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Summary. After demonstrating the necessity and the advantage of decompos-
ing the subdivision matrix in the frequency domain when analysing a subdivision
scheme, we present a general framework based on the method introduced in [1] which
computes the Discrete Fourier Transform of a subdivision matrix. The effectivity of
the technique is illustrated by perfoming the analysis of Kobbelt’s

√

3 scheme in a
very simple manner.

1 Introduction

Nowadays, subdivision surfaces have become a standard technique for both
animation and freeform shape modeling [21]. After one step of subdivision,
a coarse mesh is refined to a finer one and several iterations generate a se-
quence of incrementally refined meshes which converge to a smooth surface.
The main advantage of subdivision surfaces on other freeform representations
such as splines [9] is that they are defined by control meshes with arbitrary
connectivity while generating smooth surfaces with arbitrary manifold topol-
ogy. One of the most important stages in subdivision scheme analysis is the
evaluation of the scheme’s smoothness properties. This is done in two steps:

First, one has to study the continuity properties of the scheme in a regular
lattice (composed of valence 6 vertices for triangles meshes and valence 4
vertices for quad meshes). Often the scheme is derived from the uniform knot-
insertion operator of some Box-spline surface [2] which leads us to a trivial
analysis: By construction the refined meshes converge to piecewise polynomial
surfaces with a known degree of smoothness between the patches [3, 5, 11].
On the other hand, the scheme can be non-polynomial [8, 22, 10], i.e. it is not
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derived from any known surface representation and the continuity of the limit
surface is analysed using sufficient conditions based on z -Transforms [6, 10, 7].

As the second step in the analysis, one has to analyse the scheme’s
smoothness in the vicinity of extraordinary vertices (EVs). Up to now, the
z -Transform fails to provide an efficient tool at EVs, and even though we can
prove C1 continuity for schemes derived from Box-splines by showing that the
characteristic map is regular and injective [15, 12, 20], the complete analysis
is performed using necessary conditions based on the eigenstructure of the
subdivision matrix [5, 1, 16]. In fact, the convergence behavior of a subdivi-
sion scheme at an EV is completely determined by the eigencomponents of its
subdivision matrix. The analysis of a subdivision scheme [5, 11, 19, 14, 10] in
the vicinity of such irregularities of the control mesh hence requires a simple
technique for identifying and computing the various eigencomponents. The
standard method exploits the scheme’s rotational symmetries through the
use of the Fourier transform. This partitions the subdivision matrix, which
size varies linearly with the valence of the EV, into a block diagonal matrix.
Although the number of blocks depends on the valence, the blocks are of
fixed size, and so it becomes possible to determine the eigencomponents for
all valences with a single algebraic computation.

In this paper, we first illustrate by a practical example the importance
of the frequency analysis and we emphasize the necessity of identifying the
eigenvalues with respect to their rotational frequency. We then present the
general form of Ball and Story’s method [1] which performs a fast computation
of the different frequency blocks. This approach is illustrated on Kobbelt’s√

3 scheme [10] and we show how very simple computations performed on
a single subdivision iteration rather than on the square of the subdivision
matrix allow us to deal with the scheme’s rotation property and to find the
specific subdivision rules for the EVs.

Another method computing the eigencomponents of a subdivision matrix is
based on z-Transforms and it exploits the circulant structure of the subdivision
matrix’ blocks. This technique also leads to very simple computations and
all details can be found in [12, 18]. Both methods are equivalent in terms of
complexity, however our method computes the eigencomponents in the Fourier
domain while the use of z-Transforms provides the eigencomponents in the
spacial domain. Depending on the application, one or the other method can
be prefered.

2 Frequency of the different eigenvalues

The operator which maps a central EV of valence v and its r-ring neighbor-
hood P to the same topological configuration p after one step of subdivision
is called the subdivision matrix S. The vectors of old vertices P and new ver-
tices p are linked by the relation p = SP. The matrix S is square and each of
its rows contains the coefficients of an affine combination of the old vertices P
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which computes one new vertex of p. The convergence behavior of the subdi-
vision scheme at the central EV is completely defined by the eigencomponents
(eigenvalues and eigenvectors) of the matrix S. The matrix S is then decom-
posed into S = M Λ M−1 where Λ is a diagonal matrix of eigenvalues {λj}
and M is a square matrix whose columns are the (right) eigenvectors mj. This
can be well understood if we interpret the eigencomponents as a local Tay-
lor expansion. Indeed, this interpretation allows us to associate the different
geometric configurations (position, tangent plane, curvature) with the eigen-
components by which they are defined. The smoothness analysis then relies
on necessary conditions for the eigencomponents of the different geometric
configurations.

As we will see in Section 2.1, given the mere eigendecomposition of a
subdivision matrix, we cannot directly deduce which eigenvalue corresponds
to which geometric configuration so that we do not know how to apply the
conditions for the scheme’s smoothness analysis. In Section 2.2 we show how
the decomposition of the subdivision matrix in the Fourier domain resolves
this problem.

2.1 Geometric configurations and their eigencomponents

The Taylor expansion of a function f : R
2 → R can be written as follows:

f(x, y) = f + fx x + fy y + (fxx + fyy)

(

x2

4
+

y2

4

)

+ (fxx − fyy)

(

x2

4
− y2

4

)

+ fxy xy + ... , (1)

where each function expression on the right hand side is evaluated at (0, 0).
The point f is a position, the two first order partial derivatives fx and fy

are the coefficients of x and y defining the tangent plane and the three second
order partial derivatives fxx, fyy and fxy are the coefficients of three quadratic
configurations defining the curvature: An elliptic configuration x2+y2 denoted
as cup and two rotationally symmetric hyperbolic configurations x2 − y2 and
x y denoted as saddle.

On the other hand, the vector of new vertices p is expressed as a local
Taylor expansion when it is computed as p = S P = M Λ M−1 P = M Λ l

with l = M−1P [13]. We then have:

p = m0 λ0 l0 +m1 λ1 l1 +m2 λ2 l2 +m3 λ3 l3 +m4 λ4 l4 +m5 λ5 l5 + ... , (2)

where the lj ∈ R
3 are the approximations of the Taylor coefficients, i.e., the

successive partial derivatives (l0 is a position, l1 and l2 approximate the first
order derivatives, etc), the mjs correspond to the polynomials in Eq. (1),
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whose function values scale with a certain factor λj . Eq. (1) and (2) both
behave like local Taylor expansions applied in different contexts. They have
identical geometric interpretation and in Eq. (2), the components mj, λj and
lj with index j = 0 are responsible for the central EV’s position, components
with indices j = 1, 2 are responsible for the tangent plane and those with
indices j = 3, 4, 5 are responsible for the curvature: j = 3 for the cup and
j = 4, 5 for the two saddles.

Note that the components with indices j = 1, 2 defining the tangent plane
configuration are images under rotation, yielding the property |λ1| = |λ2|.
This is also the case for the two saddle configurations which yields |λ4| = |λ5|.

The study of the subdivision scheme’s smoothness at the EV is based on
necessary conditions affecting the different eigencomponents {λj} and {mj}.
For instance, the condition 1 = |λ0| > |λj | for all j > 0 is necessary for
convergence of the scheme, the additional conditions 1 > |λ1|, 1 > |λ2| and
min(|λ1|, |λ2|) > |λj | for j > 2 are necessary for C1 continuity and if the
scheme is C1. However, in practice, useful schemes are rotationally symmetric
and therefore we restrict our analysis to this special case. This gives us the
additional properties : |λ1| = |λ2| and |λ4| = |λ5|. Properties like bounded
curvature (|λ2|2 ≥ |λ3|, |λ2|2 ≥ |λ4| = |λ5| and min(|λ3|, |λ4|) > |λj | for
j > 5) are necessary for C2 continuity. If |λ2|2 = |λ3| = |λ4| = |λ5|, the
scheme has a non-zero bounded curvature (without flat spot at the EV) and
if |λ2|2 > |λj |, j = 3, 4, 5, the scheme has zero curvature generating a flat spot
at the EV.

A critical point in the analysis after eigendecomposition of the subdivi-
sion matrix is then to identify which index (or configuration) corresponds
to which eigencomponents. Since we know which eigenvalue corresponds to
which eigenvector, the task is reduced to the identification of the different
eigenvalues. This is illustrated by the following example:

Let us consider a variant of Loop’s subdivision scheme [11] having its
n-uplet of eigenvalues (λ0, ..., λ7) at a valence 7 EV sorted by geometric con-
figuration (following our Taylor notation (2)) and having their value in the
set:

{1,
1

2
,
1

2
,
1

4
,
1

4
,
1

4
, λj <

1

4
} (3)

We emphasize that the set of eigenvalues is not sorted sorted from the
greatest to the smallest as it is usually done, but by geometric configuration.
The question is: How can we know which one of the eigenvalues in (3) is
λ0, λ1,... ? Indeed, following (2), each order satisfies different properties. For
instance, the eigenvalues can have the following values:

(λ0, λ1, λ2, λ3, λ4, λ5, λ6, λ7) = (1,
1

2
,
1

2
,
1

4
,
1

4
,
1

4
, <

1

4
, <

1

4
), (4)

and hence one can deduce that the scheme is certainly C1 and that it has
bounded curvature. If indeed the analysis of the caracteristic map proves C1
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Fig. 1. Different versions of Loop’s scheme at a valence 7 EV. The first column
shows the subdivision of a semi-regular planar mesh with the EV in its center. The
second column shows a subdivided saddle mesh with the EV in its center and the
third column illustrates the curvature behavior using reflexion lines on the same
saddle mesh. In the first row, the scheme has the eigenspectrum (4) and it is C

1

continuous with non-zero bounded curvature (no flat spot). In the second row, it
has the eigenspectrum (5). We clearly see the shrinking factor of λ1 = λ2 = 1

4
at

the EV in the planar configuration and the C
1 discontinuity in the saddle mesh. In

the third row it has the eigenspectrum (6) and the scheme is C
1 continuous with

bounded curvature (flat spot in the saddle configuration). The misbehavior of the
curvature is illustrated by the reflexion lines in the saddle mesh.
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continuity, the scheme is C1 at the EV and it has bounded curvature without
flat spot (first row in Fig. 1). However if the eigenvalues are actually:

(λ0, λ1, λ2, λ3, λ4, λ5, λ6, λ7) = (1,
1

4
,
1

4
,
1

4
,
1

2
,
1

2
, <

1

4
, <

1

4
), (5)

the necessary condition for C1 continuity is not satisfied (|λ2| < |λ4|) so that
the scheme is not C1 and it is not even necessary to analyse the characteristic
map (second row in Fig. 1). Finally, the situation where :

(λ0, λ1, λ2, λ3, λ4, λ5, λ6, λ7) = (1,
1

2
,
1

2
,
1

4
, λ4 <

1

4
, λ5 <

1

4
,
1

4
,
1

4
), (6)

is more problematic because if the analysis of the characteristic map proves
that the scheme is C1, one could conclude from the eigenspectrum (3) that
it has also bounded curvature without flat spot at the EV (|λ1|2 = |λ2|2 =
|λ3| = |λ4| = |λ5|) while it is not the case. In the saddle configuration, the
curvature is bounded with a flat spot, and some curvature misbehavior can
be introduced in the limit surface by the eigenvectors corresponding to the
eigenvalues λ6 and λ7 (third row in Fig. 1).

The decomposition of the subdivision matrix in the Fourier domain will
allow us to determine if we are in the situation (4), (5), (6) or in a situation
where the eigenvalues are sorted in a still different manner.

2.2 Identification of the eigenvalues in the Fourier domain

The identification of the eigenvalues is based on the decomposition of the
subdivision matrix S in the Fourier domain. The block circulant subdivision
matrix S with n blocks Si,j is transformed into a block diagonal matrix S̃ hav-

ing v blocks S̃ω which correspond to the rotational frequencies ω = {0, .., v−1}
ordered in frequency in S̃ω (as illustrated in Equation (7)). We define the ro-

tational frequency just below. The eigenvalues of the frequency blocks S̃ω are
amplitudes of the eigenvalues of the matrix S [1, 17], hence if we know which
frequency represents each configuration (position, tangent plane, cup and sad-
dle), we can identify the eigenvalues from the frequency block in which they
are computed.

S =

























S0,0 · · · S0,n

...
. . .

...
...

. . .
...

Sn,0 · · · Sn,n

























−→ S̃ =











[

S̃0

]

0
[

S̃1

]

. . .

0
[

S̃v−1

]











(7)
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In the Taylor expansion (1), the constant term refers to a position, the
terms for x and y define the tangent plane and terms in x2 + y2, x2 − y2 and
xy define the different curvature configurations (cup and two saddles). The
expression of these configurations in a cylindrical coordinate system (Eq. (8))
as a periodic function g(θ) = ρ cos(ω θ + ϕ) (where ρ is the amplitude, ω is
the frequency and ϕ is the phase) provides directly the rotational frequency
ω associated to each configuration. For instance, x2 − y2 = r2 cos(2θ) and
hence this saddle configuration has a frequency component ω = 2. Note that
due to rotational symmetry, S̃ω = S̃v−ω so that it is enough to consider the
frequencies ω = {0, .., v

2
}.

(x, y, z) → (r, θ, z) with







x = r cos(θ)
y = r sin(θ)
z = z

(8)

This tells us that the position configuration has the frequency ω = 0 and
hence the eigenvalue |λ0| is the dominant eigenvalue of the frequency block S̃0,
the tangent plane configuration has the frequency ω = 1 and |λ1| = |λ2| equals
the dominant eigenvalue µ̃1 of the frequency block S̃1, the cup configuration
has the frequency ω = 0 and |λ3| equals the subdominant eigenvalue µ̃0 of the
frequency block S̃0 and finally the saddle configurations have the frequency
ω = 2 and |λ4| = |λ5| equals the dominant eigenvalue µ̃2 of the frequency block
S̃2. This relation between the different eigencomponents and their rotational
frequencies is presented in [5].

When a scheme is convergent, its eigenvalue λ0 equals 1 (Sect. 2.1) and
since |λ0| is the dominant eigenvalue of the frequency block S̃0, it can be
written as:

S̃0 =

[

1 · · ·
0

[

S̃′

0

]

]

. (9)

In this paper, we only consider convergent subdivision schemes, and so λ0 = 1
and the cup eigenvalue |λ3| is the dominant eigenvalue µ̃0 of the block S̃′

0.

3 Computation of the frequency blocks

In this section, we present a general framework, used in [1] on Catmull-Clark’s
scheme [3], which computes the eigencomponents in the frequency domain.
We present the procedure on a triangular lattice with a 2-ring neighborhood
around the central EV and a standard dyadic refinement (see Fig. 2(a)). The
adaptation to a single 1-ring neighborhood or to quad meshes [1] is straight-
forward. We notice that this method may not be suitable to analyse non-
rotationally symmetric schemes, however, as pointed out in [4], these schemes
are mainly interesting for theoretical studies and all the schemes used in prac-
tical applications are rotationally symmetric.
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(a) (b)

Fig. 2. Subdivision with (a) a dyadic refinement and (b) a
√

3 refinement, of a
2-ring configuration around a central EV A of valence v. Capital letters denote the
set of old vertices P and small letters the set of new vertices p.

The set of old vertices P is defined as follows:

P = {A, B0, .., Bv−1, C 1

2

, .., Cv− 1

2

, D0, .., Dv−1},

where the different letters X = {B, C, D} denote the different sets of rota-
tionally symmetric vertices around the central EV A and the indices give the
rotational position of each vertex: Vertex Xj is at an angle of j 2 π

v (where v
is the valence of the EV) from the axis of origin. The set of new vertices p:

p = {a, b0, .., bv−1, c 1

2

, .., cv− 1

2

, d0, .., dv−1},
represents the same topological configuration, but after one step of subdivision
and around the central EV a. The new vertices of p are computed using affine
combinations gj

k of the old vertices of P:

a = g0(P), bk = g1
k(P), ck+ 1

2

= g2
k(P), dk = g3

k(P), k = 0, .., v − 1,

where the affine combinations gj
k are the rows of the subdivision matrix S.

Using the Discrete Fourier Transform (DFT):

x̃ω =
1

v

v−1
∑

l=0

xl exp(−2πiωl/n), x = {a, b, c, d}, (10)

we express the rotational frequencies {ãω, b̃ω, c̃ω, d̃ω} of each set of rotationally
symmetric new vertices of p in terms of the rotational frequencies P̃ω =
{Ãω, B̃ω, C̃ω, D̃ω} of the old vertices of P:
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ãω = g̃0
ω(P̃ω), b̃ω = g̃1

ω(P̃ω), c̃ω = g̃2
ω(P̃ω), d̃ω = g̃3

ω(P̃ω),

where the affine combinations g̃j
ω are the rows of the frequency blocks S̃ω of

the discrete Fourier transform S̃ of the subdivision matrix S. In vertices A and
a, the only frequency is the zero frequency, hence the terms in exp(−2πiωl/v)
vanish in the expression of ãω and we have: A = Ã0 = Ã, a = ã0 = ã and
∀ω > 0, Ãω = ãω = 0. Furthermore, in order to express the frequency block
S̃0 as in Equation (9), we have to center the analysis at the central EV so
that:









ã0

b̃0 − ã0

c̃0 − ã0

d̃0 − ã0









=









S̃0

















Ã0

B̃0 − Ã0

C̃0 − Ã0

D̃0 − Ã0









with
[

S̃0

]

=

[

1 · · ·
0

[

S̃′

0

]

]

,

hence





b̃0 − ã0

c̃0 − ã0

d̃0 − ã0



 =



 S̃′

0









B̃0 − Ã0

C̃0 − Ã0

D̃0 − Ã0



 ,

and because for ω > 0: Ãω = ãω = 0, ∀ω > 0 we have:





b̃ω

c̃ω

d̃ω



 =



 S̃ω









B̃ω

C̃ω

D̃ω



 .

The size of the frequency blocks is equal to the number of sets of ro-
tationally symmetric vertices in the neigborhood of the central EV. Hence,
these blocks are of fixed size (here they are 3 × 3 matrices) and they can be
expressed as a function of the valence v of the central EV. The original prob-
lem of computing the eigencomponents of large (3v + 1) × (3v + 1) matrices
(in the spatial domain) for each value of the valence v is reduced to a single
eigendecomposition of small 3×3 matrices (in the Fourier domain), providing
the different eigencomponents expressed in terms of the valence v. Depending
on their complexity, the frequency blocks can be either decomposed by hand
computations or using the symbolic toolbox of any mathematical software.

We note that the right eigenvectors m̃0, m̃1 and m̃2 associated respec-
tively to the eigenvalues µ̃0, µ̃1 and µ̃2, can be interpreted as amplitudes of
the eigenvectors m0, ..,m5 of the spatial domain, e.g. the tangent plane eigen-
vector m̃1 = [rB , rC , rD ] gives the radii rX of vertices Bk, Ck+ 1

2

and Dk from
the central EV A.
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4 Example by Kobbelt’s
√

3 scheme

We illustrate by the practical example of Kobbelt’s
√

3 subdivision scheme
[10] the application of the general procedure presented in Sect. 3. This scheme
rotates the lattice after one step of subdivision due to the insertion of new
vertices in the middle of the old faces (as we can see in Fig. 2(b)). If the eigen-
decomposition is performed on the subdivision matrix S, we obtain complex
eigencomponents generated by the scheme’s rotation property. To overcome
this difficulty, in [10] the scheme is rather analysed after two steps of subdi-
vision so that the lattice is aligned with the two steps older one but rotated
by one sector. The lattice is then rotated back using a permutation matrix
R, and the matrix studied finally is Ŝ = R S2.

We first compute the frequency blocks on the 2-ring configuration shown in
Fig. 2(b). The computation is performed on a single subdivision step without
any back-rotation. We then reproduce the results presented in [10] using the
eigencomponents in the Fourier domain. We will see that the computations
are so simple that they can be done quickly and easily by hand.

Kobbelt’s
√

3 scheme is composed of two refinement rules (stencils): One
which displaces an old vertex (Eq. (11)) and one which computes a new ver-
tex in the center of a triangle (Eq. (12)). They are defined by the following
formulae:

a = (1 − αv)A +
αv

v

v−1
∑

j=0

Bj (11)

bk+ 1

2

=
1

3
(A + Bk + Bk+1), (12)

where αv is a parameter which can be used in order to improve the surface
smoothness at the EV for different valences v. The new vertices ck are com-
puted using the regular relaxation rule (valence 6 vertex) and the new vertices
dk+ 1

2

using the insertion rule as follows:

ck =
2

3
Bk +

1

18
(A + Bk−1 + Bk+1 + Ck− 1

2

+ Ck+ 1

2

+ Dk)

dk+ 1

2

=
1

3
(Bk + Bk+1 + Ck+ 1

2

).

The DFT (Eq. (10)) is then used to derive the rotational frequencies of
the different sets of rotationally symmetric vertices:
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ã0 = 1.

0
∑

j=0

a e0 = (1 − αv)A +
αv

v

v
∑

j=0

Bj using the DFT and Eq. (11)

= (1 − αv)Ã0 + αvB̃0 because the only frequency in a is ω = 0

b̃ω =
1

v

v−1
∑

j=0

bj e−2πiωj/v DFT

=
1

v

v−1
∑

j=0

[

1

3
(A + Bj− 1

2

+ Bj+ 1

2

)

]

e−2πiωj/v using Eq. (12)

=
1

3
A +

1

3v

v− 3

2
∑

l=−
1

2

Bl e
−2πiω(l+ 1

2 )/v +
1

3v

v− 1

2
∑

l= 1

2

Bl e
−2πiω(l− 1

2 )/v

=
1

3
A +

1

3v
e−2πiω/2v

v− 3

2
∑

l=−
1

2

Bl e
−2πiωl/v +

1

3v
e2πiω/2v

v− 1

2
∑

l= 1

2

Bl e
−2πiωl/v

=
1

3
Ã0 +

1

3

(

e−πiω/v + eπiω/v
)

B̃ω

=
1

3
Ã0 +

2

3
kωB̃ω with kω = cos

(πω

v

)

and because e−iθ + eiθ = 2 cos θ

hence










b̃0 − ã0 =
(

2

3
− αv

)

(

B̃0 − Ã0

)

if ω = 0

b̃ω = 2

3
kωB̃ω otherwise.

Using similar computations, we obtain:











c̃0 − ã0 =
(

7

9
− αv

)

(

B̃0 − Ã0

)

+ 1

9

(

C̃0 − Ã0

)

+ 1

18

(

D̃0 − Ã0

)

if ω = 0

c̃ω =
(

2

3
+ 1

9
k2ω

)

B̃ω + 1

9
kωC̃ω + 1

18
D̃ω otherwise











d̃0 − ã0 =
(

2

3
− αv

)

(

B̃0 − Ã0

)

+ 1

3

(

C̃0 − Ã0

)

if ω = 0

d̃ω = 2

3
kωB̃ω + 1

3
C̃ω otherwise.

From these expressions, we directly deduce the frequency blocks:

S̃′

0 =









2

3
− αv 0 0

7

9
− αv

1

9

1

18

2

3
− αv

1

3
0









and if ω > 0 S̃ω =









2

3
kω 0 0

2

3
+ 1

9
k2ω

1

9
kω

1

18

2

3
kω

1

3
0









.
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Since the only non-zero coefficient of the first rows of the matrices S̃′

0

and S̃ω is the one in the left-hand corner, we directly obtain the dominant
eigenvalues µ̃0, µ̃1 and µ̃2 as:

µ̃0 =
2

3
− αv, µ̃1 =

2

3
k1, µ̃2 =

2

3
k2. (13)

As we see, the free parameter αv only appears in the cup eigenvalue, hence
the scheme’s behavior is improved at the EV by bounding the curvature in
the cup configuration using the condition: µ̃0 = µ̃2

1. The value of parameter
αv in Eq. (11) is then derived as follows:

µ̃0 = µ̃2
1 ⇐⇒ 2

3
− αv =

(

2

3
k1

)2

⇐⇒ αv =
2

9

(

2 − cos

(

2π

v

))

.

The eigenvalues µ̃i (i = 1, 2, 3) could have been computed in an even sim-
pler manner by only considering a 1-ring neigborhood around the central EV.
However, the choice of a 2-ring neighborhood is based on our wish of giving an
example allowing a more complete analysis based on a larger neighborhood.
It also allows us to check that more eigenvalues are adequately sorted (see the
necessary conditions on the eigenvalues in Sect. 2.1).

5 Conclusion

In this paper, we have emphasized the importance of the analysis of the subdi-
vision matrix in the Fourier domain: The analysis of large matrices in the spa-
tial domain is reduced to the analysis of small matrices in the Fourier domain
so that it becomes easier to compute the different eigencomponents. Moreover,
we can determine which geometric configuration is defined by which eigencom-
ponents. We have presented a general framework computing the subdivision
matrix in the frequency domain and it has been illustrated on the practi-
cal example of Kobbelt’s

√
3 scheme. We have shown how this computation

technique allows us to analyse the scheme in a very simple manner.
There are limitations for this computation technique when the rotational

position of a set of rotationally symmetric vertices with respect to the axis
of origin is unknown. More investigations have to be carried out to solve
this problem while keeping the computations as simple as possible. As we
have demonstrated however, this approach performs on 2-ring neigborhood
configurations and hence it is very well suited to analyse most of the standard
subdivision schemes or any new rotationally symmetric scheme.
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