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Abstract. Detecting outliers in the context of multivariate data is known as an
important but difficult task and there already exist several detection methods.
Most of the proposed methods are based either on the Mahalanobis distance of
the observations to the center of the distribution or on a projection pursuit (PP)
approach. In the present paper we focus on the one-dimensional PP approach which
may be of particular interest when the data are not elliptically symmetric. We give
a survey of the statistical literature on PP for multivariate outliers detection and
investigate the pros and cons of the different methods. We also propose the use
of a recent heuristic optimization algorithm called Tribes for multivariate outliers
detection in the projection pursuit context.
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1 Introduction

The definition of outliers as a small number of observations that differ from
the remainder of the data is commonly accepted in the statistical literature
(Barnett and Lewis (1994), Hadi et al. (2009)). Most of the detection methods
in continuous multivariate data are based either on the Mahalanobis distance
or on Projection Pursuit. In the first approach, an observation is declared an
outlier if its Mahalanobis distance is larger than a given cut-off value. Be-
cause the classical non-robust Mahalanobis distances suffer from masking,
Rousseeuw and Van Zomeren (1990) propose to use robust location and scat-
ter estimators. Moreover, reliable methods for defining cut-off points have
been recently proposed (Cerioli et al. (2009)). The PP approach consists in
looking for low dimensional linear projections that are susceptible to reveal
outlying observations. In the following, we focus on this second approach
which does not assume that the non-outlying part of the data set originates
from a particular distribution (like elliptically symmetric distributions for the
first approach). In general, exploratory PP gives insight about a multivariate
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continuous data set by finding and proposing to the analyst high revealing
low-dimensional projections. A projection pursuit method is based on two
ingredients: a projection index which measures the interestingness of a given
projection and a strategy for searching the optima of this index. In the second
section, we give a survey of the different projection indices that are aimed
at detecting multivariate outliers. PP is computationally intensive and the
choice of the strategy of “pursuit” together with the optimization algorithm
are also important. In the third section, we present the existing “pursuit”
strategies and propose a new strategy that relies on a optimization algorithm
that can find several local minima in a reasonable time. We also investigate
the pros and cons of the different strategies. In the fourth section, we present
the Tribes algorithm which is a recent heuristic optimization algorithm (Clerc
(2005), Cooren et al. (2009)). Heuristic optimization methods are attractive
on the one hand, because they don’t rely on strong regularity assumptions
about the index and on the other hand, because they offer an efficient way
to explore the whole space of solutions. But they usually imply the choice of
some parameters. Tribes belongs to the family of Particle Swarm optimiza-
tion (PSO) methods which are biologically-inspired optimization algorithms
based on a cooperation strategy. Its main advantage relies on the fact that it
is a parameter-free algorithm. We give some generalities concerning PSO and
Tribes and propose to use it for the detection of outliers in an exploratory
PP context. In the last section, we present the java interface we are currently
developing for exploratory PP and give some perspectives.

2 Projection indices for detecting outliers

As said above a PP method assigns a numerical value (defined via an index)
to low dimensional projections of the data. The index is then optimized to
yield projections that reveal interesting structure. In the following, we review
several one-dimensional indices that can be useful for the detection of out-
liers. We use the following notations: the data set is a n (observations) by p
(variables) matrix X and Xi denotes the vector in RP associated with the ith
observation. For one-dimension exploratory PP, a real-valued index function
I(a) is defined for all projection vectors a ∈ Rp such that a′a = 1 (where
a′ denotes the transpose of a). This function I is such that interesting views
correspond to local optima of the function.

The most well-known projection index is the variance which leads to Prin-
cipal Component Analysis (PCA). As detailed in Jolliffe (2002, section 10.1),
observations that inflate variances will be detectable on the first principal
components while outliers with respect to the correlation structure of the
data may be detected on the last principal components. PCA is generally the
first step in multivariate continuous data analysis but it is not specifically
designed for the detection of outliers and further exploration with other PP
indices are of interest. Moreover, in order to avoid masking as previously
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mentioned for Mahalanobis distances, it is advisable to consider as a pro-
jection index a robust variance estimator rather than the usual variance (Li
and Chen (1985)). Such a method, called robust PP-based PCA, may de-
tect outliers which inflate the variance (without the possible masking of the
non-robust PCA) but is not aimed at detecting other types of outliers.

The definition of an “interesting” projection has been discussed in the
founding papers on PP (Friedman and Tukey (1974), Huber (1985), Jones
and Sibson (1987), and Friedman (1987)). Several arguments (see Friedman
(1987) for details) have led to the conclusion that gaussianity is uninterest-
ing. Consequently, as noted by Huber (1985), any measure of departure from
normality can be viewed as a measure of interestingness and thus as a PP
index. The objective of measuring departures from normality is more gen-
eral than looking for projections that reveal outlying observations. However,
several indices are very sensitive to departure from normality in the tails of
the distribution which means that they will reveal outliers in priority. We
will focus on such indices. In particular, the Friedman and Tukey (1974) and
Friedman (1987) indices are known to be quite sensitive to the presence of
outliers (see Friedman and Tukey (1974) and Hall (1989)). A detailed pre-
sentation of these indices can be found in Caussinus and Ruiz-Gazen (2009)
and Berro et al. (2009).

As mentioned by Huber (1985, p. 446) and further studied by Peña and
Prieto (2001), the kurtosis of the projected data is an index well adapted
for detecting outliers. While heavy tailed distributions lead to high values
of the kurtosis, bimodality leads to low values of the kurtosis. Thus, Peña
and Prieto (2001) propose to detect outliers by looking at projections that
minimize or maximize the kurtosis.

Recently, the Friedman index (Achard et al. (2004)) and the kurtosis index
(Malpica et al. (2008)) have been used successfully for detecting anomalies
in hyperspectral imagery. We also mention the index proposed in Juan and
Prieto (2001) which is well suited for concentrated contamination patterns
but which does not seem appropriate in other situations as detailed in Smetek
and Bauer (2008) also in the field of hyperspectral imagery.

Another well-known projection index which is dedicated to the research
of outliers is the measure of outlyingness defined independently by Stahel
(1981) and Donoho (1982). For each observation i = 1, . . . , n, we look for a
projection that maximizes

Ii(a) =
|a′Xi −medj(a′Xj)|

madj(a′Xj)

where the “med” (resp. the “mad”) corresponds to the median (resp. the me-
dian absolute deviation) of the projected data. The main difference between
this index and the ones previously introduced is that the search of an optimal
projection has to be done for each observation while the previous proposals
consist in looking for the most interesting projections without refering to any
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particular observation. The Stahel-Donoho index is generally used as a first
step in order to define weights of highly robust location and scatter estima-
tors. But it may be used also in the exploratory PP context when the number
of observations is small.

Finally, Caussinus and Ruiz-Gazen (1990, 2003), and Ruiz-Gazen (1993)
proposed a generalization of PCA designed for the detection and the vizual-
ization of outliers. The methodology is based on the spectral decomposition
of a scatter estimator relative to another scatter estimator and has been re-
cently revisited in a more general framework by Tyler et al. (2008). Contrary
to usual and robust PP-based PCA, Generalized PCA (GPCA) cannot be de-
fined as a problem of optimizing a function I(a) of a projection vector a. Even
if it is detailed as a projection pursuit method in Caussinus and Ruiz-Gazen
(2009), there is no projection index associated with GPCA. Moreover, like
PCA (and unlike robust PP-based PCA), the projections obtained by GPCA
rely on spectral decomposition and do not need any pursuit. In the follow-
ing we do not consider PCA and GPCA any further and focus on possible
strategies for pursuit in the ususal exploratory PP context.

3 Different “pursuit” strategies

The structure of complex data sets in more than two dimensions is usu-
ally observable in many one-dimensional projections. So, as already stated in
Friedman and Tukey (1974), PP should find as many potentially informative
projections as possible. Consequently, the first strategy proposed by Fried-
man and Tukey (1974) and Jones and Sibson (1987) consists in using local
optimization methods with several starting points. Useful suggested initial
directions are the original coordinate axes, the principal axes but also some
random starting points. This strategy is also the one followed by Cook et al.
(1995) in their grand tour proposal but with the difference that the initial
directions are chosen by the viewer in an interactive way. To our opinion,
looking at rotating clouds as in Cook et al. (2007) may be tedious for the
data-analyst.

A second strategy is proposed in Friedman (1987) and most of the litera-
ture on PP focus on this second strategy. The procedure repeatedly invokes
a global optimization method, each time removing from the data the solu-
tions previously found. Several global optimization methods have been con-
sidered in the literature (e.g. Friedman (1987), Sun (1993), Peña and Prieto
(2001)). For continuously differentiable indices, such as the Friedman index
with a smooth kernel or the kurtosis index, the global optimization proce-
dure usually involves a local optimization step based on steepest ascent or
quasi-Newton. Concerning the “structure removal”, the simplest idea is to
consider orthogonal projections as in PCA. This methods used in Peña and
Prieto (2001) is easy to implement and greatly accelerates the procedure.
However, as noticed in Huber (1985) and Friedman (1987), it may miss inter-
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esting oblique projections. Friedman (1987) proposed a more sophisticated
“structure removal” procedure but it is not easy to implement and, as noticed
in Nason (1992), the way it may affect the later application of PP is unclear.

We propose to go back to the first strategy and offer to the data-analyst
several views of the data based on numerous starting directions and an effi-
cient local optimization algorithm. The reasons we advocate for such a choice
are the following:

(i) the aim of PP is to explore several local optima and global optimization
methods that consider non-global local extrema as a nuisance are time
consuming and not adapted,

(ii) the structure removal may miss some interesting projections or/and is
also time consuming,

(iii) by using numerous starting directions and examining the plot of the index
values, we can detect whether an extremum is found by accident (because
of sampling fluctuations) or discovered several times.

The drawback of this strategy, as noticed in Friedman’s discussion of Jones
and Sibson (1987), is that it leads to numerous views of the data that are
not imediately interpretable. One does not know the extent to which a new
view reflects a similar or a different structure compared with the previous
views. As detailed in the perspectives, in order to circumvent the problem,
we propose several simple tools to analyse and compare the different views.

Concerning the Stahel-Donoho index, Stahel (1981) and Maronna and
Yohai (1995) suggest to calculate the maximum over a finite set of vectors.
The vectors are taken at random and there is no local optimization step.
This idea of taking a finite set of projection directions is also used to derive
algorithms for robust PP-based PCA. The Croux and Ruiz-Gazen (2005) al-
gorithm uses the directions of the observations as projection vectors. Because
the index is a (robust) measure of dispersion, directions that are pointing
where the data are, lead to interesting results, at least when n is larger than
p (see Croux et al. (2007) for further improvement). However, this algorithm
is not relevant for other types of indices.

In order to be able to deal with unsmooth indices such as the Stahel-
Donoho index and explore in the most efficient way the whole space of so-
lutions, we propose to use a recent Particle Swarm optimization algorithm
called Tribes.

4 Tribes: a parameter-free Particle Swarm optimization
algorithm

Tribes is a recent heuristic optimization algorithm (Clerc (2005), Cooren et al.
(2009)) which belongs to the family of Particular Swarm optimization (PSO).
As explained in Gilli and Winker (2008) in a statistical context, heuristics
optimization methods can tackle optimization problems that are not tractable
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with classical optimization tools. Moreover, such algorithms usually mimic
some behavior found in nature. In the case of PSO, the algorithm mimics the
behavior of a swarm of insects or a school of fish that is, the collective learning
of individuals when they are in groups. There are two families of heuristic
optimization methods: the trajectory methods (e.g. simulated annealing or
Tabu search) which consider one single solution at a time and population
based methods (e.g. genetic algorithms) which update a whole set of solutions
simultaneously. For the second family of methods to which belongs PSO, the
exploration of the whole search space is sometimes more efficient and this
property is of importance given our objectives in the context of exploratory
PP. Particle Swarm Optimization was introduced by Eberhart and Kennedy
(1995) (see also Kennedy and Eberhart (2001)). The solution vectors of the
population are called particles and the algorithm consists in updating the
position of the particles of the swarm from one generation to another by
adding an increment called velocity. More precisely, a particle is defined by
a current position (which corresponds to a projection vector) and a velocity
of moving in the search space. At each generation, the particle calculates the
value of the function (index value). If this value is the best found so far, the
particle memorizes the current position as the best position. The best value is
called pbest. The particle looks also in its neighborhood the best value found.
This value is called lbest. Then the particle changes its velocity toward its
pbest and lbest positions in a stochastic way. Finally, she updates its position
(which means that the projection vector is updated).

Recently, researchers have used PSO for solving various optimization
problems (e.g. Gilli and Schumann (2009) for robust regression). But like
other heuristics methods, PSO depends heavily on the selection of its pa-
rameter values which may be difficult to tune. In our case, the parameters
depend notably on the number of observations and the number of variables.
As described in Cooren et al. (2009), Tribes is a new adaptive PSO algo-
rithm that avoids manual tuning by defining adaptation rules which aim at
automatically changing the particles behaviors as well as the topology of the
swarm. In particular, the strategies of moving are chosen according to the
performances of the particles. A precise description of the Tribes algorithm
is given in Larabi et al. (2009) for exploratory PP.

In Berro et al. (2009), we propose to use Genetic algorithm and standard
PSO for exploratory PP but Tribes is clearly more adapted to the research of
local optima. This feature is considered a drawback in a global optimization
strategy ; but according to our strategy (see section 3), it is a clear advantage.

5 Perspectives

We are currently developing a java interface in order to propose to the data-
analyst an efficient exploratory tool based on the PP strategy we have detailed
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in the third section and on the heuristics algorithms as detailed in the fourth
section.

In Berro et al. (2009), we stress the importance of using numerous indices
and looking at as many views as possible. Among the implemented indices,
several ones are adapted to the detection of outliers such as the Friedman-
Tukey, the Friedman and the kurtosis indices. The user can center and sphere
the data, a preliminary process which may ease the discovery of interesting
projections (see for instance Cook et al. (1995)). Following the strategy de-
tailed in the third section, we divide the exploratory process in two stages:
the first stage consists in running several times the Tribes algorithm and ob-
tain several projections. This research of several local optima may be time
consuming especially if the number of observations or the number of variables
or the number of runs are large. But the statistician does not need to be in
front of the computer during this first step! Moreover, because the different
runs are independent, one could use parallel computing. During this research
process, the potentially interesting projections obtained by optimization of
a projection index are stored in an output file. At the second stage of the
procedure, the statistician has many one-dimensional views of the data at his
disposal and he can begin the analysis of the potential structure. Note that
at this stage, there is no more need of computing power. The user can display
either histograms or kernel density estimators of the univariate distributions
of the projected data (see Figure 1 for an illustration of the interface on a
simulated data set). These histograms or density estimators can be examined
and outliers can be easily detected by vizualisation. Comparison of the dif-
ferent projections (similarities and differences) is more tricky and we propose
several simple tools to help the user in this process. On Figure 1, some of
the tools can be vizualised. First, the projections are ordered according to
the decreasing values of the projection index and the values of the index are
plotted so that the different local minima are easily detected (see the plot at
the top right of Figure 1). Note that the data analysed on Figure 1 are simu-
lated data with a majority of observations following a standardized gaussian
distribution and a few points following a mean-shifted gaussian distribution
in eight dimensions. For this artificial example, we know that there is only
one interesting projection and if we exclude a small number of runs (see the
right part of the index plot), all the runs have led to almost the same value of
index (see Berro et al. (2009) for more details). By repeating the local search
many times, we avoid considering spurious projections (due to sampling fluc-
tuations) since interesting projections are usually recovered several times and
associated with larger index values. But similar values of the index does not
correspond necessarily to similar projection vectors. We add a plot of the
cosines of the angles between any chosen projection vector and the other
projection directions. This plot is very helpful in order to measure how far
two projection directions are. Note that the different projections are simply
obtained by mouse-clicking on the index or on the cosine plot and a selection
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Fig. 1. A screenshot of the Java interface currently in development.

of the most interesting projections can be stored on the right bottom panel of
the window (see Figure 1). In a general exploratory PP context, the analysis
of many projections may be tricky and need some more dedicated tools that
we are currently developing. But in the context of outliers detection, once
defined an automatic rule to flag one-dimensional outlying observations, it is
easy to save the outlying observations in a file together with the number of
times they have been discovered on the different projections. As can be seen
on Figure 1, the present version of the interface offers the possibility to declare
as outliers, observations with an absolute distance to the mean larger than a
certain number of times the standard deviation. The choice of the number of
standard deviations is based on the vizualization of the histograms and can
be changed interactively (on Figure 1, the choice is two standard deviations
and the observations in yellow on the right of the histograms are identified as
outliers). The interface will be soon available and will offer all the described
possibilities.

Among the perspectives, we also plan to implement the Tribes algorithm
for the Stahel-Donoho index in an exploratory PP context. Finally, in the
context of outliers detection, we would like to compare our proposal with
other existing detection methods on several data sets.

Acknowledgements

We thank Maurice Clerc, Salvador Flores, Marcel Mongeau and David
Tyler for fruitful discussions.



Detecting multivariate outliers using PP with PSO 9

References

ACHARD, V., LANDREVIE, A. and FORT, J.-C. (2004): Anomalies detection
in hyperspectral imagery using projection pursuit algorithm In: L. Bruzzone
(Ed): Image and Signal Processing for Remote Sensing X. Proceedings of the
SPIE, Vol. 5573, 193–202.

BARNETT, V. and LEWIS, T. (1994): Outliers in statistical data, third edition.
Wiley.

BERRO, A., LARABI MARIE-SAINTE, S. and RUIZ-GAZEN, A. (2009): Ge-
netic and Particle Swarm Optimization for Exploratory Projection Pursuit.
Submited.

CAUSSINUS, H., FEKRI, M., HAKAM, S. and RUIZ-GAZEN, A. (2003): A mon-
itoring display of Multivariate Outliers. Computational Statististics and Data
Analysis 44, 237–252

CAUSSINUS, H. and RUIZ-GAZEN, A. (1990): Interesting projections of multidi-
mensional data by means of generalized principal component analysis, COMP-
STAT 90, Physica-Verlag, 121–126.

CAUSSINUS, H. and RUIZ-GAZEN, A. (2009): Exploratory projection pursuit. In:
G. Govaert: Data Analysis (Digital Signal and Image Processing series). Wiley,
67–89.

CERIOLI, A., RIANI, M. and ATKINSON A. C. (2009): Controlling the size of
multivariate outlier tests with the MCD estimator of scatter. Statistics and
Computing 19, 341–353.

CLERC, M. (2005): L’optimization par essaims particulaires. Lavoisier.

COOK, D. , BUJA. A. and CABRERA, J. (1993): Projection Pursuit Indices Based
on Orthogonal Function Expansions. Journal of Computational and Graphical
Statistics 2, 225–250.

COOK, D. and SWAYNE, D. F. (2007): Interactive and Dynamic Graphics for
Data Analysis. Springer Verlag, New York.

COOREN, Y., CLERC, M. SIARRY, P. (2009): Performance evaluation of TRIBES,
an adaptive particle swarm optimization algorithm. Swarm Intelligence 3, 149–
178.

CROUX C. and RUIZ-GAZEN, A. (2005): High Breakdown Estimators for Princi-
pal Components: the Projection-Pursuit Approach Revisited. Journal of Mul-
tivariate Analysis, 95, 206-226.

CROUX, C., FILZMOSER, P. and OLIVEIRA, M. R. (2007): Algorithms for
projection-pursuit robust principal components analysis. Chemometrics and
Intelligent Laboratory Systems, 87, 218-225.

DONOHO, D. L. (1982): Breakdown properties of multivariate location estimators.
Ph.D. qualifying paper, Harvard University.

EBERHART, R. C. and KENNEDY, J. (1995): A new optimizer using particle
swarm theory. In: Proceedings of the Sixth International Symposium on Mi-
cromachine and Human Science. Nagoya, Japan, 39–43.

FRIEDMAN, J. H. (1987): Exploratory projection pursuit. Journal of the American
Statistical Association, 82, 249–266.

FRIEDMAN J. H. and TUKEY J. W. (1974): A projection pursuit algorithm for
exploratory data analysis. IEEE Transactions on Computers, Ser. C, 23, 881–
889.



10 Ruiz-Gazen, A. et al.

GILLI, M. and SCHUMANN, E. (2009): Robust regression with optimization
heuristics. Comisef Working paper series, WPS-011.

GILLI, M. and WINKER, P. (2008): Review of heuristic optimization methods in
econometrics. Comisef working papers series WPS-OO1.

HADI, A. S., RAHMATULLAH IMON, A. H. M. and WERNER, M. (2009): De-
tection of outliers. Wiley Interdisciplinary Reviews: computational statistics,
1, 57-70.

HALL, P. (1989): On polynomial-based projection indexes for exploratory projec-
tion pursuit. The Annals of Statistics, 17, 589–605.

HUBER, P. J. (1985): Projection pursuit. The Annals of Statistics, 13, 435–475.
JOLLIFFE, I. T. (2002): Principal Component Analysis, second edition. Springer.
JONES, M. C. and SIBSON, R. (1987): What is projection pursuit? Journal of the

Royal Statistical Society, 150, 1–37.
JUAN, J. and PRIETO, F. J. (2001): Using angles to identify concentrated multi-

variate outliers. Technometrics 43, 311–322
KENNEDY, J. and EBERHART, R. C. (with Yuhui Shi) (2001): Swarm Intelli-

gence. Morgan Kaufmann.
LARABI MARIE-SAINTE, S., RUIZ-GAZEN, A. and BERRO, A. (2009): Tribes:
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