space between
the first bits of two consecutive frames; if the frame is ex-
perience no jitter from the scheduler. BAG values should
satisfy the following formula: BAG=2k [in ms], (k inte-
ger in range 0 to 7). A VL defines a logical unidirectional
connection from one source ES to one or more destina-
tion ESs. Each VL has a dedicated maximum bandwidth
(Lmax/BAG). Lmax is the maximum frame size. When
transmitting ES has multiple VLs, it uses a scheduler to
multiplex flows (VLs). End-Systems are connected by
AFDX switch which is an Ethernet switch adapted to the
aircraft network requirements.

Figure 1. AFDX Network topology

3. IEEE 802.11e standard

The IEEE 802.11 standard characterizes a wireless lo-
cal area network; it describes the MAC and Physical lay-
ers. Its version, IEEE 802.11e [5], offers support of
QoS with the HCF (Hybrid Coordination Function) access
mechanism. The HCF uses two access methods: EDCA
(Enhanced Distributed Channel Access) and HCCA. Un-
der HCF, the basic unit of allocation of the right to trans-
mit onto the wireless medium (WM) is the TXOP (Trans-
mission Opportunity). A QSTA may transmit one or more
data frames during a TXOP if there is sufficient duration.
It is possible that no frame was transmitted during the
TXOP. The HCCA mechanism uses a QoS-aware central-
ized coordinator, called a hybrid coordinator (HC). The
HC is collocated with the Quality Access Point (QAP) and
uses the higher priority of access to the wireless medium

to initiate frame exchange sequences and to allocate TX-
OPs to itself and other QSTAs. Each polled QSTA by
the HC receives a TXOP. The maximum value of TXOP
is determined by the HC, which forwards it to the QSTA
during the polling phase. A Reference Scheduling (RS)
algorithm [5] is defined in order to determine the max-
imum value of TXOP (TXOPLimit) and the scheduled
Service Interval (SI) of all QSTAs with admitted flows.
The SI is the duration between two phases of polling and
is chosen to be a submultiple of the beacon interval and
the minimum of all maximum SIs of admitted flows. The
scheduler calculates the TXOP duration as the maximum
between (1) the time to transmit Ni frames at Physical
Transmission Rate Ri and (2) the time to transmit one
MSDU with the maximum size Mi at Ri, Ni is the num-
ber of MSDUs that arrived at mean data rate ρ during the
scheduled SI.

TXOPi = max((Ni × Li)/Ri +O,Mi/Ri +O) (1)

Li is the Nominal MSDU Size and O the Overheads in time
units. The overheads include IFSs (Inter-frame space),
ACK frames and CF-Poll frames.

4. IEEE 802.11e/AFDX Hybrid network
topology

To facilitate the ground maintenance of equipments,
our goal is to provide a wireless communication medium
based on IEEE 802.11e standard. This communication
medium will allow us to connect us; either directly to the
equipment, either from a switch AFDX to perform main-
tenance testing. In both cases, we use an QAP connected
to an AFDX switch(see figure 2). At the QAP, we have
a HC, which is responsible of scheduling the access to
the wireless medium for VLs. In the wireless part, the
QSTAs perform the role of End-Systems. However, as

Figure 2. Hybrid network topology

we announced earlier, the wireless part of this hybrid net-
work generates additional constraints that are related to
the wireless medium. These constraints lead to a greater
jitter and delay of frames and also reduce the bandwidth.
A RS is provided to guarantee the QoS. However the RS
is more adapted to CBR (Constant Bit Rate) traffic and its
enhancements are oriented to multimedia applications. In
this paper, we propose a HCCA scheduler, named AWS,
that aims (1) to adapt the HCCA reference scheduler to the
AFDX context and (2) to enhance it to avoid that frames
reach their maximal jitter and maximal latency.

22

5. AFDX Wireless Scheduler (AWS)

To draw nearer to requirements of AFDX regarding the
containment of errors related to behavioral dysfunctions
of one or more VLs, we consider independently each VL.
Thus in the following each VL is considered as a node in
the network with periodic and sporadic traffic. Traffic is
periodic with a p period, if it sends data at each p time in-
terval. A periodic traffic is sporadic when it doesn’t send
a data for some periods. AWS aims to guarantee the trans-
mission of all frames before their deadline (maximum de-
lay and maximum jitter). It improves the reference sched-
uler: (1) by defining multiple priority levels which are
based on the BAG values, (2) by using the deadline of
frames to allow VLs with lowest priorities to transmit their
frames, (3) by defining a retransmission management pol-
icy of frames, (4) by managing the sporadic aspect of VLs
and (6) by a policy to control the jitter. AWS proposes a
classification of VLs using the BAG values. A VL with
a smaller BAG has the priority over a VL with a greater
BAG. This priority policy between the VLs is designed
in order to transmit at first the frames of the most con-
straining VLs. However, to avoid that the VLs with a low
priority, have never transmit, AWS uses the deadline of
frames. AWS set a threshold, which is based on the dead-
line, for each priority class. A frame of VL, which reached
its threshold, receives the highest priority. AWS also set a
management policy for the retransmission. The frame re-
transmission is no automatic. When a VL loses its frame,
the HC first checks if it still has the highest priority. If so,
it allows the transmission. Otherwise, the VL with high
priority (closer to deadline) transmits its frame. To man-
age the sporadic aspect of VLs and avoid the unnecessary
poll, the QSTAs use their data frames to communicate the
state of their VLs to the HC, this by ”piggybacking” the
state of VLs in the frames of data. Each VL has four
states: Idle, Active, Critical and Retransmission. A VL
is in an Idle state when it is waiting for his next BAG or
when it has reached its BAG and has no frame to trans-
mit. VL is in an Active state when it has reached its BAG
and has a frame to transmit. The Retransmission state is
only for VLs having a transmission failure or a retrans-
mission failure. The number of retransmission is limied
by 7 for small frames and by 4 for large frames, accord-
ing to IEEE 802.11. To control the jitter we assume that a
VL is in a Critical state when it has reached its threshold
(BAG + jitter-max - ∆). ∆ is the critical period of VL.
To avoid the un-used TXOPs, the HC scheduler schedules
only VLs in states: Active, Retransmission, and Critical.
Note that the HC have all information on VLs with the
received TSPECs (Traffic Specification) of QSTAs.

5.1. Scheduling phase
After each end of transmission of a polled VL, the HC

schedules the next TXOP on three steps at most:
Step 1: the HC updates the list of VLs in the critical
state: it adds the new VLs reaching their critical state, re-

moves VLs having reached their deadline and their packet
is dropped.
Step 2: if the list of VLs in the critical state is empty after
the update then HC will go to steps 3. Otherwise the HC
allocates a TXOP to the VL with the highest priority in
critical state. VL with the smallest deadline is the most
priority.
Step 3: in this step, only the VLs in Active and Retrans-
mission state are scheduled. The HC grants a TXOP to
the VL having the smallest BAG. Nevertheless, if several
VLs have the smallest BAG, the scheduler grants a TXOP
to the VL that have the nearest deadline. And if several
VLs have the smallest BAG and the same nearest dead-
line, then the HC follows the FIFO rule.

5.2. Simulations and results
The scenarios are based on a case of application issued

by [4] (provided by Airbus). The left side of table 1 shows
the distribution of VLs compared with BAG values. We
note that the high values of BAG are most used in this
configuration. In the right side of table 1, we have the
distribution of VL compared with the frames size.

BAG(ms) VL - frames size(bytes) VL
2 2.03% - 1-150 57%
4 4.06% - 151-300 20.53%
8 7.93% - 301-600 11.59%
16 14.43% - 601-900 5.79%
32 23.27% - 901-1200 1.22%
64 22.36% - 901-1200 3.56%
128 25.91% - ≺ 1500 0.3%

Table 1. VLs distribution

In the following we only focus on the results of VLs
with BAG values=2ms and 4ms because they have the
most constraints for access delay . From the distribution
table of VLs, we chose three scenarios. In the first sce-
nario we have 30 VLs, that means TXOPs occupy 60 %
of bandwidth (wireless area). The second scenario has 40
VLs (77% of bandwidth). In the last scenario we have 50
VLs, this represents 95% of bandwidth. For all scenarios,
we have considered 4 QSTAs and one AP, we have chosen
the maximum jitter equal to BAG/4 and the deadline equal
to BAG plus the maximum jitter for each VL. The physi-
cal rate is 54Mbps (802.11a). The TXOP is performed as
is defines in [5] equation (1). In following, we present and
compare the perfomance mesures of RS and AWS, regard-
ing the maximum access delay to the wireless medium.

Figures 3 and 4, show the maximum access delay to
wireless medium for respectively VLs(BAG=2ms) and
VLs(BAG=4ms), with BER=(10−5 and 10−4), this for all
scenarios. We note an increase of the maximum of ac-
cess delay in according the network load. The maximum
access delay of AWS is smaller than the maximum ac-
cess delay of RS; we have at least a reduction of 50% of
the maximum access delay with AWS compared to RS for
VLs(BAG2ms) and for all scenorios. For VLs(BAG4ms),

23

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

30 40 50

Ma
xim

um
 ac

ce
s d

ela
y (

ms
) w

ith
 B

AG
2

Number of Virtual Links

RS BER 10E-5
AWS BER 10E-5

RS BER 10E-4
AWS BER 10E-4

BAG2/4

Figure 3. Maximum Access delay
(BAG=2ms)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

30 40 50

Ma
xim

um
 ac

ce
s d

ela
y (

ms
) w

ith
 B

AG
4

Number of Virtual Links

RS BER 10E-5
AWS BER 10E-5

RS BER 10E-4
AWS BER 10E-4

BAG4/4

Figure 4. Maximum Access delay
(BAG=4ms)

in a real case (BER=10−5) we note that the maximum ac-
cess delay is inferior to the deadline, whatever the sce-
nario. This is not the case for RS. In some cases the max-
imum access delay of AWS exceeds the deadline, how-
ever we have a very large reduction of the dropped packet
(reached deadline) with AWS compared to RS (figures 5
and 6). We note a gain of 24% for AWS in worst case
situation (degraded wereless medium (BER=10−4) and
95% of bandwidth occupancy by TXOPs). In a real case
(BER=10−5), dropped packets with AWS is always infe-
rior to 3% for all scnarios versus 29% for RS.

6. Conclusion

The works presented in this paper are one part of study
to design an IEEE 802.11e/AFDX hybrid network. The
aim is to convey AFDX traffic on IEEE 802.11e wire-
less network. In this paper we have presented our HCCA
scheduler named AWS to overcome the limitations of RS
and reduce the access delay of the most constraining VLs.
AWS scheduler is based on (1) the priority classes, (2) the
deadline, (3) a policy for handle the retransmissions and
also (4) the maximum jitter. The simulations results show
that AWS scheduler are better access delay than the ref-
erence scheduler for the most constaining flows (figures
3 and 4). We note that we have a large reduction of the

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 30 40 50

Dr
op

pe
d p

ac
ke

ts
(%

) w
ith

 B
AG

2

Number of Virtual Links

RS BER 10E-5
AWS BER 10E-5

RS BER 10E-4
AWS BER 10E-4

Figure 5. Dropped packets (BAG=2ms)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 30 40 50

Dr
op

pe
d p

ac
ke

ts
(%

) w
ith

 B
AG

4

Number of Virtual Links

RS BER 10E-5
AWS BER 10E-5

RS BER 10E-4
AWS BER 10E-4

Figure 6. Dropped packets (BAG=4ms)

number of packets dropped with AWS. This involve a bet-
ter compliance of deadline with AWS which is concretized
by a gain of bandwidth. In our current work we have pro-
posed a optimized version of AWS which aims to use the
un-used bandwidth of TXOPs for the transmission of VLs
in critical or retransmission state; in order to reduce the
maximum access delay and the dropped packet number of
AWS.

References

[1] I. Aeronautical Radio. ARINC-SPECIFICATION-664. Air-
craft Data Networks PART 7 AFDX. New York, 2004.

[2] E. M. C.Cicconetti, L. Lenzini and G. Stea. Design and per-
formance analysis of the real-time hcca scheduler for ieee
802.11e wlans. In Comput. Netw., 2007.

[3] E. M. C.Cicconetti, L. Lenzini and G. Stea. An efficient
cross layer scheduler for multimedia traffic in wireless lo-
cal area networks with ieee 802.11e hcca. In ACM Mob.
Comput. and Commun. Reviews, 2007.

[4] H. Charara. Evaluation des performances temps reel de re-
seaux embarques avioniques. PhD thesis, Institut National
Polytechnique de Toulouse, 2004.

[5] IEEE-802.11e. Specific requirements Part 11 : Wireless
LAN medium access control (MAC) and physical layer
(PHY) specification. IEEE Computer Society, New York,
2007.

[6] Q. N. P. Ansel and T. Turletti. Fhcf :a simple and efficient
cheduling scheme for ieee 802.11e wireless lan. In Mobile
Networks and Applications, 2006.

[7] C. O. M. Y. Y.Higuchi, A.Foronda and Y. Okada. Delay
guarantee and service interval optimization for hcca in ieee
802.11e wlan. In IEEE Wireless Communications and Net-
working Conference, 2007.

24

Worst Case End-to-End Delay Analysis of Switched Ethernet using Timed

Automata

Muhammad Adnan, Jean-Luc Scharbarg, Jérôme Ermont, Christian Fraboul
Université de Toulouse/IRIT/ENSEEIHT/INPT 2, rue Camichel, 31000 Toulouse, France
{Muhammad.Adnan, Jean-Luc.Scharbarg, Jerome.Ermont, Christian.Fraboul}@enseeiht.fr

Abstract

Real-time applications require bounds on worst case
end-to-end communication delays over switched Ethernet.
Existing approaches determine these bounds pessimisti-
cally. The objective of this paper is to present an im-
proved modeling approach using timed automata for cal-
culation of exact worst case delays. This approach takes
advantage of local scheduling of flows. Moreover, it can
cope with larger network configurations than existing ap-
proaches based on timed automata, thanks to a port by
port analysis which reduces the search space.

1. Introduction

A full duplex switched Ethernet network eliminates in-
determinism in collision resolution mechanism of stan-
dard Ethernet CSMA/CD. In fact it shifts the indetermin-
ism to the switch level where various flows can compete
at each output port. Indeed, the waiting time of a frame in
the output ports of the switches it crosses highly depends
on the current number of pending frames in these ports;
hence for real-time applications we need worst case de-
lay analysis to determine the upper bound on end-to-end
communication delays. This guarantee can be provided
by Network Calculus [6, 4] however the results are pes-
simistic and do not present exact worst case delays. A
model checking approach has been proposed [5]. It com-
putes the exact worst case delay but makes no assumptions
regarding the temporal relationship between the flows.
This is true for flows coming from different source nodes
except when a global time is present in the system (such
as ProfiNet). This global time implementation leads to
complex systems which are difficult to validate. When no
global time exists, flows coming from a given node are
still scheduled thanks to the local clock of this node as
shown in Figure 5(a). Therefore, it is interesting to study
the benefits of such partial scheduling of flows in the over-
all network.

The aim of this paper is to present an improved timed
automata based modeling approach for finding exact worst
case delays. This methodology also incorporates the
scheduling at each node. Taking this partial synchroniza-

tion of flows into account, we can improve overall delays
and result in better network utilization. This approach
can cope with larger networks, since the computation pro-
ceeds on a port by port basis, which reduces the search
space.

The paper is organized as follows: Section 2 presents a
brief overview of timed automata. Section 3 explains the
improved modeling approach with an example and sum-
marizes results on the example network. In section 4 the
paper is concluded with directions for future research.

2. Overview of timed automata

Timed automata have been proposed first by Alur and
Dill [2] in order to describe systems behavior with time.
A timed automaton is a finite automaton with a set of
clocks, i.e. real and positive variables increasing uni-
formly with time. Transitions labels can be: a guard, i.e.
a condition on clock values, or actions, or updates which
assign new value to clocks. The composition of timed au-
tomata is obtained by a synchronous product. Each action
a executed by a first timed automaton corresponds to an
action with the same name a executed in parallel by a sec-
ond timed automaton. In other words, a transition which
executes the action a can be fired only if another transition
labeled a is possible. The two transitions are performed si-
multaneously. Thus communication uses the rendezvous
mechanism.

Performing transitions requires no time. Conversely,
time can run in nodes. Each node is labeled by an in-
variant, that is a boolean condition on clocks. A timed
automata can be in a state only if the associated invariant
is true.

Several extensions of timed automata have been pro-
posed. One of these extensions is timed automata with
shared integer variables. The principle consists in defin-
ing a set of integer variables which are shared by different
timed automata. Consequently, the values of these vari-
ables can be consulted and updated by the different timed
automata [8, 3].

A system modeled with timed automata can be veri-
fied using a reachability analysis which is performed by
model-checking. It is done by verifying if a node is
reached from the initial configuration. In the general

25

Figure 1. Example of switched Ethernet net-

work configuration.

case, reachability analysis is undecidable on timed au-
tomata with shared integer variables. In the particular case
where the shared variables are represented by nodes of
a timed automata, the reachability analysis is decidable
[8]. The approach considered in this paper is based on
timed automata with shared integer variables which are
represented by nodes of a timed automaton. The model-
ing of the switched Ethernet with timed automata, using
UPPAAL [1], is presented in next section.

3. Timed Automata Based Modeling of

Switched Ethernet Network

For this work we suppose following assumptions in full
duplex switched Ethernet network composed of multiple
nodes interconnected by switches using store and forward
pattern. We assume that all the flows are strictly peri-
odic and are statically defined and routed on the network
including multicast flows. All nodes and switches sup-
port FIFO queuing. A flow comprises of strictly periodic
frames sent from one source node to all destination nodes
on one or several paths defined statically.

A model checking approach determines exact worst
case delays but leads to combinatorial explosion thus re-
stricting its use to only small networks [5]. To overcome
this issue, a “divide and conquer” methodology is used in
this paper. The idea is to calculate the exact worst-case
delay on each output port for the path of given flow and
then to propagate this delay in consecutive discrete steps
starting from source node till the destination node.

The approach is illustrated by an example of switched
Ethernet network shown in figure 1. This network con-
sists of 6 nodes interconnected with two switches. We

Figure 2. Offsets between flows of a node.

assume that all 15 data flows (F1 to F15) of this config-
uration are strictly periodic. Their maximum packet size
and periods are given in figure 1. The scheduling im-
plemented by each node is modeled by offsets associated
to the flows, given in figure 1. We focus on F1 whose
path is {N1-SW1-SW2-N2} (bold line in figure 1). There
are other flows originating from ‘N1’ and other end sys-
tems which pass through port ‘SW1P1’ and ‘SW2P1’ (in-
dicated by ‘x’ in columns “SW1P1” and “SW2P1”). The
calculation of exact upper bound on end-to-end delay of
F1 is processed on a port by port manner; this delay is
first computed at port “SW1P1” and the obtained value is
then used to calculate the delay in port “SW2P1”.

The description of the approach proceeds in 4 steps:
a) Modeling of flows and their scheduling at one node.
b) Modeling asynchronous behavior among all nodes. c)
Modeling and computation of delay at first output port
“SW1P1” and d) Modeling and computation of delay at
subsequent output ports “SW2P1”.

Modeling of flows and their scheduling at one node.

As mentioned before, all flows are assumed strictly peri-
odic with periods shown in figure 1. Hence their schedul-
ing by given node is modeled by offsets. One flow is
arbitrarily chosen as the first flow to generate a packet.
Without loss of generality, we chose a flow with shortest
period. In the example in figure 1, F3 is reference flow
for “N1” and offsets of F1 and F2 are computed based
on F3 shown in figure 2. Similarly F5, F8, F12 and F13
are chosen for “N3”, “N4”, “N5” and “N6” respectively.
This leads to one timed automaton for each flow. While
modeling the automata, all values are scaled by 10 µs.The
automaton for F3 is depicted in figure 4(b). After the trig-
ger of N1, we wait for the offset time to elapse (which in
case of reference flow is zero) and then we go to a state
which models jitter in the flow (for flows of originating
node, this jitter is zero). Finally, we store the packet in
FIFO queue and wait till the flow period is elapsed. This
process is repeated periodically. Clock variable “x” in all
TAs is a local variable.

Modeling asynchronous behavior among all nodes.

The nodes are asynchronous with respect to each other.
They can start transmitting flows at any time with ref-
erence to other nodes, as shown in Figure 3 where
“StartN1” and “StartN3” can take any value between zero
and largest period of the flows emitted by N1 and N3 re-
spectively. This behavior is modeled in timed automaton

26

Figure 3. Asynchronous behavior of nodes.

in figure 4(a) representing N1. The state “n1” is reached
after a delay that can take any value between zero and
32ms (largest period of any flow of N1 scaled by 10 µs).
The model checking will test all possible values in this
range.

Modeling and computation of delay at first output

port. The next step is the computation of upper delay at
first output port i.e “SW1P1”. The output port is a FIFO
queue (which serves packets in order of their arrival). Fig-
ure 4(d) shows timed automaton of an output port. It mod-
els the packet size, and the order among flows. For sim-
plicity, we assume there is no latency within the switch
but it can be easily added to the model. After initializa-
tion we wait in empty state till we receive some packet.
As soon as a packet is stored in queue, we check the
ID of this packet representing the flow id by using func-
tion headQueue() and go to corresponding state with-
out elapsing any time thanks to urgent channel variable
“hurry”. The automaton has one location for each flow
and stays in this location for the time equal to flow packet
transmission time and then returns back to empty state
removing the packet from the queue. The FIFO queue is
modeled as an array with maximum size equal to upper
buffer bounds calculated by network calculus [7]. This
ensures there will not be overflow in the queue. Functions
enQueue(id) and deQueue() add and remove flow pack-
ets from the queue respectively.

The flow under analysis requires some additional states
in it’s model for measuring end-to-end delay. Figure 4(e)
shows timed automaton of “measuring flow”. The de-
lay experienced by one packet of F1 is measured by lo-
cal clock variable y. This clock is reset as soon as the
packet is ready for transmission. It is measured when the
packet has just been transmitted. The worst case delay is
the smallest value x such that the value of clock y is al-
ways less than or equal to x. It is obtained by querying the
timed automata using following CTL formula:

A[] (F1m.fi imply F1m.y ≤ x)

The value x is initialized to the sure upper bound com-
puted by the Network Calculus [7] and then decreased
as long as the formula is verified. The delay for F1 in
“SW1P1” is 110µs.

Modeling and computation of delay at subsequent out-

put ports. The jitter experienced by a flow at a given

n1

x=0
x>=0 && x<=3200

x=0,
scramble++

(a) TA for Reference
flow Trigger

x<=flperiod

jitter

x<=j

offset

x<=floffset

x>=flperiod
x=0

enQueue(id)
x==floffset
x=0

scramble>0
hurry!
x=0

(b) TA for Normal flow

offset

x<=(floffset) x<=flperiod

jitter

x<=j

z>=flsize
enQueue(id),
z=0

scramble>0
hurry!
x=0

x==(floffset)
x=0

x>=flperiod
x=0

(c) TA for Serialized flow

x<=fl8size

x<=fl7size

x<=fl2size

x<=fl9size

x<=fl6size x<=fl5size

x<=fl4size

x<=fl3size

x<=fl1size
notEmpty

empty

x==fl7size

x=0,
deQueue()

x==fl2size
x=0,
deQueue()

x==fl8size
x=0,
deQueue()

headQueue()==8
hurry!
x=0

headQueue()==7
hurry!

x=0

headQueue()==2 hurry! x=0

x==fl9size
x=0,
deQueue ()

headQueue()==9
hurry!
x=0

headQueue()==6
hurry!

x=0

headQueue()==5
hurry!
x=0 headQueue()==4

hurry!
x=0

x==fl6size
x=0,
deQueue ()

x==fl5size
x=0,
deQueue () x==fl4size

x=0,
deQueue ()

x==fl3size
x=0,
deQueue ()

headQueue()==3
hurry!
x=0

x==fl1size
x=0,
deQueue (),
endMeasure()

headQueue()==1
hurry!
x=0

emptyQueue()
not emptyQueue()

hurry!

initialize(),
z=15

(d) TA for output port

jitter2

x<=j

period
x<=flperiod

period2 x<=flperiod

jitter

x<=j

fi

offset

x<=(floffset)
enQueue(id),
measure(),
counter++

enQueue(id),
measure(),
counter++

x==floffset
x=0,
isFirst=true

x>=flperiod
x=0

svl1m==1 hurry! y=0

svl1m==2
hurry!

y=0

counter==0
hurry!
svl1m=2

counter==0 && isFirst==false
hurry!

svl1m=1

x>=flperiod x=0
scramble>0

hurry!
x=0,
y=0

(e) TA for Measuring flow

Figure 4. Timed Automata for flows.

(a) Packet streams

(b) Packet jitter at output port

Figure 5. Packet arrival instances and how

a delay at output port appears as jitter.

27

Figure 6. Serialization of flows after passing

through an output port.

Figure 7. Worst case scenario for F1.

point in its path is clearly the maximum waiting time of
a packet of this flow in the buffers of the output ports it
has crossed as illustrated in figure 5(b). So the calculated
delay at first port “SW1P1” is used as jitter j in timed
automata models in second output port and so on. The
above process is repeated for all output ports in the path
of a given flow and whole network can be analyzed this
way in port by port manner, albeit with a small addition to
flow automata explained below.

In fact packets sharing a link are serialized, i.e they
cannot be transmitted concurrently, as illustrated in fig-
ure 6, where the packet of F4 has to wait until the end of
the transmission of the packet of F1. This serialization
is modeled by the clock variable z in the timed automa-
ton in figure 4(c). It ensures that the delay between the
receptions of two consecutive packets ‘P1’ and ‘P2’ is at
least the transmission time for ‘P2’. This model is used
for the example considered in this paper at “SW2P1” port
for F1, F3, F5 and F9. The delay calculated at this port
is 110 µs. The end to end delay is addition of all the de-
lays on the path of the flow. In this example total delay of
F1 is transmission time at N1+delay at SW1P1+delay at
SW2P1 which equals 250µs. This worst case scenario is
shown in figure 7.

Results. The table 1 represents the results of example
network. All calculations were done on a machine with
3.3 GHz Intel Core 2 Duo processor having 4 GB RAM.
In general for flows with no jitter, the computation time
is about 5 seconds using approximately 15 MB of RAM
but for flows with jitter, it can take up to 15 hours using
approximately 4 GB of RAM.

Flow Delay(us) at SW1P1 Delay(us) at SW2P1
F1 110 110
F3 110 110
F4 110 -
F5 80 100
F6 90 -
F9 110 110

F10 - 110
F15 - 110

Table 1. Exact worst-case delays.

4. Conclusion

In this paper, we have presented on a case study an
improved timed automata based modeling technique for
switched Ethernet network which integrates a more accu-
rate model of flows. This approach is promising since it
increases the size of the networks which can be analyzed,
due to the port by port processing. Further work is still
needed to apply this approach on larger configurations.
It will probably be difficult to analyze a real industrial
configuration (more than 1000 flows) but results on par-
tial configurations can give valuable information on the
pessimism of upper bounds obtained by Network Calcu-
lus. Moreover, a formal proof is needed in order to show
that the port by port computation leads to an exact upper
bound. This technique is not limited to switched Ethernet
network but can cope with any similar network, provided
flows are strictly periodic. It can also be used for anal-
ysis of different scheduling techniques and finding delay
bounds in multi-processor networked architecture.

References

[1] http://www.uppaal.com.
[2] R. Alur and D. L. Dill. Theory of timed automata. Theorit-

ical Computer Science, 126(2):183–235, 1994.
[3] A. B. Arjona. Vérification et synthèse de systèms

temporisés par des méthods d’obervation et d’analyse
paramétrique. PhD thesis, Ecole Nationale Supérieur de
l’Aéronautique et de l’Espace, Toulouse, France, 1998.

[4] J.-Y. L. Boudec. Application of network calculus to guar-
anted service networks. IEEE Transactions. Inf. Theory,
44:1087–1096, May 1998.

[5] H. Charara, J.-L. Scharbarg, J. Ermont, and C. Fraboul.
Methods for bounding end-to-end delays on an afdx net-
work. ECRTS ’06: Proceedings of the 18th Euromicro Con-
ference on Real-Time Systems, pages 193–202, 2006.

[6] R. Cruz. A calculus for network delay, part 1, part2. vol-
ume 37, pages 114–141, Jan 1991.

[7] C. Fraboul and F. Frances. Applicability of network calcu-
lus to the afdx. Technical Report PBAR-JD-728.0821/2002,
2002.

[8] K. G. Larsen, P. Pettersson, and W.Yi. Uppaal in a nuttshell.
International Journal on Software Tools for technology
Transfer, 1(1-2):134–152, 1997.

28

Towards a Behavioral Modeling of Real-Time Kernel in a Model-Driven
Development Approach

Cédrick Lelionnais
ESEO-TRAME

4 rue Merlet de la Boulaye, BP 30926
F-49009 ANGERS cedex 01
cedrick.lelionnais@eseo.fr

Jérôme Delatour
ESEO-TRAME

4 rue Merlet de la Boulaye, BP 30926
F-49009 ANGERS cedex 01

jerome.delatour@eseo.fr

Abstract

One promising solution for meeting the demands of
constantly-evolving Real-Time Embedded (RTE)
software is the Model-Driven Development (MDD)
approach, based on the principle of separating the
description of an application from its platform-specific
implementation.

Solutions exist for modeling the RTE software
multitasking platform (real-time kernel) characteristics
(services and properties offered by the platform).
However, improvements of the behavioral description of
those platforms have to be done.

A first experimentation, the formal modeling of the
OSEK/VDX real-time kernel, has been carried out in
order to explore the weaving of existing structural
platform descriptions and behavioral aspects. A first set
of leads and questions raised in this on-going work.

1. Introduction

Like other designers, Real-Time Embedded System
(RTES) engineers are faced with the challenge of
developing more complex, higher quality systems at
lower costs, with quicker development cycles. Within
this context, reuse, maintainability and portability have
become major issues in RTES design processes. The
Real-Time Operating Systems (RTOS) provided a
response to these problems by ensuring independence
with regard to hardware platforms. Efforts have been
made in order to standardize the Application
Programming Interfaces (APIs) of RTOS [1] [2] [3]. To
a certain extent, part of the applications could be reuse
and migrate from one RTOS to another. But this task is
not automatic between all the RTOS yet.

A new approach, based on MDD, addresses solutions
to this problem. Indeed, MDD places the model
paradigm and the use of model transformations at the
center of the development process. MDD also promotes
to separate concerns that are platform-specific

(dependent of an execution technology) from those that
are platform-independent. The Model Driven
Architecture (MDA) [13] approach involves a design
process where a Platform-Independent Model (PIM) (a
description of the application without platform
consideration) is transformed into a Platform-Specific
Model (PSM), given a Platform Description Model
(PDM) (a description of the platform).

Nowadays, the proposals for modeling PDM relies
on static descriptions (list of services and properties
offered by the platform), without taking into account the
behavioral aspect (the operational semantic) of the
platform.

In RTES, the correct behavior of the applications
depends not only on the correctness of the results of
computations but also on the times at which these results
are produced. As the behavior of a RTES is dependent of
the behavior of its execution platform, it is therefore
important that the PDM's behavior (used in RTES) could
be described.

In this paper, we seek to include the behavior into
PDM description. Firstly, explanations on the modeling
of RTE software platform are given. Secondly, a first
experimentation on the integration of the behavior in the
RTE software platform modeling is presented. This
experimentation targets the OSEK/VDX real-time kernel
and its translation into Petri Net (a formal language for
describing the behavior). Finally, we conclude on this
experiment.

2. RTE Software Platform Modeling

This section is divided into three sub-sections: the
first is dedicated to the description of RTE software
platforms, the second to the use of platform modeling
and the third to explain the interest of formalizing the
behavior.

2.1. What characterizes RTE Software Platforms?
In the context of MDD, an execution platform is

regarded as “a set of subsystems and technologies” that
provides the capabilities needed to support the execution

29

of a software application [5]. Their modeling goes
through different characterizations (see [4] for a detailed
presentation) :

! Resources represent the concepts offered by the
platform. For instance, in a RTOS, the tasks, the
semaphores, the mailboxes are considered as resources.

! Services are offered by the resources and
caught at APIs's level. For example, semaphore's
services are the “take” and “release” primitives.

! Use rules of the platforms describe the way the
resources and the services could be used.

! Life cycle describes the observable behavior of
the resources and the services.

Based on these characterizations, several languages
(more exactly Metamodels) for modeling the platform
exist : In the MARTE's UML profile [7], the “Software
Resource Modeling” package [6] has been defined for
modeling the RTOS APIs. In the Domain Specific
Modeling Language (DSML) approach, the Real Time
Embedded Platform Modeling Language (RTEPML [8])
enables to describe a software platform.

However only the structural aspect (Resources &
Services) is represented. It is allowed to model the APIs
of RTOS, but neither the use rules nor the observable
behavior.

2.2. Usefulness of RTOS Modeling
Modeling a RTOS as a PDM seems interesting. It

enables to separate the application (PIM), and the
RTOS's technology (PDM) of a system. Therefore, one
could generate, from the same PIM, different PSMs
(each PSM targeting a particular RTOS). Different
approaches of transformation exist [8] but, one, called
the explicit approach, allows to have a generic
transformation parametrized by the PDM. In that
approach, the PDM is described in a language. In MDD
terms, the PDM conforms to a metamodel (see Figure 1).

Figure 1. PIM to PSM Transformation.

A trivial example is here given to present a
PIM/PDM/PSM description (see Figure 2). It is a robot's
application (PIM) which comprises two concurrent tasks,
one for control and one for display. These tasks have
different priorities and share the same semaphore. This

application will run on an OSEK/VDX real-time kernel
[2].

We choose to use the RTEPML approach to
represent the PDM and PSM. The PDM describes the
notion of task, semaphore, their services and some typed
elements (here integers). For the sake of simplicity, only
a sub-part of the OSEK/VDX PDM is given. The PSM
(also conforms to RTEPLM) contains the task instances
(here two OSEK/VDX basic task) and a semaphore. The
PSM elements are typed by those of the PDM.

Figure 2. Explicit Description.

Nevertheless this description does not represent the
behavior of the PDM. For instance, the token
semaphore's properties change (from locked to unlocked)
could not be represented.

2.3. A need of behavioral modeling
In the OSEK/VDX norm, the operational semantics

(what we called in this article the PDM's behavior) of
this RTOS is described by state-machines and textual
description. For instance, in figure 3, part of the behavior
of the OSEK/VDX “basic task” concept is given. It
models the effect of the call of task's services on the
task's states. A suspended task could not be executed by
the scheduler. In order to be executed, a suspended task
must be activated (call of the “activate” service) and then
chosen by the scheduler (call of the “resume” service).

Figure 3. OSEK/VDX basic task behavior.

Without a formal description (done by a formal
language) of the behavior, there is still the risk of
ambiguities or inconsistencies in the description of the
operational semantics of the execution platform.

Formal behavioral modeling would also offer the
possibility to verify and validate the PDM and PSM

30

behavior (respect of temporal conditions, search of
deadlocks...).

3. Towards a Formal Behavioral Modeling

In our research team, we already developed a PIM to
PSM transformation with a RTEPML description of the
OSEK/VDX RTOS. This transformation prototype,
called “Robots2Osek”, generates C code from a PIM
description (a description of robot's application, see
figure 2). This generated C code is then executed on the
TRAMPOLINE RTOS [12] (an OSEK/VDX RTOS).
This transformation produces an intermediate model, a
PSM where all the PIM, PDM and PSM elements are
available. As already described, the RTEPML
metamodel used in this transformation did not describe
the behavior of the PDM. In order to add a behavior
description in RTEPML, we carried out a first
experimentation.

3.1. Description of the experimentation
For including behavior in RTEPML description, we

choose to use the Petri Net (PN) language [9], mainly for
its ability to represent concurrent activities, and also for
the availability of Verification and Validation tools like
ROMEO [10].

We first start a translation of the behavior of each
concept of the OSEK/VDX (basic task, extended task,
event, message box,..) in PN. Figure 4 depicts one of this
translation (the OSEK/VDX concept of “basic task”).
This translation relies on the expressiveness of a
scheduling in PN [14].

Figure 4. Behavioral pattern of an
OSEK/VDX “basic task” in PN.

We named “behavioral pattern” this kind of PN
fragment. In the figure 4, the PN's places named
“Task_READY” and “Task_ResumeTask” are marked
by a token, which means that the transition “T1” is going
to be fired. At the next sequence, the place
“Task_RUNNING” will be marked, meaning a change
of the task's state. Also the behavioral pattern translated
makes “source” places appear. These places correspond
to the call services of a task and will be used for
composing the final PSM description. For example the

place “Task_ActivateTask” could be merged with one of
another behavioral pattern.

In order to verify the translation correctness of our
behavioral patterns, we choose to develop a PSM to Petri
Net transformation. The idea was to simulate the
obtained PN in ROMEO and compare this simulation
with the C code execution of the same PSM obtained by
our existing “Robots2Osek” transformation.

3.2. Transformation prototype developed
We then developed a transformation prototype (see

Figure 5) with the transformation tool Kermeta [11]. The
translation of the task (“basic” and “extended”), the
semaphore, the alarm and the event have been
implemented.

Figure 5. Transformation prototype.

Figure 6 depicts the generated PN of the translation
of the robot's application example given in figure 2.

Figure 6. Generated PN.

Two behavioral patterns could be observed :
! The sequential execution of task (see Figure 4),

one for the control task, one for the display task.
! The semaphore sharing.
Notice that the higher priority of the control task is

modeled by an inhibitive arc. The merging of places and
transitions is automatically generated by the
transformation.

31

3.3. Feedback on work realized
The presented experimentation is a first step in our

on-going work. We think that it demonstrates the
feasibility and the interest of the MDD approach. The
experimentation was carried out in less than 6 months.
Most of the time was spent in the study of the behavioral
pattern rather than in the transformation development
techniques (thanks to the KERMETA tools and the
RTEPML metamodel availability).

The transformation developed is obviously not
generic and is not reusable for other RTOS. The
behavioral patterns were buried into the transformation,
rather than added into the platform description (the
RTEPML metamodel). Works have still to be done in
order to check the correctness of our behavioral pattern.
The comparison between the simulation of the generated
PN and the execution of the C code (generated by the
“Robots2Osek” transformation) is far to be terminated.
Only some basic examples have been successfully
compared. Also the PN readability is rapidly difficult :
with more complex synchronization mechanisms
(message box or alarm) and more complex application
examples, the number of transitions and places grows
rapidly. However, we have now a better understanding
of the PDM mechanism to translate and also assumptions
on the required expressiveness of the formal language to
use.

4. Conclusion and Future Prospects

The MDD approach promotes to separate concerns
that are platform-specific (dependent of an execution
technology) from those that are platform-independent.
Therefore, transformation could be defined in order to
automatically generate the further into the former. But, a
description of the platform characteristics (a PDM) has
to be done. For RTE platforms, the operational semantics
of the platform has to be captured.

In the formalisms available to describe PDM, none
could model, in a formal language, the operational
semantics.

A prototype transformation has been developed in
order to investigate the inclusion of the operational
semantics in current PDM descriptions. It targets the
OSEK/VDX RTOS and generates Petri Nets.

This experimentation shows the interest and the
feasibility of the MDD approach. However, it has to be
reproduced on different RTOS (such as VxWorks,
ARINC 653, RT-Linux) in order to raise common
behavioral patterns for the translation. Moreover, this
pattern will have to be included in a PDM formalism
(leading to an extension of the syntax of metamodels
such as RTEMPL or UML-MARTE profil).

Another point is the consideration of the formal
language to use. Although the expressiveness of Time
Petri Net [14] seems adequate (despite combinatorial

explosion risk), other formal language families have to
be studied.

References

[1] The Open Group Base Specifications, “Portable
Operating System Interface (POSIX)”, ANSI/IEEE Std
1003.1, 2004.

[2] OSEK/VDX Group, “OSEK/VDX OS specification”,
Version 2.2.3, http://portal.osek-
vdx.org/files/pdf/specs/os223.pdf, 2005.

[3] Airlines electronic engineering committee, “Avionics
Application Software Standard Interface, ARINC
Specification 653-1”, Aeronautical radio, INC.,
Annapolis, Maryland, USA. October 2003.

[4] F. Thomas, J. Delatour, F. Terrier, S. Gerard, "Towards a
Framework for Explicit Platform Based
Transformations", 11th IEEE symposium ISORC,
Florida, may 2008

[5] S. Beydeda and V. Gruhn, “Model-Driven Software
Development, Volume II” A Generalized Notion of
Platforms for Model Driven Development, 2005.

[6] F. Thomas, S. Gérard, J. Delatour, F. Terrier, "Software
Multitasking Resource Modelling", Lecture Notes in
Electrical Engineering (LNEE), issue on "Embedded
Systems Specification and Design Languages", Vol. 10,
Springer-Verlag, 2008.

[7] Object Management Group, “UML Profile for Modeling
and Analysis of Real-Time and Embedded systems
(MARTE)”, RFP 2005.,OMG document: realtime/05-
02-06.

[8] M. Brun, J. Delatour, Y. Trinquet, F. Thomas, S. Gérard,
“Étude comparative pour la modélisation de plates-
formes d’exécution”, TSI, numéro spécial "Ingénierie
dirigée par les modèles", vol 29, 2010.

[9] C.A. Petri, “Kommunikation mit Automaten”, PhD
Report, University of Bonn (Germany), 1962.

[10] G. Gardey, D. Lime, M. Magnin, O.(H.) Roux, “Roméo:
A tool for analyzing time Petri nets”. In 17th
International Conference on Computer Aided
Verification (CAV’05), Lecture Notes in Computer
Science, Edinburgh, Scotland, UK, July 2005. Springer.

[11] Triskell project (IRISA): “The metamodeling language
kermeta”. http://www.kermeta.org (2006)

[12] J-L. Bechennec, M. Briday, S. Faucou, Y. Trinquet,
“Trampoline An Open Source Implementation of the
OSEK/VDX RTOS Specification”, Emerging
Technologies and Factory Automation – ETFA'06, 2006.

[13] OMG, “MDA Guide”, V1.0.1. OMG Document:
omg/03-06-01, 2003.

[14] D. Lime and O. (H.) Roux. “Expressiveness and analysis
of scheduling extended time Petri nets”. In 5th IFAC
International Conference on Fieldbus Systems and their
Applications, (FET’03), pages 193-202, Aveiro,
Portugal, July 2003. Elsevier Science. Copyright Elsevier
Science.

32

A Multi-Class Architecture for a Differentiated Execution
of Real-Time Transactions

Sami Limam, Leila Baccouche
Riadi-GDL Laboratory

University of
La Manouba, Tunisia

Limamsami@yahoo.fr
Leila.Baccouche@free.fr

Bruno Sadeg
Laboratoire LITIS

UFR des Sciences et Techniques
25 rue Philippe Lebon, BP 540,

F-76058 Le Havre, France
Bruno.Sadeg@univ-lehavre.fr

Henda Ben Ghezala
Riadi-GDL Laboratory

University of
la Manouba, Tunisia

Henda.BG@cck.rnu.tn

Abstract

Current applications such as stock markets, e-business,
multimedia and telecommunications require more and
more real-time services. Such systems deal with large
quantities of data, and transactions have temporal con-
straints. Consequently, when they are increasingly so-
licited, they can quickly become overloaded, leading some
transactions to miss their deadlines. To deal with this
problem, we propose, in this paper, a multi-class archi-
tecture based on the importance of transactions that pro-
vide differentiation of services during their execution. Our
work is based on the (m,k)-firm model when we serve the
transactions classes. We show that this approach allows
to provide different levels of quality of service (QoS), en-
hancing then the management of real-time transactions.

1. Introduction

Recently, the demand for real-time services has in-
creased considerably in many applications such as multi-
media applications (video conferencing, video on demand
services ...), Web services and e-business. In addition,
these applications reflect an important requirement in data
management. Therefore, real-time database systems (RT-
DBS) have become the proper support to the implementa-
tion of these applications. In these applications, it is im-
portant to obtain complete and accurate results before the
deadline, while using fresh data. However, as the users
requests remain unforeseeable, the RTDBS can become
overloaded leading to the system inability to meet dead-
lines and to control the data freshness.

To handle overload situations, several approaches
based on QoS have been proposed either to execute
the transaction that provide a positive value to the sys-
tem [8, 6], or to divide the transaction into an obligatory
part and an optional part [9].

Consequently, in a RTDBS, it’s often interesting to cat-
egorize transactions into classes. An appropriate architec-
ture for the differentiation between the classes of transac-
tions is required. The RTDBS must incorporate an appro-
priate scheduling algorithm, which aims to guarantee QoS
metrics for each class.

In this paper, we propose such an architecture which al-
lows a differentiation of services between the transactions
classes. To this end, we exploit the (m,k)-firm transac-
tions model and we propose a scheduling algorithm based
on this model.

The paper is organized as follows : In Section 2, we
present different existing transactions models in a RTDBS
and a discussion about them. Then we choose one, and we
argue our choice.

In Section 3, we present the architecture we propose to
manage transactions classes. Section 4 is devoted to the
presentation of the simulations we conducted to validate
our model, as well as to comments on the results obtained.
The simulation platform used is called RTDS (Real-Time
Database Simulator) which we have developed in our lab-
oratory. The simulations results show the effectiveness
of the proposed architecture and its capability to support
overload situations and to guarantee QoS for each trans-
action class. Finally, we conclude the paper.

2. Model of transactions

In a RTDBS, we distinguish between two types of
transactions:

• Update Transactions: they are periodic and have to
refresh regularly the database by updating data.

• User transactions: they read/write non real-time data
and/or only read real-time data. As their arrival in the
system is unpredictable, they may cause overload sit-
uations. That is why imprecise transactions models
are often used.

33

In this paper, we assume that transactions have firm
deadlines, i.e. a transaction which misses its deadline
becomes useless and is aborted. In addition, we exploit
the imprecision model of transactions in overload situa-
tions. A transaction consists of a mandatory part and an
optional part. The mandatory part must be executed be-
fore the transaction deadline. Optional part is composed
of sub-transactions which are executed if enough time re-
mains before deadline. The greater the number of optional
sub-transactions executed, the better the result is, i.e. the
quality of service of the result is enhanced.

Three main models exist that use imprecision of trans-
actions: (i) Milestone model [1], (ii) (m,k)-firm model [5],
and (iii) Kang’s model [10]. We have chosen the (m,k)-
firm model as the transaction is divided into k sub-
transactions (m are mandatory and (k-m) are optional) and
we have to execute only mandatory parts.

As all mandatory parts have to be executed, we use this
model by assuming that m parameter is equal to 1, i.e. we
consider only one mandatory sub-transaction.

3. System architecture

3.1. Queue’s Model
We adopt a multi queues model with a single server.

Indeed, in our model of transactions, we have different
types of transactions, executed by only one processor.

We begin to determine the number of queues needed
by the architecture.

We have defined a parameter, called Importance which
will differentiate the types of transactions. We define three
levels of importance:

• High: it qualifies update transactions.

• Medium: user transactions performing write opera-
tions.

• Low: user transactions that perform read operations.

We then define three queues corresponding to the
three levels of importance. As a transaction consists of
a mandatory sub-transaction and several optional sub-
transactions, we have mandatory parts and optional parts,
in each queue. As transaction classes need to be separated
to allow service differentiation, each queue is divided into
two queues: one is used to contain the mandatory parts
and the other to contain the optional parts (cf. Fig. 1).

We then obtain a model with five queues:

• One for update transactions.

• Two for the high importance user transactions: one
containing mandatory sub-transactions, the other one
containing optional sub-transactions.

• Two for the low importance user transactions: one
containing mandatory sub-transactions, the other one
containing optional sub-transactions.

Figure 1. Queue model.

We serve these queues by adopting an algorithm based
on the (m,k)-firm model, which provides a quality of ser-
vice according to each class of transactions.

3.2. DBP CC : an algorithm to serve queues
Our problem is to schedule transactions inserted in the

different queues. We thus choose DBP algorithm [7] al-
ready proposed to schedule network packets on several
queues. This algorithm is adapted to the real-time con-
text and allows to guarantee QoS. However, it does not
include a concurrency controller.

For this purpose, we proposed DBP CC algorithm
(Distance Based Priority and Concurrency Control) [2, 3],
which is an adaptation of DBP algorithm [7](Distance
Based Priority) to the RTDBS context.

DBP CC is a dynamic algorithm issued from the (m,k)-
firm model. The algorithm we propose provides several
levels of QoS described by various couples (m,k) specified
by the database administrator for each class of tasks.

DBP CC saves the execution history of each queue in a
structure called k-sequence, which is a sequence of k bits
updated after the execution of the task (1 indicates that
deadline is met, and 0 indicates the deadline is missed).
Based on this history, DBP CC computes a priority for
each queue.

Priority DBP = k − l(m,S) + 1

Where l(m,s) is the position leaving from the right of the
mth success (1) in the k-sequence, s (the state of the
queue).

DBP CC extracts the transaction in the head of the
more prioritized queue. In addition, if this transaction is
in conflict of resources with the set of transactions in exe-
cution, we choose to extract the next one.

4. Transactions processing steps

In our architecture, a transaction follows three steps:
insertion, extraction and execution:

4.1. Insertion and Extraction
As soon as it has arrived in the system, a transaction is

inserted in the queue according to its importance. In each

34

Parameter Value
Number of ressources 100

Number of temporal ressources 20
Number of non real-time resources 80

Load of update transactions 40%
Execution time of periodic

transactions 30 to 150 ms
Execution time of
a user transaction 70 to 150 ms

Number of mandatory sub-transactions 1
in a user transaction
Number of optional 1 to 4

sub-transactions
Number of resources used 1

per sub-transaction

Figure 2. Simulation parameters.

queue, transactions are ordered according to EDF policy
(Earliest Deadline First), i.e. the closest is a transaction to
its deadline, the highest is its priority.

Based on DBP CC, the next transaction to be extracted
is from the nearest queue to the dynamic failure state.

4.2. Execution
Once inserted in the execution queue, transactions are

executed using the Round Robin policy, i.e. each trans-
action is executed during a quantum of time. During the
execution, the concurrency control algorithm 2PL-HP (2-
Phase-Locking-High Priority) is applied to respect the iso-
lation property.

However, the Round Robin policy doe’s not distinguish
between transactions types. Our goal through the pro-
posed architecture is firstly, to differentiate transactions
according to their importance and type (mandatory or op-
tional), and secondly, to take into account service differen-
tiation also during transaction execution so the quantum of
time allowed to sub-transaction execution should depend
on its importance.

5. Simulations and results

5.1. Simulation Context
Simulation of the protocols developed for RTDBS

requires a platform which respects transactions ACID
(Atomicity, Consistency, Isolation, Durability) properties
and which offers adequate mechanisms to support time
constraints.

RTDS [4] is a discrete-event simulator written in Java,
designed by our research team to simulate real-time
database behavior.

The following table summarize the simulation parame-
ters :

5.2. Simulation results
We carried out three kinds of simulations:

1. In the first simulation, we show the impact of the sys-
tem load on the system performances. In the simula-
tion, we have built three queues, each queue holding
a class of transactions (mandatory and optional parts
of a transaction are put in the same queue).

2. In the second simulation, we show the impact of the
variation of the number of queues. In this simulation,
we separate the mandatory parts from the optional
parts.

3. In the last simulation, we analyze the impact of allo-
cating more than one quantum of time to the execu-
tion of update transactions.

5.2.1 Simulation 1: Variation of the system load

Figure 3. Transaction Miss Ratio when us-
ing (m,k)-firm model with three queues in
the system.

In Figure 3, MR Update represents miss ratio of up-
date transactions, MR High User represents miss ratio
of high importance user transactions, and MR Low User
represents miss ratio of low importance user transactions.
In the simulation, we have three classes of transactions
materialized by three queues: High, Medium and Low
with respectively the following (m,k)-firm constraints:
(20,20), (14,20) and (2,20). Figure 3 shows the varia-
tion of the transactions miss ratio according to the load
of the system when a transaction consists of one manda-
tory sub-transaction and an optional part (one or more sub-
transactions). We notice that the transaction miss ratio for
the periodic transactions class is greater than that of user
transactions (whatever the importance criterion). This is
due to the fact that the execution time of an update trans-
action (between 30ms and 150ms) is greater than that of a
mandatory user sub-transaction (≥ 20 ms).

5.2.2 Simulation 2: Variation of the number of
queues

In Figure 4, transactions are dispatched in 5 queues. When
we separate mandatory parts of user transactions from op-

35

tional parts, we can apply a different (m,k)-firm constraint
for each queue. In Figure 3, we notice that the miss ra-
tio of update transactions decreases without affecting the
global Miss ratio (mandatory and optional) of user trans-
actions.

Figure 4. Transaction Miss Ratio when sys-
tem queues are 5.

5.2.3 Simulation 3: Allocating more time to the exe-
cution of update transactions.

In Figure 5, execution of update transactions is allo-
cated much more time than to user transaction (three time
quanta). Consequently, the miss ratio of update transac-
tions decreases. We notice that if we differentiate the ser-
vice of transactions during the extraction phase and its ex-
ecution phases, we obtain the best performances.

Figure 5. Miss Ratio when we grant more
time to the execution of update transac-
tions.

6. Conclusion

In RTDBS, execution of transactions before their dead-
lines leads often to overload situations, during which the
system performances are degraded. Based on (m,k)-firm

model, we proposed, in this paper, an approach to control
this degradation for each class of transactions. Results of
the simulations we have carried out have shown that when
using an appropriate model of queues and when choosing
efficiently the parameters of the (m,k)-firm model, we are
able to differentiate between transactions classes and to
give more execution time to more important transactions.
A transaction consists of a mandatory part and several op-
tional parts. We dispatch each transaction class between
two queues: one containing the mandatory parts and the
other contains optional parts. Then, we choose an (m,k)-
firm constraint for each queue and we serve queues by ap-
plying the DBP CC algorithm. Finally, we allocate more
time to the execution of important transactions. In this
way, we can control the QoS of real-time applications.

References

[1] M. Amirijoo, J. Hansson, and S. Son. Specification and
management of qos in real-time databases supporting im-
precise computations. IEEE Transactions on Computers,
2004.

[2] L. Baccouche. An overview of moa, a multi-class over-
load architecture for real-time database systems: frame-
work and algorithms. in Proceedings of the ACS/IEEE
International Conference on Computer Systems and Ap-
plications (Dubai/Sharjah, March), pages 756–763, 2006.

[3] L. Baccouche and S. Limam. (m,k)-firm scheduling of
real-time transactions with concurrency control. in Pro-
ceedings of the second international conference on sys-
tems, Guadeloupe, French Carribean, pages 14–21, 2007.

[4] L. Baccouche and S. Limam. Rtds: A component and
aspect-based real-time database system simulator. in Pro-
ceedings of ESM08, Le Havre, pages 551–555, 2008.

[5] G. Bernat, A. Burns, and A. Llamos. Weakly hard real-
time systems. IEEE Transactions on Computers, pages
308–321, 1999.

[6] A. Bestavros and S. Nagy. Value-cognizant admission con-
trol for rtdb systems. In proceedings of the 17th Real-Time
Systems Symposium (RTSS’96), pages 230–239, 1996.

[7] M. Hamdaoui and P. Ramanathan. A dynamic priority as-
signment technique for streams with (m,k)-firm deadlines.
IEEE Transactions on Computers, 44(12), pages 1443–
1451, 1995.

[8] J. Hansson and S. Andler. Value-driven multi-class over-
load management. In Proceedings of the 6th Confer-
ence on Real-Time Computing Systems and Applications
(RTCSA’99), 1999.

[9] J. Haubert, B. Sadeg, and L. Amanton. Relaxing the real-
time constraints in distributed real-time management sys-
tems. Proc. of the 10th Intl. Real-Time Computing Systems
and Applications Conf. (RTCSA’04), Gothenborg, Swe-
den, Springer-Verlag ed., 2004.

[10] K. Kang, S. Son, and J. Stankovic. Service differentiation
in real-time main memory databases. In Proceedings of
the 5th IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, (IEEE ISORC), Wash-
ington D.C, pages 119–128, 2002.

36

	intro.pdf
	proceedings_jrwrtc10 A4

