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Abstract

In Artificial Life, the production of new artificial creatures always needs more and

more computation power. Whereas artificial morphogenesis methods construct com-

plete creatures using blocks, artificial embryogeny develops smaller creatures start-

ing from a unique cell. To obtain a complete creature, organized in tissues and

organs, we propose a developmental model in which cells are coded as threads. This

massive parallel architecture allows the simulation of an organism development on

multi-core or multi-processor machines. In most cases, evolutionary algorithms and

especially genetic algorithms are used to create our creatures. Their algorithms

take a lot of computation time to find an environment-adapted creature. In order

to reduce the computation time, genetic algorithms have already been parallelized,

but, in most cases, using a supercomputer. This solution is very expensive and not

easily scalable. In this report, we first present our model of artificial embryogeny,

Cell2Organ. Then, we propose an implementation of genetic algorithms for artificial

embryogeny using a computational grid and ProActive middleware.
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Chapter 1

Introduction

Several models exist for creating artificial creatures. These models use different

levels of abstraction to produce creatures of various shapes and sizes. Whereas

the morphological approach produces relatively large creatures as in [Sims(1994),

Fukunaga et al.(1994), Lassabe et al.(2007)], embryogenic models produce creatures

composed of hundreds of cells starting from a unique cell [Chavoya & Duthen(2007),

Dellaert & Beer(1994), Stewart et al.(2005)].

This report details our model of cellular development [Cussat-Blanc et al.(2007a),

Cussat-Blanc et al.(2007b)], Cell2Organ. For the purpose of creating complete crea-

tures composed of different organs, we propose a model able to produce organisms

that perform specific functions. These organisms respect the biological definition

of an organ. In other words, they are a “specialized cell regrouping that performs

specific function or a group of functions”. Our model contains an environment with a

simple artificial chemistry [Rasmussen et al.(2003), Dittrich et al.(2001), Hutton(2007),

Ono & Ikegami(1999)] and cells that perform different actions. Cells are able to self-

replicating and to specialize themselves to optimize specific actions instead of others.

Moreover, we show that Cell2Organ can also produce simple creature shapes. The

final aim of our project is to develop a complete creature starting from a unique

cell.

Genetic algorithms are very demanding in terms of computing time and they

need days to complete or even fail due to memory restrictions when the population

size is large. It is particularly the case for artificial life where each evaluation can

take more than one minute to develop an artificial creature, plant or organism.

Indeed, creatures are developed in physical and chemical simulators that requiere

important computation resources. Therefore, in order to create more and more

realistic creatures, we need more and more computation resources. Two possibilities

exist to increase them: supercomputers or computational grids. Because of the
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price and the low possibility of evolution of the first architecture, we decide to use a

computational grid. In this work, we use the French experimental grid, Grid50001.

This report is organized in two main parts. Chapter 2 presents our model of

cellular development, Cell2Organ, starting with a review of existing model. Next,

we give a description of the environment functioning and the mechanisms used by

our artificial cell to interact with the environment. The possibilities of the model

are then shown by the development of two types of organisms : a primitive organ

able to move substrate in the environment and two creatures with particular mor-

phologies. These experiments point to the possibility of simulating, in a simplified

way, different approaches to organism growth. Chapter 3 presents our method to

parallelize genetic algorithm using a computation grid. It first details 3 methods

to parallelize genetic algorithm on supercomputer and also show that it is possible

to apply it to computational grid. We next present ProActive2, a grid program-

ming middleware that provides an infrastructure abstraction of the grid. Finally,

we present different experiments and theirs results of our genetic algorithm parallel

version using ProActive and the french computational grid, Grid5000. This report

concludes on a discussion and possible future works.

1www.grid5000.fr
2proactive.inria.fr
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Chapter 2

Artificial Embryogeny : From Cell

to Organ

This chapter presents our model of artificial embryogeny. It is organized in three

sections. Section 1 presents related works about artificial creatures development,

presenting artificial morphogenesis, cellular automata and already existing works

about artificial embryogenesis. Section 2 presents our model of cellular development,

Cell2Organ, starting with a description of the environment functioning and the

mechanisms used by our artificial cell to interact with the environment. Section 3

presents different experiments using this model. The possibilities of the model are

shown by the development of two types of organisms : a primitive organ able to

move substrate in the environment and two creatures with particular morphologies.

These experiments point to the possibility of simulating, in a simplified way, different

approaches to organism growth.

2.1 Related works

2.1.1 Artificial morphogenesis

Several projects have tried to generate artificial creatures well adapted to their

environment. For example, in his famous works, Karl Sims [Sims(1994)] uses blocks

with different properties such as size, shape, contact sensor positions or block layout.

Komosinski also creates Framsticks creatures [Komosinski & Ulatowski(1999)] using

an equivalent architecture: blocks are replaced by sticks but creature functioning

is comparable to Karl Sims’ work: he uses a neural network to coordinate creature

movements. Sims’ work was improved by Nicolas Lassabe by using a more complex

environment [Lassabe et al.(2007)]. Lassabe’s creatures are able to climb a stairway

or to practice skateboarding.
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The aforementioned creatures use high level components to create their mor-

phology and their behavioral controller. A more biological-inspired approach was

introduced by Dawkins in [Dawkins(1986)]. Using simple rules to draw continuous

segments, he developed a model able to create small graphic creatures. The addition

of behaviors in these simple life forms allows the creation of a complex 2-D virtual

world [Ventrella(1998a), Ventrella(1998b)] where small filiform creatures co-evolve

in an environment composed of energy sources. Each creature has a vital energy

level and must survive in the environment, looking for food produced by the death

of other creatures. This model produces a complete ecosystem with its own food

chain. Creatures are also able to reproduce among themselves to create new life

forms. EvolGL [Garcia Carbajal et al.(2004)] is another 3D pond life project where

creatures have different classes, such as herbivorous, carnivorous or omnivorous,

which allows the emergence of survival strategies.

Using lower level components, cellular automata use neighborhood rules to evolve

a cell matrix. The rules give the t+1 state of each cell according to the cell neighbor’s

t state. Using this method, John H. Conway [Gardner(1970)] creates interesting

patterns such as gliders, pulsars, spaceships, etc.

2.1.2 Artificial Embryogenesis

One of the first works on artificial embryogenesis was that of Hugo de Garis [de Garis(1999)].

Using a cellular automata, he developed 2D shapes. The cellular automata rules

were evolved with a genetic algorithm. The aim was to generate desired shapes like

letters.

Another important goal of artificial embryogenesis is cell specialization. Differ-

ent works on cell specialization already exist. In most cases, they use a Genetic

Regulatory Network (GRN), just as in nature.

In nature, the cells of an organism can have different functions, all of which are

specified in the organism’s genome and regulated by a Gene Regulatory Network

(GRN) [Davidson(2006)]. Cells get input signals from the environment thanks to

receptor proteins. The GRN, described in the organism’s genome, uses these signals

to activate or inhibit the transcription of different genes in the messenger RNA, the

future cell’s DNA protein template. The expression of these genes will specify the

cell’s functions. Figure 2.1 shows (in a very simplified way) the functioning of the

GRN.

This nature inspired model was designed by Banzhaf in [Banzhaf(2003)]. In this

work, each gene beginning is marked by a starting pattern, named “promoter”. Be-

fore the coding of the gene itself, enhancer and inhibitor sites allow the regulation
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Figure 2.1: Scheme of the GRN action in cell duplication.

of its behavior. In [Chavoya & Duthen(2007)], Chavoya and Duthen introduced

another model in which the gene regulation system is encoded at the beginning

of the genome. It consists of a series of inhibitor sites, enhancer sites and regu-

latory proteins. The production of each regulatory protein is conditioned by the

inhibitor/enhancer sites. The concentration of this protein determines the cell func-

tion’s activation or inhibition : if the concentration level is over a certain threshold,

the gene is activated and so are the corresponding functions.

A different approach is the Random Boolean Network (RBN) first presented

by Kauffman [Kauffman(1969)] and reused by Dellaert [Dellaert & Beer(1994)]. A

RBN is a network where each node has a boolean state: activate or inactivate. The

nodes are interconnected by boolean functions, represented by edges in the net. The

state of a node at time t + 1 depends on its particular boolean function applied to

the values of its inputs at time t. The mapping to the gene regulatory network

is simple: each node of the net corresponds to a gene and each boolean function

represents the activity regulation of the gene. The cell function will be determined

during the interpretation of the genome.

Eggenberger Hotz [Eggenberger Hotz(2004)] imagines a concept able to produce

a simple creature with a user defined shape able to move in an environment just

using a gene reguation network. Cells rhythmically emit molecules which modify

the adhesion properties between cells and between cells and the environment. He

develops a simple simulator and develop a T-shape that grows and move in the

environment.

The aim of our work is to make a bridge between artificial morphogeny and ar-

tificial embryogenesis to produce virtual creatures. We decide to use the hypothesis
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that blocks and sticks can be considered as organs, that is to say body parts of the

creature able to carry one or more specific functions. Using developmental tech-

niques of creature growth, we could create these organs starting from a single cell.

In this way, the cell must be able to specialize itself into a cell more adapted to the

environment. The cell organization in tissues (that is in cell groups that have the

same function) and then the tissue organization will allow the creation of organs.

After creating a library of organs, we will just have to assemble them to create a

creature adapted to the environment with a morphological approch. This paper

presents the embryogenic approch of the problem, and especialy the creature shape

development. The next section details the model, starting with the environment

and, then, showing the cell mechanisms.

2.2 Cell2Organ : a new cellular developmental

model

2.2.1 The environment

To reduce the simulation computation time, we implement the environment as a 2-D

toric grid. This choice allows an important decrease in the simulation’s complexity.

The environment contains different substrates. They spread in the grid, min-

imizing the variation of substrate quantities between two neighbor crosses of the

grid. This spreading is enacted in two stages, as illustrated by Figure 2.2

• First, the substrate spreads to the 4 cardinal points.

• Then, if the substrate quantity is sufficient, the substrate spreads to the diag-

onal crosses.

Figure 2.2: Example of spreading substrate in the environment.

Our model integrates a highly simplifed model of artificial chemistry. Many

works exist on artificial chemistry [Dittrich et al.(2001), Rasmussen et al.(2003)]. In
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these works, the artificial chemistry is highly developed and allows a good simulation

of cell mechanisms. For example in [Ono & Ikegami(1999)], the cell division and

the cell membrane formation and maintaining are highly realistic. However, the

complexity of such a model is very great and does not support a high number of cells.

In our model, the properties of artificial chemistry defined in [Dittrich et al.(2001)]

have been simplified.

Our molecules, named substrates, have different properties like diffusion speed

or color, and can interact with other substrates. This interaction between substrates

can be viewed as a typical chemical reaction: using different substrates, the trans-

formation will create new substrates, emitting or consuming energy. For example,

the transformation 2A + B → C (+50) denotes that, using 2 units of substrate A

and 1 unit of B, a unit of C is created, emitting 50 units of energy. To reduce the

complexity at the maximum, the environment contains a list of avalaible substrate

transformations. The substrate reactions can only be triggered by cells. Then, in

the previous example, from a biological point of view, C can viewed as waste from

a cell which has the ability to convert A and B into energy.

To modify this environment, cells interact with the environment. They have

different abilities and must perform a global action defined by the user. This action

can be very diverse: harvest substrate, modify environment, create shapes or simply

survive as long as possible. The next section describes cell functioning.

2.2.2 The cells

Cells evolve in the environment, more precisely on the environment diffusion grid.

Each cell contains sensors and has different abilities (or actions). An action selec-

tion system allows the cell to select the best action to perform at any moment of

the simulation. Finally, a representation of a GRN is inside the cell to allow spe-

cialization during duplication. Figure 2.3 is a global representation of our artificial

cells.

Sensors

Each cell contains different density sensors positioned at each cell corner. Sensors

allow the cell to measure the amounts of substrates available in the cell’s Von Neu-

mann neighborhood. For each substrate in the environment, a corresponding sensor

exists. Only this corresponding sensor can compute the density of the substrate.

The list of available sensors and their position in the cell is described in the genetic

code.

For example, in Figure 2.3, the cell has sensors for B and D substrates in the
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Figure 2.3: Scheme of a cell in an artificial environment. It contains substrates

(hexagons) and corresponding sensors (circles)

left corner. The results of the measure of the corresponding substrate densities are

:

• 2 units for B substrate because of the presence of 2 units of B substrates in

the left cross of the cell,

• 1 unit for D substrate.

Actions

To interact with the environment, cells can perform different actions:

• The substrate transformation allows the cell to trigger a substrate reaction as

previously described. To start, all the needed substrates on the left part of the

equation must be present in the cell, that is, the needed substrates must be

in the same intersection as the cell. In result of the reaction, the vital energy

is increased or decreased (depending of the reaction properties), the needed

substrates are destroyed and the new substrate is created.

• The cell can absorb or reject substrates in the environment. These two actions

allow the cell to move substrates from one place to another. These actions, and

particulary the first one, are important to trigger a substrate transformation.

• The duplication action allows the cell to create a new cell. We give details

about this action in the next section.
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• Survive is an action that allows the cell to wait for a signal from the environ-

ment to do something.

• Apoptosis allows the cell to autodestruct. This action can be useful to free a

place for a more specialized cell for example.

The previous list is not final. Our model must be able to allow us to add new actions

easily. Like sensors, all actions are not available for the cell: the genetic code will

give the available action list.

Cells contain an action selection system. This system is inspired by classifier

systems [Holland & Reitman(1978)]. It uses data given by sensors to select the best

action to perform. The selection system can be viewed as a rule database, where

each rule is composed of three parts:

• The precondition describes when the action can be triggered. It is composed

of a list of sensor value intervals that describe the best substrate densities in

the neighborhood to trigger the action.

• The action gives the action that must be performed if the corresponding pre-

condition is respected.

• The priority that allows the selection of only one action if more than one can

be performed. The higher the coefficient, the more probable is the selection

of the rule.

Action selection rules can be, for example :

(SensorA = 1) and (3 < SensorC < 7) and

(SensorB = 0) → (ActionA) (23)

(SensorC = 3) → (ActionB) (17)

→ (ActionC) (13)

In this example, ActionA will be performed if and only if SensorA value is

equal to 1 unit, SensorB does not detect the presence of its associate substrate and

SensorC value is more than 3 units and less than 7. ActionC does not contain

a precondition. It means that this action can always be performed. The priority

coefficients sort actions in the order ActionA > ActionB > ActionC if different

actions are possible.

In the list of possible actions, the cell can duplicate itself. We will now examine

this action in detail.
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2.2.3 Duplication

The duplication is an action that can be performed by the cell if and only if the

next conditions are respected:

• The cell must have at least one free neighbor cross to create the new cell.

• The cell must have enough vital energy to perform the duplication. The vital

energy level need is defined during the specification of the environment.

• A list of conditions can be added during the modelization of the environment.

For example, some substrates can be needed to create a new cell.

The new cell created after duplication is completely independent and interacts

with the environment. During duplication, the cell can be specialized to optimize

a group of actions instead of others actions. In nature, this optimization is carried

out by the GRN. In our model, we imagine a simplification of the GRN. Each

action has an efficiency coefficient that corresponds to the action optimization level

: the higher the coefficient, the lower the cost of vital energy. Moreover, if the

coefficient is null, the action is not yet available for the cell. Finally, the sum of

efficiency coefficients must remain constant during the simulation. In other words,

if an action is optimized increasing its efficiency coefficient during a duplication,

another efficiency coefficient (or a group of them) has to be decreased.

The cell is specialized by varying the efficiency coefficients during duplication.

The rules of these variations are given by the GRN. We use a network to simulate

the GRN:

• the network’s nodes represent cell actions with their efficiency coefficients,

• the network’s edges are weighted. The edge’s weight (a real number in the

interval [0,1]) represents the efficiency coefficient quantity that will be trans-

ferred during the duplication.

Figure 2.4 is an example of our GRN. (A, 35%), (B, 25%), (C, 17%), (D, 23%) are

cell actions with their associated efficiency coefficient. The edge between 2 actions

represents the amount of efficiency coefficient that will be transferred during du-

plication. For example, the weighted edge between A and B means that after one

duplication, 30 percents of the A action efficiency coefficient will be transferred to

the B action. After four duplications, we can see that the actions B and C respec-

tively have been optimized to the detriment of the actions A and D. According

to this simple example, we can say that the cell function of the organism has been

specialized during the duplication process.
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Figure 2.4: Modelization of an example of the Gene Regulatory Network. A, B, C

and D are 4 actions with their efficiency coefficient. The transfer coefficients are

given by the arrows.

We have implemented this model in Java using a multi-threaded architecture:

cells are coded as independent threads. Cells can communicate using the environ-

ment and substrate exchanges. We made such a choice because of the development

of massive parallel computer architectures such as multi-processor and multi-core

machines, increasingly connected in computation grid. This parellelization allows

an increase in the number of tasks executed at the same time.

Our model must be able to generate two types of artificial creatures: organs and

user defined shapes. The next experiments show that it is possible to accomplish

this. The first experiment consists in developing a system able to move susbrates

in the enviromnent whereas the second one creates simple shapes like starfish or

jellyfish.

To find the creature the most adapted to a specific problem, we use a genetic

algorithm. Each creature is coded with a genome composed of three different chro-

mosomes:
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• The list of available actions, a subset of the environment possible actions. This

list allows the cell to activate or inhibit some actions.

• The action selection system that contains a list of rule to apply actions.

• The gene regulation network that allows cell specification during duplication.

The creature is tested in its environment which returns the score at the end of

the simulation. To increase the genetic algorithm power, we use a computational

grid parallelized genetic algorithm. This parallelization allows the computation of

hundreds of creatures at the same time.

2.3 Experiments

2.3.1 Developing a transfer system

The first experimentation consists of developing a simple organ : a transfer system.

In other words, the cell structure must be able to transport substrate from one point

to another. To do that, we imagine an environment composed of 2 substrates:

• A red which is the substrate that must be moved by the organism. This

substrate has the specificity not to spread in the environment, in order not to

impact on the organism work.

• A gray that will be used by the cell as fuel and duplication material.

The cell can perform the following actions:

• duplicate (needs one gray substrate and vital energy),

• absorb or reject substrate (consume vital energy),

• transform one gray substrate in vital energy.

We place 10 red substrate units into a specific cross of the grid (at the top

left of the environment) and diffuse gray substrate all over the environment. The

creature’s score is given by the squared sum of the red substrate distance to the

goal point (at the bottom right of the environment). The parameters of the genetic

algorithm are:

• selection algorithm: 7 tournament competition with elitism,

• mutation rate: 5%; crossover rate: 65%,
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Figure 2.5: Our artificial transfer system. (a) Beginning of the simulation. (b) The

creature develops itself to create the structure and begin the substrate transfert. (c)

The creature transfers the substrate from the initial state (circle on top left) to the

final state (circle on bottom right).

• substitution algorithm: worst individuals,

• population size: 500 individuals,

Figure 2.6 shows the convergence curve of the genetic algorithm. It shows the

variation of the minimum, the average and the maximum fitness of the population

for each generation. The genetic algorithm’s aim is to maximize fitness, which is

the creature score. A relevant organism appears quickly. After 3 generations, the

organism is able to move the red substrates but not in the right direction. After

10 generations, it is able to move closer to the goal point. The genetic algorithm

converges after 22 generations (the average fitness is close to the best).

Figure 2.6: Smooth curve of the minimum, average and maximum organism fitness.

The genetic algorithm must minimize the sum of the squared distance from the red

substrate to the goal point.
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Figure 2.5 shows the development of the best organism1. We can see that only

the cells on the way from the initial point to the end point are created. Moreover, the

organism uses absorption and rejection actions to transfer the substrate gradually.

Cells that overtake the final point die quickly so as not to interact in the substrate

transfer. During the convergence of the genetic algorithm, it is interesting to observe

the evolution of the organism strategy towards the best solution. The first step is

to learn to survive in the environment, absorbing gray substrate and transforming

it in vital energy. The next step is to learn to duplicate in the right direction.

Intermediate solution organisms are able to transport the red substrate from the

initial point near to the goal. The organism also develops itself throughout the

environment, scattering some units of the substrate in the environment. As shown

in Figure 2.5, this organism deploys itself only on the best trajectory, decreasing

the substrate scattering probability.

2.3.2 Creating simple shapes

In this experiment, we want to generate simple creatures with a user designed mor-

phology. The goal of such an experiments is to simulate the growth of more complex

creatures, like those of Sims [Sims(1994)].

To generate these shapes, we needed 5 different substrates :

• Water gives energy to cells by transformation (Water → (+30)). This sub-

strate diffuses in the environment.

• Four different morphogen substrates, here named NW, NE, SW and SE, show

four division directions to cells. These substrates do not diffuse in the envi-

ronment so as not to interact with the simulation. They are put in place by

the designer of the creature.

Associated with these substrates, we have 4 different actions:

• duplication consumes energy and one unit of Water,

• water transformation allows the cell to trigger a transformation of one sub-

strate of Water into vital energy,

• water absorption allows the cell to pick up water from the environment,

• apoptosis allows the cell to autodestruct if it wishes (for example if the cell is

not in the desired shape).

1Videos of all presented creatures in this paper are available on the website
http://www.irit.fr/∼Sylvain.Cussat-Blanc
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Figure 2.7: The seastar growth. (a) Beginning of the simulation. (b) The starfish

develops itself following the morphogens. (c) The starfish stops its growth when the

desired shape is obtained.

To obtain the required creature morphology, the genetic algorithm fitness is

calucaled after a chosen simulation time and is given by the next simple formula :

• if the cell is inside the desired shape, the fitness value is increased by 2 units,

• if the cell is outside the desired shape, the fitness value is devreased by 1 unit.

The first simple morphology we try to develop using this environment is a

starfish2. To do that, we place morphogens in the environment to lead the cell

divisions. The result of the genetic algorithm is given by Figure 2.7. We can ob-

serve that the desired shape is obtained. It is interesting to study the action selection

system rules produced by the genetic algorithm:

(SensorNE = 1) → (DuplicateNE) (6)

(SensorNW = 1) → (DuplicateNW ) (5)

(SensorSE = 1) → (DuplicateSE) (4)

(SensorSW = 1) → (DuplicateSW ) (3)

→ (TransformWater) (2)

(SensorWater = 1) → (AborbWater) (1)

→ (DoNothing) (0)

This selection system shows that the genetic algorithm correctly uses the infor-

mation given by the environment to follow the growth scheme given by the user.

2Video : http://www.irit.fr/∼Sylvain.Cussat-Blanc
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Figure 2.8: The jellyfish growth. (a) Beginning of the simulation. (b) The jellyfish

develops itself following the morphogens. (c) The jellyfish stops its growth when

the desired shape is obtained.

Moreover, duplications are always prior in relation to other actions to accumulate

vital energy without using it. The last remark we can make about these rules is

that Apoptosis is never used by the organism during growth. The organism assume

that morphogens give the correct growth direction.

Observing these rules, we notice that it could be possible to produce all desired

creatures with the same genome. Indeed, the rules discovered by the organism allow

it to follow any morphogen configuration. To verify the hypothesis, we decided to

develop another simple creature: a jellyfish. To do that, we keep exactly the same

environment architecture, with the same substrates and the same possible actions,

and we only change the morphogen distribution in the environment. Using the

starfish genome, we launch the simulation and we obtain the creature3 shown by

Figure 2.8.

3Video : http://www.irit.fr/∼Sylvain.Cussat-Blanc
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Chapter 3

Genetic Algorithms and Grid

Computing

The computation of our creature genotypes take a long time. Because of the time

need for each simulation of creature development, the fitness computation of a com-

plete generation composed of thousands genotypes take hours. To reduce the global

computation time, we decide to parallelize the genetic algorithm using a compu-

tational grid. This chapter is outlined as follows. Section 1 is a state of the art

of existing parallel genetic algorithm. It details 3 methods to parallelize genetic

algorithm on supercomputer and also show that it is possible to apply it to compu-

tational grid. Section 2 presents ProActive1, a grid programming middleware that

provides an infrastructure abstraction of the grid. Section 3 presents different exper-

iments and theirs results of our genetic algorithm parallel version using ProActive

and the french computational grid, Grid5000.

3.1 Parallelizing genetic algorithms

Genetic algorithms, by their structure, tend to be easy to parallelize [Cantù-Paz(1997),

Herrera et al.(2005), Branke et al.(2004)]. Three main parallelization methods ex-

ist but are usually applied with supercomputer. In our work, the supercomputer,

generally very expensive, is replaced by a computational grid. In this section, after

showing the different parallelization possibilities of a genetic algorithm, we detail

already existing parallel genetic algorithm and our way to apply them to artificial

life and grid computing.

1see http://proactive.inria.fr

19



3.1.1 Brief review of Genetic Algorithms

This section is a quick review of genetic algorithm. It shows the general functioning

of this nature-inspired search method and the different points that can be paral-

lelized. Genetic algorithms follow the next scheme on figure 3.1.

Figure 3.1: Genetic algorithm general functioning scheme.

Initially, a first solution set is chosen, generally randomly, in the problem’s search

space. Using a fitness function, a score is given to each solution (2). If a sufficient

solution is found, the genetic algorithm terminates. A population subset is se-

lected using previous scores (3). Different techniques exist for the selection: bests,

tournament, steady-state, etc. To complete the last selected subset, genomes are

recombined (4) using two principal operators:

• Crossover. Two genomes are crossed at one or more points to create two new

genomes.

• Mutation. One genome is randomly mutated at a random point to create a

new genome.

A new population is now available. The algorithm carries on step 2 (5).

Whereas choosing the right parameter values (population size, crossover and

mutation rate, fitness quality, etc.) is of key importance to reduce the computation

time, a manner to further reduce it consists in parallelizing the genetic algorithm.

Because of their total genome independence, 2 points can be parallelized easily:

the selection and the genome modifications. Whereas the parallelization of the

modification is mostly unprofitable because it does not request heavy computation

resources, the parallelization of the selection gives good results. In the next section

we present several approaches to reach this parallelization.

20



3.1.2 Some existing parallel algorithms

Fitness computation parallelization - Master/Worker GA

Using a Master/Worker architecture, the fitness calculation is dispatched on a pro-

cessor set (figure 3.2). In a classical, mono-processor approach, the algorithm would

do the population mixing (using crossovers and mutations) with scores sequentially

computed on the same machine. In this approach, the mixing is done on a master

computation unit using scores computed by workers deployed on a set of computa-

tion units. The general result of the algorithm is therefore exactly the same.

Figure 3.2: A fitness parallelized genetic algorithm allocates fitness computation to

different computation units.

Multi-population parallelization - Island GA

The initial population of the genetic algorithm is divided into several sub-populations.

Genetic algorithms are applied on each sub-population. The different sub-populations

are independent and are computed on different computation units. To help the

population mixing between the different sub-populations, migrations of individuals

can happen. This avoids the containment onto local optimum of different sub-

populations. The individual migration rate is an other genetic algorithm’s param-

eter. Figure 3.3 shows an island genetic algorithm scheme. Different migration

architectures are possible such as grid, ring [Sekaj(2004)].

This method heavily decreases the computation unit communication because

there are fewer node exchanges. However, the classical genetic algorithm proper-

ties are not guaranteed because of the population division that increases the local

optimum containment probability. Experiments tend to prove that island GA’s re-

sults are yet similar to classical GA in quality but need more generation to converge

[Bianchini & Brown(1993), Tanese(1989), Neuhaus(1991), Kommu & Pomeranz(1992)].
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Figure 3.3: An island genetic algorithm creates sub-populations and applies a clas-

sical genetic algorithm on each.

Hierarchical genetic algorithm

Combining the two previous methods, one can achieve a further parallelized ver-

sion of a genetic algorithm. The initial population is divided into sub-populations

like in the island GA and each sub-population fitness computation is parallelized

[Sekaj(2004), Lim et al.(2007)]. We obtain a hierarchical architecture where each

Figure 3.4: A hybrid genetic algorithm create sub-populations and apply a fitness

parallelized genetic algorithm on each.

sub-population is a master with different workers that compute fitnesses. Figure 3.4

shows a hybrid genetic algorithm scheme.
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Results of such a method are similar to the island GA. Indeed, each sub-

algorithm is exactly the same algorithm as the first we present. As we seen before,

a genetic algorithm that uses a fitness parallel computation gives exactly the same

result as a classical genetic algorithm.

3.1.3 Genetic algorithm on a computational grid

Different implementations of the three last algorithms especially exist on supercom-

puters. For our researches, we decide to use a computational grid because of their

low cost (in comparison to a supercomputer) and the possibility of evolutions (due

to the possible heterogeneity). The main difference between grids and supercom-

puter is that the computation units are separated by a high performance network for

grids and by a high performance data bus for supercomputers (Figure 3.5). Because

of this network, it is important to consider the data transfer delay.

Figure 3.5: In the example of a master/worker GA, a supercomputer (a) communi-

cates using a data bus whereas a computational grid (b) uses a high performance

network.

The main goal of this work is to reduce the computation time of our artificial

creatures. We decide to apply a Master/Worker algorithm to parallelize our genetic

algorithm. This algorithm is well applied to artificial life because creatures genome

is small and the fitness computing cost is very important. Because of the small

size of the genome, the network restriction forced by a Master/Worker algorithm

deployed on a computational grid will not heavily increase the computation time.

Moreover, because the properties of a classical genetic algorithm are preserved by

the Master/Worker algorithm, the number of generations needed by the algorithm

to converge and the final solution quality are exactly the same with or without

the parallelization. In this paper, we show that the genome transfer time over the
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network is insignificant in relation to the important computation time benefit, in

particular in the artificial embryogeny problem.

!!! a replacer plus prcisement !!! Grids gather large amount of heterogeneous

resources across geographically distributed sites to a single virtual organization.

Resources are usually organized in clusters, which are managed by different admin-

istrative domains (labs, universities, etc.). Thanks to the huge number of resources

that grids provide, they seem to be well suited for solving very large problems.

Nevertheless, grids introduce new challenges such as deployment, heterogeneity,

fault-tolerance, communication, and scalability. To not manage all their difficul-

ties, middlewares, such as ProActive, provide a complete abstraction of the grid

infrastructure.

In this work, we use a library of Java algorithms called AGMC, developed by our

research group, which contains the usual selection and mixing algorithms. In order

to implement a parallelized version of the library, we use ProActive grid middleware.

The next section describe more in details the ProActive framework, along with its

Master/Worker API.

3.2 ProActive and Master/Worker API

ProActive is a grid programming middleware which provides, among others, a Grid

infrastructure abstraction using deployment descriptors [Baude et al.(2002)], and an

active object model [Caromel(1993)] using transparent futures [Caromel et al.(2006)].

The ProActive framework contains as well a set of toolkits which hide the inner

ProActive concepts from the user and provide high-level APIs to well-known class

of parallel problems such as :

• Master/Worker

• Branch & Bound

• Skeletons

3.2.1 ProActive’s Grid infrastructure abstraction

The ProActive Deployment Framework completely extracts all infrastructure details

from the source code [Baude et al.(2002)]. Figure 3.6 shows the general architecture

of ProActive.

The first key principle is to fully eliminate from the source code the following

elements:

• Machine names
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Figure 3.6: ProActive’s architecture allows a complete abstraction of the grid in-

frastructure by providing a set of services.

• Creation protocols

• Registry and lookup protocols

• Communication protocols

The goal of the deployment framework is to deploy any application anywhere

without having to modify the source code. The resources acquired through the

deployment process are called nodes. Nodes are the containers of active objects,

and are created by starting the ProActive runtime on the infrastructure resources.

The second key principle is the capability to abstractly describe an application,

or part of it, in terms of its conceptual activities.

To summarize, in order to abstract away the underlying execution platform, and

to allow a source-independent deployment a framework has to provide the following

elements:

• An abstract description of the distributed entities of a parallel program or
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component.

• An external mapping of those entities to real machines, using actual creation,

registry, and lookup protocols.

To answer these principles, the ProActive deployment framework relies on XML

deployment descriptors to hold the infrastructure configuration. Descriptors intro-

duce the notion of virtual-node:

• A virtual-node is identified as a name (a simple string).

• A virtual-node is used in a program source.

• A virtual-node, after deployment, is mapped to one or to a set of actual

ProActive Nodes, following the mapping defined in an XML descriptor file.

A virtual-node is a concept of a distributed program or component, while a

node is a deployment concept that hosts active objects. There is a correspondence

between virtual-nodes and nodes which is the relation created in the deployment

descriptor: the mapping. This mapping is specified in the deployment descriptor.

There is no direct mapping between virtual-nodes and active objects: the active

objects are deployed by the application onto nodes related with a virtual-node. By

definition, the following operations can be configured in the deployment descriptor:

• The mapping of virtual-nodes to nodes and to Java Virtual Machines.

• The mechanism (protocol) to create or to acquire Java Virtual Machines, such

as: local, ssh, rsh, rlogin, lsf, glite, etc.

• The mechanism (protocol) to register or to lookup Java Virtual Machines,

such as: RMI, HTTP, RMI-ssh, Ibis, and SOAP.

In the context of the ProActive middleware, nodes designate resources of an

infrastructure. They can be created or acquired. The deployment framework is

responsible for providing the nodes, mapped to the virtual-nodes, to the applica-

tion. Nodes may be created using remote connection and creation protocols. Nodes

may also be acquired through lookup protocols, which notably enable access to the

ProActive Peer-to-Peer infrastructure.

3.2.2 The Master/Worker API

The master/worker paradigm is a fundamental and commonly used approach for

parallel and distributed applications. In master/worker applications, a single master
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process controls the distribution of work to a set of identically operating worker pro-

cesses. The master/worker paradigm has been used successfully for a wide class of

parallel applications [Pruyne & Livny(1996)] [Everaars & Koren(1997)] [Silva et al.(1999)],

and is well suited as a programming model for applications targeted to distributed,

heterogeneous ”Grid” resources [Berman(1999)].

The ProActive approach to Master/Worker applications is to provide a high-level

API which:

• allows the user to simply and freely define tasks that will be executed by the

workers.

• internally provides an automatic dispatching of work among the workers.

• provides a simple interface for result gathering

• handles fault-tolerance by redispatching tasks from dead workers.

• is implemented using ProActive and the active-object model.

3.3 Experiments and results

To study the efficiency of the Master/Worker genetic algorithm, we implement a

parallel version of our genetic algorithm library using ProActive and specially the

Master/Worker API. We deploy the application on the french computational grid,

Grid5000. This experimentation’s aim is to study the algorithm behavior in different

situations:

1. When the computation time is short and the network constraints are impor-

tant,

2. When the computation time and the network constraints are medium,

3. When the computation time is important and the network constraints are

medium.

3.3.1 First Experimentation : OneMax problem

To begin this crop of experiments, we solve the academic OneMax problem. The

goal is to create a 30 by 30 binary matrix that contains a maximum of ones. The

computation time for such a problem is very short because the fitness function only

consists in counting the number of ones in a matrix. At the opposite, the genome’s

size is important: the genome contains the complete matrix. Moreover, the short
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fitness computation time increase the network solicitation. Indeed, the master must

continually send new tasks to workers and receive results.

The genetic algorithms parameters for the problem are the following:

• Population size : 100

• Selection method : 7 participants Tournament with elitism

• Crossover rate : 60%

• Mutation rate : 5%

Figure 3.7 shows the results in the computational grid with 1, 4, 8 and 16 CPUs.

Each curves’ point represents the computation time of one generation.

Figure 3.7: Computation time needed to compute 100 generations of the one max

problem using 1, 4, 8 or 16 CPU. Because of the low computation needs, the network

slows downs the application.

The lower one (with diamonds, near abscissa axis) matches with the mono-

processor architecture. The three others represent the parallelized application using

4 CPU (square marks), 8 CPU (triangles) and 16 (crosses). Because of the low

computation needs to calculate the fitness value, the grid parallelization of such a

problem significantly slows down the application. Curves also show network per-

turbations. Indeed, the genome sending time over the network is higher than the

computation time.

This remark is proved by the equivalence of curves for 4, 8 and 16 CPU. In-

creasing the number of CPU does not reduce significantly the global computation

time.
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3.3.2 Second experimentation : Non-invertible matrix

To increase the fitness computation time for each matrix, we try our architecture on

a new problem. The aim of this experimentation is to find a non-invertible matrix by

computing its determinant. Indeed, to have a non-invertible matrix, its determinant

must be equal to zero. The fitness value then corresponds to the distance of the

matrix determinant to zero.

Two main methods exist to calculate a determinant:

• Laplace formula: the determinant’s computation is equivalent to compute n

determinants of a (n-1) by (n-1) matrix (where n is the initial matrix size).

The complexity of such a method is O(n!).

• Gauss elimination: the aim is to combine lines or rows to create the maximum

of zeros in the matrix. The final computation is done with Laplace formula.

Because of the number of zero in the matrix, the computation is accelerated.

The complexity of Gauss elimination is O(n4).

To increase the computation time “artificially”, we decide to implement Laplace’s

method with an 11x11 matrix. The mean computation time for a determinant of

such a matrix is about 18 seconds2.

To find our non-invertible matrix with a genetic algorithm, genomes are simply

composed by a crop of integers belonging to the interval [−10, 10]. The genetic

algorithm’s parameter values were obtained by trying different values with a clas-

sical genetic algorithm. They correspond to the fewer generation number until the

convergence. Theirs parameters are the following:

• Population size : 2000

• Selection method : 7 participants tournament with elitism

• Crossover rate : 55%

• Mutation rate : 7%

Figure 3.8 represents smoothed curves for this experimentation. You can note

that the ordinate axis is graduate using a logarithmic scale for the time. For this

experimentation, we use 1, 50 and 100 processors in the grid. In the three cases, the

computation time for each generation is nearly constant generation after generation.

The computation time is sufficient to compensate the network exchange duration.

Moreover, the global computation time is proportional to the number of CPU.

2Experiment performed using a 2.33GHz processor with 4GB of memory.
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Indeed, with 1 CPU, a generation takes on the average 243 minutes to be calculated,

with 50 CPU, it takes 4.5 minutes (54 times less than 1 CPU) and with 100 CPU, it

takes 3 minutes (that is to say 81 times less than with 1 CPU). The time taken by

the network exchanges for this experimentation is not very important in comparison

to the time won.

Figure 3.8: Computation time needed for each generation (smoothed curve). The

grid parallelization proportionately reduces the generation computation time.

3.3.3 Third experimentation : Artificial embryogeny model

We are going to apply our parallelization method on the most interesting problem

for us: the generation of artificial creatures able to grow in a virtual environment.

In this experimentation, we use the substrate transfer system presented in chap-

ter 2 All cells’ specifications are coded in its genome. The genome size is about 19

kbytes and the simulation duration vary from a couple of seconds (when the organ-

ism is unable to do anything) to 120 seconds (when the organism develops itself in

the environment and performs the asked action). Due to this important variation,

the load balancing given by ProActive will optimize the task repartition amongst

the workers. The genetic algorithm parameters for this problem are:

• Population size : 750

• Selection method : 7 participants tournament with elitism

• Crossover rate : 65%

• Mutation rate : 5%
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Curves in figure 3.9 represent the computation time for each generation for one

and 50 CPU. Note that the ordinate axis is graduated using a logarithmic scale for

the time.

Figure 3.9: Computation time needed for each simulation generation (smoothed

curve). The grid parallelization reduces the calculation explosion due to the creature

evolution.

First of all, the two curves increase generation after generation because the com-

putation time to calculate the creature fitness globally increases. Indeed, in the first

generations, a lot of creatures are unable to survive. Then, they die immediately,

the simulations stop and the calculation time for such a simulation is very short

(about one second). But, generation after generation, creatures evolve to use the

environment’s resources and to develop themselves. Then, the computation time to

evaluate each creature grows up to 120 seconds.

The second interesting thing is that the global computation time is highly de-

creased. The network solicitation is lower than in the one max problem and the

computation time for each creature is sufficient to obtain good results even at the

first generations. The difference between the two curves increases generations after

generations. This computation time reduction is due to the load-balancing provided

by ProActive. Workers always have a fitness to compute even if the last one was very

short to compute (because the creature was unable to survive in its environment for

example).

3.4 Discussion

In this chapter, we present a parallel version of genetic algorithms based on grid

computing. This version is especially interesting for our specific artificial embryo-

31



geny problem. Indeed, in such a problem, genomes have relatively small sizes and

important computation needs. To parallelize this problem, we use a Master/Worker

genetic algorithm. Results given by such an algorithm are very promising. The

most interesting result is that the generation’s computation time explosion due to

creature evolution is reduced thanks to load-balancing. It significantly reduces the

global computation time. Yet, the use of a computational grid implies some re-

strictions: it is almost impossible to repeat the same experimentation many times.

Indeed, in a grid like Grid5000, a reservation system has been introduced to have a

set of computers. It is hard to have exactly the same set two times on the bounce.

Moreover, the network behaviour between two experiments can be very different

and can impact the results.

Another problem is the master memory explosion observed with a very large

population. Whereas a genetic algorithm uses an important quantity of memory,

the use of ProActive middleware does not improve the problem. Indeed, each

genome is encapsulated in a task to be sent to worker. This memory explosion

can be reduced by an island genetic algorithm but the convergence time can in-

crease [Bianchini & Brown(1993)]. It could be interesting to implement an island

algorithm using ProActive and to deploy it on Grid5000 to compare it with our

Master/Worker genetic algorithm. We think that the gain provided by the network

solicitation reduction of such an algorithm will not reduce the computation time.

Another advantage of this algorithm is the memory repartition due to the divi-

sion into sub-populations. Because the population is distributed amongst different

computers, the memory problem would then be reduced.
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Chapter 4

Conclusion and future works

We propose a model of cellular development. This model is based on a marked

simplification of natural development. We ignore the physics rules and the atomic

and molecular interactions to focus on the cell abilities. Using a genetic algorithm

and specific environment, we create a organism able to develop different organs with

different functions. As we have shown during experiments, this model can produce

various creatures with very different morphology or different functions.

We also present a parallel version of our genetic algorithm library. It is partic-

ularly well adapted for artificial embryogeny where the fitness computation time is

mostly long. In the artificial embryogeny model we present, a parallelization level

already exists. Because of the massive cell management of such a model, cells are

parallelized using a multi-threaded architecture. After some experiments, we show

that a fitness parallelization gives good results thanks to a computation grid. Be-

cause each grid node has a multi-processor or multi-core architecture, it allows the

simulation to be optimized.

The continuation of this work presents a wide field of development. Developing

new organs can be interested. For example, the next one could be an organ able to

harvest different substrates and transform them into vital energy and dispose wastes

at a specific position. Using different types of such an organ, the wastes of one used

as energetic substrate by another, we will produce a complete creature composed of

different organs. The different organs will be connected using the presented transfer

system.

Another improvement may concern shape generation. For the moment, we use

four different morphogens to obtain the creature morphology. We think that with

only one morphogen and only giving the development main line, we could obtain

the same creature and have an organ that develops itself corectly to produce this

morphogenetic substrate. For example, in the case of the starfish, we could have
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a transfer system that moves the morphogenetic substrate from the center of the

environment to the five branches of the starfish. In a second stage, the starfish will

grow using the morphogen distribution.

A remark we can make when we watch the starfish growth is that all the branches

do not grow at the same speed. The same fact can be noticed in jellyfish growth,

where the bell-shape grows too fast in comparison with tentacle development. An

idea to control shape development is to calculate fitness at different moments of the

simulation. The best creature will then be the one that produces the best shape at

each checkpoint.

A final development path is the abstraction of this model. Starting from a unique

cell, we grow shapes like the starfish or the jellyfish presented in the paper and, after

a cell regroupement to different limbs, we put the creature in a physical simulator

to make it move. The creature movements could be generated, for example, by a

neural network, just like in Sims’ works [Sims(1994)]. This abstraction will allow

us to have a complete creature development, from single cell to a creature able to

move in its environment.

Acknowledgments

ProActive is a middleware (part of the ObjectWeb consortium, with Open Source

code) for parallel, distributed and multi-threaded computing. It is provided by

OASIS team in INRIA Sophia Antipolis (see http://proactive.inria.fr)

Experiments presented in this paper were carried out using the Grid’5000 ex-

perimental testbed, an initiative from the French Ministry of Research through the

ACI GRID incentive action, INRIA, CNRS and RENATER and other contributing

partners (see https:// www.grid5000.fr)

34



List of Figures

2.1 Scheme of the GRN action in cell duplication. . . . . . . . . . . . . 7

2.2 Example of spreading substrate in the environment. . . . . . . . . . 8

2.3 Scheme of a cell in an artificial environment. It contains substrates

(hexagons) and corresponding sensors (circles) . . . . . . . . . . . . 10

2.4 Modelization of an example of the Gene Regulatory Network. A, B,

C and D are 4 actions with their efficiency coefficient. The transfer

coefficients are given by the arrows. . . . . . . . . . . . . . . . . . . 13

2.5 Our artificial transfer system. (a) Beginning of the simulation. (b)

The creature develops itself to create the structure and begin the

substrate transfert. (c) The creature transfers the substrate from the

initial state (circle on top left) to the final state (circle on bottom

right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Smooth curve of the minimum, average and maximum organism fit-

ness. The genetic algorithm must minimize the sum of the squared

distance from the red substrate to the goal point. . . . . . . . . . . 15

2.7 The seastar growth. (a) Beginning of the simulation. (b) The starfish

develops itself following the morphogens. (c) The starfish stops its

growth when the desired shape is obtained. . . . . . . . . . . . . . . 17

2.8 The jellyfish growth. (a) Beginning of the simulation. (b) The jelly-

fish develops itself following the morphogens. (c) The jellyfish stops

its growth when the desired shape is obtained. . . . . . . . . . . . . 18

3.1 Genetic algorithm general functioning scheme. . . . . . . . . . . . . 20

3.2 A fitness parallelized genetic algorithm allocates fitness computation

to different computation units. . . . . . . . . . . . . . . . . . . . . . 21

3.3 An island genetic algorithm creates sub-populations and applies a

classical genetic algorithm on each. . . . . . . . . . . . . . . . . . . 22

3.4 A hybrid genetic algorithm create sub-populations and apply a fitness

parallelized genetic algorithm on each. . . . . . . . . . . . . . . . . 22

35



3.5 In the example of a master/worker GA, a supercomputer (a) com-

municates using a data bus whereas a computational grid (b) uses a

high performance network. . . . . . . . . . . . . . . . . . . . . . . . 23

3.6 ProActive’s architecture allows a complete abstraction of the grid

infrastructure by providing a set of services. . . . . . . . . . . . . . 25

3.7 Computation time needed to compute 100 generations of the one max

problem using 1, 4, 8 or 16 CPU. Because of the low computation

needs, the network slows downs the application. . . . . . . . . . . . 28

3.8 Computation time needed for each generation (smoothed curve). The

grid parallelization proportionately reduces the generation computa-

tion time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.9 Computation time needed for each simulation generation (smoothed

curve). The grid parallelization reduces the calculation explosion due

to the creature evolution. . . . . . . . . . . . . . . . . . . . . . . . . 31

36



Bibliography

[Banzhaf(2003)] W. Banzhaf. Artificial regulatory networks and genetic program-

ming. Genetic Programming Theory and Practice pp. 43–62 (2003).

[Baude et al.(2002)] F Baude, D Caromel, L Mestre, F Huet, & J Vayssière. Inter-

active and descriptor-based deployment of object-oriented grid applications. In

Proceedings of the 11th IEEE International Symposium on High Performance Dis-

tributed Computing, pp. 93–102, Edinburgh, Scotland. IEEE Computer Society

(2002).

[Berman(1999)] Francine Berman. High-performance schedulers. In The grid:

blueprint for a new computing infrastructure, pp. 279–309. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA (1999).

[Bianchini & Brown(1993)] R Bianchini & C Brown. Parallel genetic algorithms on

distributed-memory architectures. Technical Report (revised version), University

of Rochester (May 1993).

[Branke et al.(2004)] J Branke, A Kamper, & H Schmeck. Distribution of evolu-

tionary algorithms in heterogeneous networks. In Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO), pp. 923–934 (2004).
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