

Constraint-Based 3D-Object Layout using a Genetic Algorithm

Stéphane Sanchez Olivier Le Roux Hervé Luga Véronique Gaildrat

Department of Computer Science IRIT
UPS, 118 route de Narbonne, 31062 Toulouse Cedex 4, France

Phone. (33) 05 61 55 83 29 Fax. (33) 05 61 55 62 58
E-mail: { sanchez, leroux, luga, gaildrat }@irit.fr

Abstract

Object layout in a large 3D-scene or in a complex virtual environment is a time-consuming and tedious
task. In order to assist the user in this task, we present a general-purposed constraint-based system. The
underlying constraint solver is built on a genetic algorithm. It is able to process a complex set of
constraints, including geometric and pseudo-physics ones. Moreover, universal quantifiers and Boolean
combination of constraints are allowed to make the layout description easier. Finally, to get realistic
scenes, objects can take any orientations, not only isothetic ones.

Keywords: non-isothetic 3D-object layout, genetic algorithm, constraint solving.

1 Introduction

Realistic object layout in a large 3D-scene is
currently a time-consuming task. In this paper we
study and experiment a genetic algorithm as core
of a constraint-based generation system. Once
validated, this tool will be included in our
declarative modelling platform DEM²ONS 1
[Kwaiter et al. 97].

By now, most of the placement tools take into
account only isothetic 2 objects. This
simplification allows minimizing size of the
search space and thus computation time.
Excepting some systems (e.g. [Xu et al. 02]) that
choose to drastically simplify the allowed
constraints, no one is interactive. In fact, the
classical problem is known to be NP-complete
(i.e. there are no complete tractable algorithms to
solve it). In complex cases, only stochastic
heuristics give suitable results. However, in a
classical 3D environment, the problem is widely
under-constrained and some systems generate
interesting results using standard CSP3 algorithms
[Charman 95] [Kwaiter et al. 97] [Bonnefoi et al.
99] [Ruchaud et al. 02].

1 DEM²ONS = Declarative Multimodal ModeliNg System
2 isothetic = parallel and/or orthogonal to world coordinate
system
3 CSP = Constraint Satisfaction Problem

Unfortunately, using such family of algorithms
leads to difficulties to obtain realistic scenes
because of exhaustive enumeration; hard
constraints are usually added to get a satisfying
solution. Another approach is to consider the
problem as a numeric optimization one. The
formulation can be linear [Vries et al. 00] or non-
linear [Donikian et al. 93]. However, strict
restrictions (especially on NLP4) must be set on
the constraint system to ensure satisfying results.
A third approach consists in using metaheuristics
such as local search (simulated annealing, tabu
search) or evolutionist strategies [Masui 92]
[Vassilas et al. 02].

In the following we present some reasons to
choose genetic algorithm for our problem:
- huge search space (each object has seven

degrees of freedom);
- some constraints, in their algebraic

formulation, are not differentiable (e.g. the
non-overlapping constraint);

- object layout must be as realistic as possible: a
stochastic process is well suited;

- universal quantifiers and Boolean combination
of constraints must be used to improve
expressiveness in description of layout
problem;

4 NLP = Non Linear Programming

- some descriptions involve hard problems
including cyclic constraint graph;

- finally, our object layout system has to manage
optimization problems (like “add two more
chairs around the table”).

This paper is organized as follows. Part 2
introduces our approach. We describe the inner
architecture of the system: objects, domains and
constraint modeling. The genetic algorithm is
also presented. In part 3, we give some
experimental results on classical problems. Part 4
discusses on advantages and drawbacks of our
approach. We also compare our system with
related ones. Finally part 5 concludes this study.

2 Our constraint-based system

2.1 A brief overview of Genetic Algorithm

In 1975, J. H. Holland introduced genetic
algorithms as a new technique that can be applied
to solve a wide variety of problems [Holland 75]
and D. Goldberg presented first real applications
that made them popular in 1989 [Goldberg 89].
J. R. Koza [Koza 92] has given a good definition
of genetic algorithm:
"The genetic algorithm is a highly parallel
technique that transforms a population of
individual objects, each with an associated fitness
value, into a new generation of the population
using the Darwinian principle of reproduction
and survival of the fittest and naturally occurring
genetic operations such as crossover
(recombination) and mutation. Each individual in
the population represents a possible solution to a
given problem."

Figure 1: Main loop of a genetic algorithm

2.2 Solver requirements

To be used as a valuable generation tool the
solver must have some features.
It must solve topological constraints (“the plate is
on the table”), metrics constraints (“the chair is at
one meter of the desk”), angular constraints
(“dispatch uniformly three chairs around the
table”), orientation constraints (“the sofa is in
front of the TV”), and size constraints (“the table
is 1.80 meter long”).
The resulting scene must be realistic: 3D-objects
with any orientations, no overlapping and respect
of gravity constraints.
Constraint's hierarchy is used to express user’s
preferences and to solve over-constrained
problems.
The solver must be able to treat cyclic constraint
graph.
Disjunctive constraints (“set the chair against A
wall”, “set the waste basket to the right OR the
left of the desk”) and negative ones (“the
wardrobe is NOT in front of the window”) must
be managed.

2.3 Problem modeling

In this section, we present our problem modeling.
This stage is decisive and determines the
performance of the system.

In our evolutionist approach:
- placement space (i.e. domains) and objects

already in the scene represent the environment
of the population of genetic algorithm;

- objects to set represent genetic components of
individuals;

- combination of constraints represents the
pressure to apply on individuals in order to
make the genetic algorithm converge toward a
suitable solution.

2.3.1 Domains and objects

The placement space, in which new objects are
added, is a limited three-dimensional space,
oriented around the height axis.

To be realistic, objects in the scene are identified
with a hierarchical set of bounding boxes.
Usually, when an object is put on shelves, it must
be on an inner shelf and not on top of them.

Each bounding box is defined using three kinds
of parameters:
- position: location of the box in the world

coordinate space. A variable of position is
made up of three one-dimensional values.

- orientation: an angle in radians. Usually the
three Euler angles (roll, pitch, head or yaw) are
used. To minimize computation time, we
choose to maintain only head (rotation around
the height axis). This choice is justified by
usual object orientation in real world.

- size: a one-dimensional parameter along an
axis. Three size parameters are used to define
the dimensions of a box.

Remark: to lower processing time and to achieve
correct convergence of genetic algorithm, the
objects to set in the scene are defined only by
their global bounding box. Consequently, if the
user wants to set a table in the scene and a stool
under it, he must first set the table in place and
then set the stool relatively to hierarchical
structure of the table. Nevertheless, ten chairs and
associated plates and forks can be set around the
table at one time.

2.3.2 The constraints

The constraints used, mainly inspired of the ones
proposed by P. Charman [Charman 95], are low-
level ones: they each describe a local layout
problem that the solver can easily process in
order to generate a suitable solution. However,
these constraints can be combined to create high-
level properties.

We consider two kinds of constraints: the first
ones, we name physical constraints, ensure
coherence and realism of the generated scene.
The others, called geometric constraints, will be
combined to express the problem.
The physical constraints consist in two main
constraints:
- non-overlapping avoids collisions between

objects ;
- gravity invalidates every object that is not on

the ground or balanced on another valid object.
The geometric constraints aim to describe each a
simple and elementary spatial problem. They
usually use the Vandeloise's terminology: (with
exception of size constraint as seen below):

object target S_P (parameters) object landmark

Where object target is the object the user intends to
put in the scene relatively to object landmark in
relation with spatial preposition S_P.

The user can give any geometric constraint either
in a positive way or in a negative one (operator
NOT).
Four kinds of geometric constraints are
considered:
- zone: “the chair is on the LEFT of the table”,

“put the vase ON the shelf”;
- orientation: “the sofa is FACING the TV”.
- distance: “the monitor is AT 50 CM of the

desk chair”;
- size: “the table is 2 METERS LONG”.
And each one is defined by a set of basic
mathematic and/or geometric properties.
For example, a zone constraint is described as a
volume made of a control polygon as base and a
set of allowed heights:

Figure 2: Control polygon of zone constraint

Figure 3: Set of allowed heights of zone

constraint

2.4 Solving the problem

The layout object problem to solve consists of
two associated parts:
- a genome that represents the objects to set in

the scene,
- associated with a combination of constraints.

2.4.1 The genome

An individual of the genetic population represents
a potential solution to the problem. The
evaluation of its genome (using a fitness
function) allows estimating the quality of the
adaptation of the individual to the current
problem.
The genome consists of at least one chromosome.
Each chromosome corresponds to a set of
equivalent objects (i.e. objects related to the same
size constraint) and it is associated to one
combination of constraints. Each gene of the
chromosome represents a unique object to set in
the scene.

2.4.2 Setting the object layout problem

As said, each problem can be described with a
combination of geometric constraints. The
combination is made up of a Boolean tree with
constraints as leaves and using the following
node operators: AND, OR, XOR and NOT.
Using a Boolean tree with these four operators
allows many combinations of heterogeneous
constraints and a really natural way of expressing
problems. We could note that a tree structure
facilitates introduction of a priority factor, at leaf
level, in order to create a constraints hierarchy.

- “sofa facing TV at 2 meters of the TV” (cf.

Figure 4):
C1 = Sofa ZONE(in_front) TV
C2 = Sofa ORIENTATION(pi) TV
C3 = Sofa DISTANCE (2.0)TV

Figure 4: Constraint tree #1

- “the plate on the table facing one of the two
chairs but not on the vase” (cf. Figure 5):

 C1 = Plate ZONE(on) table
 C2 = Plate ORIENTATION(pi) chair#1
 C3 = Plate ZONE(in_front) chair#1

C4 = Plate ORIENTATION(pi) chair#2
 C5 = Plate ZONE(in_front) chair#2
 C6 = Plate NOT ZONE(ON) vase

2.4.3 Evaluation of individuals

This step is critical to the solving process. Indeed,
convergence of the genetic algorithm towards a
valuable solution depends only on the quality of
the evaluation process: the fitness function
applied to individuals must express, the most
exactly, how they satisfy the set of constraints
they are associated with. Besides, results of
fitness functions associated with the different
low-level geometric constraints must be
homogeneous in order to combine them (using
Boolean tree) without introducing an unwanted
hierarchy during the evaluation process.

Figure 5: Constraint tree #2

The evaluation of both physical constraints (non-
overlapping and gravity) validates, or invalidates,
a gene of the individual (i.e. an object to set in the
scene). Each fitness function, matching with one
geometric constraint, is applied to each valid gene
and uses a method that returns a percentage of
satisfaction (in order to maintain homogeneity).
For example, in case of positive zone constraint
the evaluating process will be:

Figure 6: Fitness of zone constraint

Figure 7: Fitness of zone constraint

Figure 8: Fitness of zone constraint

Figure 9: Fitness of zone constraint

Figure 10: Fitness of zone constraint

The results of fitness functions are processed
according to the node operators and to the priority
factors so as to obtain the satisfaction value of
each gene. For example, the fitness value fg of the
gene corresponding to the plate in the following
problem, "plate on the table facing one of the two
chairs but not on the vase", will be:

))6(
),)5

,4(
),3

,2((
,1(

6

5

4

3

2

1

CNOTprio
Cprio
CprioAND
Cprio
CprioANDOR

CprioANDf

C

C

C

C

C

Cg

×
×
×
×
×

×=

With Ci the fitness value of gene g for
 constraint Ci,
 prioCi the priority factor of constraint Ci

Then, the fitness value fch of each chromosome of
the individual will be a simple average value:

Genes

nb
g

ch nb

f
f Genes

∑
=

At last, the final fitness value F is obtained with
an average of fitness values of chromosome or, if
we need to add a hierarchy between simultaneous
problems, with a weighted sum:

∑
∑ ×

=

schromosome

sChromosome

nb
ch

nb
chch

prio

fprio
F

3 Experimental results

In order to evaluate how the solver computes
different kinds of problem, we use the following
3D-scene as reference:

Figure 11: The reference scene

For information, the solver has built this scene,
composed of a wardrobe, a table with a box on it,
a stool, a sofa and shelves, in about 18 seconds.

The reference computer is a Pentium III 1.2
GHz. The solver is compiled with Java SDK 1.4.
All the computation times given for the following
problems are average values of 10 consecutive
runs.

- "20 boxes on the table but not on a box already

on the table":

Figure 12: Computation time = 52.1 s

- "20 books correctly arranged on first shelf of

shelves ":

Figure 13: Computation time = 58.4 s

- "8 chairs around the table, more or less facing
it":

Figure 14: Computation time = 12.7 s

- "4 objects around the box on the table,

cyclically oriented at 90° from the previous
one":

Figure 15: Computation time = 2.1 s

4 Discussion

Our set of constraints allows describing many
basic problems {on, against, near, facing, above,
in, parallel to, etc.}) but also more complex ones
using Boolean trees of constraints.

Furthermore, in our tests:
- All the under-constrained problems have been

solved.
- For each of the over-constrained problems, the

solver has generated a suitable solution.
- The only problems that are not solved (no

convergence of the genetic algorithm) are the
ones with no possible solution (for example,
"the chair in front of and behind the table").

- All the cyclic problems have been successfully
processed.

- Negative problems are solved just as positive
ones: the solver makes no difference.

- Constraints hierarchies have been correctly
solved.

Nevertheless, many improvements are still
possible:
 - The computation times are erratic from one

problem to another. They do not seem to be
directly correlated with number of objects
and/or number of constraints. A study on
convergence of the algorithm seems necessary.

- Evaluation of individuals using a weighted
sum does not allow the solver to generate a
diversified set of solutions. The use of multi-
criteria methods, as MOGA [Fonseca et al.
95], might correct, at least partially, this
drawback.

Currently, there is no standard benchmark on
non-isothetic 3D-object layout problems.
Consequently, results produced by our system
cannot be easily compared with related works. To
give some useful informations, the next table
provides a qualitative comparison of some similar
projects.

Project EAAS DEM²ONS
ORANOS

MultiFormes
4

MultiFormes
5

MultiCAD
GA

DEM²ONS
GA

Year 1993-1995 1997-1998 1999 2002 2002 2000-2003

Main reference [Charman 95] [Kwaiter 97] [Bonnefoi 99] [Ruchaud 02] [Vassilas et al.
02] This paper

Approach constructive constructive constructive constructive iterative iterative
Is result
guaranteed? YES NO

(discretization) YES NO
(discretization)

NO
(stochastic)

NO
(stochastic)

Is algorithm
sound? YES YES YES YES NO NO

Objects /
degrees of
freedom

rectangles

4

3D bounding
boxes

9

3D bounding
boxes

6

3D vertices

3

3D bounding
boxes

6

3D bounding
boxes

7

Orientation 0° or 90° isothetic only isothetic only any isothetic only any around the
height axis

Boolean
combination of
constraints

AND AND AND AND AND
A tree using

AND, OR, XOR,
and NOT

Hierarchical
constraints NO YES NO NO NO YES

Relaxation if
over-
constrained?

NO Partial NO NO YES, implicit YES, implicit

Algorithm

S-CSP
FC or RFL

+
CBJ

(optional)
+

filtering
AC-SG
(derived

from AC3)
+

dynamic
heuristic

(FFP based)

DHN-CSP
dynamic and
hierarchical
numerical

pre-filtering
+

incremental
FC or RFL

+
dynamic
heuristic

(FFP based)

CSP
incremental
FC or PL
(multi-

process)
+

BJ
+

AC5-filtering
+

dynamic
heuristic

(FFP based)

CSP
BT or FC

+
dynamic
heuristic

(FFP based)

GA

About 20
individuals

constraint

programming
(to generate
the initial

population)
+

classical
genetic

algorithm

GA

About 300
individuals

domain pre-

filtering
+

classical genetic
algorithm

(see section 2)

CSP = Constraint Satisfaction Problem; S = Spatial; DHN=Dynamic Hierarchical Numerical;
BT = Backtracking; FC = Forward Checking; RFL = Real-Full-Lookahead; PL = Partial Lookahead;
BJ = Backjumping; CBJ = Conflict directed Backjumping; FFP = Fail First Principle;
AC = Arc Consistency.

Table 1: Comparative synthesis of our study with related works

Here are summarized advantages and drawbacks
of our system.

Advantages:
- the system is general-purpose, easy to

understand and easy to extend;
- maximum computation time allowed can be

defined by the user;
- unlike traditional constructive approaches (e.g.

CSP), a partial solution can be visualized and
selected at any moment;

- as it is a stochastic process, final scene is very
realistic;

- very complex problems can be formulated: in
our system, universal quantifier and Boolean
combination of constraints are allowed;

- fuzzy description are naturally taken into
account;

- when the system encounters an over-
constrained problem, a suitable solution is
proposed according to the weight of
constraints;

- the system can both deal with satisfaction and
optimization problems.

Drawbacks:
- as all metaheuristics techniques, simulation

parameters (population size, mutation rate,
etc.) are problem-dependant; several tries can
be necessary to get good results;

- global convergence is not guaranteed;
- inconsistency of a description cannot be

proved;
- the algorithm is not sound: scenes which are

not solution can sometimes be generated.

5 Conclusion

In this paper we have presented a constraint-
based system for non-isothetic 3D-object layout
built on a genetic algorithm. The first results (see

section 3) are promising. However, particular
benchmarks are needed to allow quantitative
comparisons between different approaches.
In the future, we plan to include this tool in our
DEM²ONS [Kwaiter et al. 97] declarative
platform, to compare it more precisely with
others existing constraint solvers and others
metaheuristics (e.g. local search).
However, to get an easy-to-use object-layout
software, the description of the scene can be
made easier by the use of semantic and functional
features associated with the objects. So, the user
can obtain a complex and realistic scene without
giving all details.

Figure 16: Example of a realistic 3D-scene (88 objects) generated with our tool (ray tracing rendering)

References

[Bonnefoi et al. 99] P-F Bonnefoi, D. Plemenos.
Object Oriented Constraint Satisfaction for
Hierarchical Declarative Scene Modeling.
WSCG'99, Plzen, Czech Republic, February 2-
12, 1999.

[Charman 93] P. Charman. Solving Space
Planning Problems using Constraint
Technology. Technical report CS 57/93,
Institute of Cybernetics - Estonian Academy
of Sciences, 1993.

[Charman 95] P. Charman. Gestion de contraintes
géométriques pour l'aide à l'aménagement
spatial. Thèse de doctorat. Ecole Nationale des
Ponts et Chaussées. Novembre 1995.

 [Donikian et al. 93] S. Donikian, G. Hégron. A
Declarative Design Method for 3D Scene
Sketch Modeling. In Eurographics'93, Vol.12
(33), pp 223-236, 1993.

[Fonseca et al. 95] C.M. Fonseca, P.J. Fleming.
An Overview of Evolutionary Algorithms in
Multiobjective Optimization. Evolutionary
Computation 3, 1 (Spring), 1-16. 1995.

[Goldberg 89] D.E. Goldberg. Genetic algorithms
for search, optimization, and machine
learning. Addison-Wesley, Reading,
Massachusetts, 1989.

[Holland 92] J.H. Holland. Adaptation in Natural
and Artificial Systems. An Introductory
Analysis with Applications to Biology,
Control and Artificial Intelligence (Second
ed.). MIT Press, Cambridge, Massachusetts,
1992.

 [Koza 92] J.R. Koza. Genetic Programming. On
the Programming of Computers by Means of
Natural Selection. The Mit Press, 1992.

[Kwaiter et al. 97] G. Kwaiter, V. Gaildrat, R.
Caubet. DEM²ONS: A High Level Declarative
Modeller for 3D Graphics Applications. In
Proceedings of the International Conference
on Imaging Science Systems and Technology,
CISST’97, pp 149-154, Las Vegas, June 30-
July 3, 1997.

 [Masui 92] T. Masui. Graphic Object Layout
with Interactive Genetic Algorithms.
Proceedings of the 1992 IEEE Workshop on
Visual Languages, pp 74-80, September 1992.

[Ruchaud et al. 02] W. Ruchaud, D. Plemenos.
MultiFormes: a declarative modeller as a 3D
scene sketching tool. International Conference
ICCVG'2002, Zakopane (Poland), September
25-29, 2002.

[Vries et al. 00] B. de Vries, A.J. Jessurun,
R.H.M.C Kelleners. Using 3D geometric
constraints in architectural design support
systems. WSCG'00, 2000.

[Vassilas et al. 02] N. Vassilas, G. Miaoulis, D.
Chronopoulos, E. Konstantinidis, I. Ravani, D.
Makris, D. Plemenos. MultiCAD-GA: A
System for the Design of 3D Forms Based on
Genetic Algorithms and Human Evaluation.
SETN 2002, pp 203-214, 2002.

[Xu et al. 02] K. Xu, J. Stewart, E. Fiume.
Constraint-based Automatic Placement for
Scene Composition, Graphics Interface '02,
May 2002.

