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Abstract 

This paper presents an oriented object constraint 
solver based on constraint propagation and domain 
reduction for the generation phase in declarative 
modeling. The solver supports generic constraints and 
heterogeneous parameters via generic domains. This 
ensures adaptability and efficiency of the resolution 
process in complex cases. As an application, a declarative 
system for 3D-environments planning is presented. 

1. Introduction 

Declarative modeling is a recent paradigm (80’s) in 
the world of computer aided design systems.  It allows 
designers to build scenes or shapes giving only a set of 
properties and constraints to be satisfied, freeing users to 
give all the numeric details. In opposite to classical 
geometric modeling, it does not require a complete 
knowledge of objects to build at start time. Moreover, it 
can support non-geometric information and maintains 
logical links between entities or logical structure of the 
scene. It is a design process closer to the user’s needs than 
classical modeling. 

A declarative modeler is the combination of three 
parts [4]: 
a. The first one is called description module. It defines 
the application language and offers the user an interface 
to describe the properties of scenes or shapes. It also 
translates high-level descriptions in an internal language 
easier to manipulate and process. 
b. The second module can be considered as the system's 
kernel. It is the generation module. Its role is to explore 
search spaces to produce models that meet the description 
made by the user even if it is incomplete. One of the key 
ideas in declarative modeling is the ability of the system 
to find several or all solutions. 
c. The third part of a declarative modeling system is the 
insight module. Many solutions can be generated 
according to the designer’s specifications. This module 

permits presentation, navigation and refinement of valid 
models to help the user choose a solution.  

In the following we only focus on the generation 
phase.  

This paper is organized as follows. Part 2 discusses 
about the generation phase and related works. It explains 
why the search tree approach should be preferred to other 
techniques as much as possible. CSP1 formalism and 
associated techniques are one of the best ways to 
implement exhaustive search, so they are presented in 
section 2.2. Part 3 introduces a generic constraint solver 
as a powerful generation tool. It is based on constraint 
propagation and domain reduction. This part also insists 
on hotspots to make generation process efficient, like 
domain modeling and filtering algorithms. Architecture 
(section 3.1) and main algorithms (section 3.2) are given. 
Section 3.3 describes how to extend the system at lower 
cost by creating more complex constraints from boolean 
combination of existing ones. As an application, Part 4 
presents a declarative space planning system for virtual 
environments. 

2. The generation phase 

2.1. Related works 

There are mainly four approaches to deal with the 
generation phase problem: 
- Specific procedural approach: designed for a particular 
application; can be very efficient but is not flexible and 
generally difficult to extend. 
- Deductive approach: it is either a rules-based system or 
an expert system based on an inference engine [12, 13]. 
The difficulties to build rules and their dependencies in 
relation to the application are the main drawbacks. 
-  Stochastic approach: it leans on metaheuristics like 
evolutionist algorithms or local search. It is a general 
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method but it suffers from incompleteness of related 
algorithms. However, it is the only viable approach when 
the search space is too large. Examples of declarative 
applications that use such techniques are [6, 11]. 
- Search tree approach: probably one of the most flexible, 
more and more used in declarative modeling [1, 2, 9].  It 
allows a systematic exploration of search spaces and thus 
the generation of all the solutions either at once or in 
several times. The user can also control the search process 
by giving tree branches to prefer or to prune. One of the 
best ways to implement this approach is to use the CSP 
model developed about thirty years ago by the AI 
community. The generality and expressivity of this 
formalism allow the expression of a wide range of 
declarative modeling problems.  

This is why, when the size of the search space is 
reasonable, the search tree approach based on CSP can be 
considered as one of the most appropriate to build a 
powerful and efficient generic generation tool.  

2.2. The CSPs 

This section introduces basic terminology and 
fundamental notions about CSPs.  

Definition 1: a CSP 
A CSP P = <V, D, C> is defined by: 
- a finite set of variables V = { v1,…vn } 
- a set of domains D = { D1,…Dn }, where Di is the 
domain associated with vi; i.e. the only authorized 
assignment of vi are values of Di. 
- a set of constraints C = { C1,… Ce }; each c∈C is a 
subset of the cartesian product ∏ ∈ cVi iD  where Vc⊂V is 

the set of variables of c. 
Each constraint can be defined: 
- extensionally, for example giving sets of authorized 
tuples in the case of finite domains; 
- intentionally, giving either a mathematical equation or a 
procedural method. 

Note that the previous definition does not involve any 
restriction neither on constraints arity nor on reference 
sets of domains (each domain of D can be finite or 
continuous, ordered or not, etc.). 

Definition 2: solution to a CSP 
A solution is an assignment of a value to each variable 
from its domain such that all the constraints are satisfied.  

Definition 3: partial assignment locally consistent 
A partial assignment is said locally consistent if it doesn’t 
break any constraint. 

Definition 4: equivalence of two CSPs 
Two problems P and P’ are equivalent (P ≡ P’) if and only 
if they have the same set of solutions. 

Definition 5: neighborhood of a variable 
The neighborhood of v∈V is the set of variables denoted 
Γ(v) such that  Γ(v)⊂V and ∀w∈Γ(v) ∃c∈C v∈Vc and 
w∈ Vc. 

Definition 6: projection of a constraint 
Let c be a n-ary constraint on Vc={Vc1,…Vcn}. The 
projection of c on W⊂Vc, that will be denoted c↓w, is the 
constraint defined on W and equals to the set of 
projections on W of the values of c. 

Ix1 Ix2

Iy

Let C be a constraint in ℜ2

defined by C = A1 ∪ A2

   C↓{X,Y} = C

   C↓X = Ix1 ∪ Ix2

   C↓Y = Iy

X

Y

A2

A1

 
Figure 1: example of 1D projections  

Definition 7: a disjunctive constraint 
A constraint c on Vc={Vc1,…Vcn}is said disjunctive if 
and only if ∃i∈{1..n} such as c↓Vci is non-convex. 

Example: C (fig.1) is disjunctive because of the projection on X. 
 
Definition 8: terminology  
A CSP P is said to be: 
- under-constrained if P has several solutions; 
- over-constrained if P has no solution; 
- well-constrained if P has one and only one solution. 
 

Though tractable algorithms exist in some particular 
cases, general constraint satisfaction problems are NP-
hard. Nevertheless, many techniques exhibit a good 
performance in practice in the average case. One of the 
best approaches consists in combining systematic search 
with constraint propagation (also called consistency 
inference). The main difficulty is to find an effective 
trade-off between the two ones. 
- Systematic search algorithms explore the search space 
by testing different possible combinations of variables 
assignments until a complete solution is found. The most 
common search algorithm is the chronological 
backtracking. 
- Consistency inference algorithms reason through 
equivalent problems (see definition 4): each step consists 
in narrowing down domains of the CSP to make it more 
explicit. A propagation method embedded in backtracking 
algorithm – so-called look-ahead scheme – limits 
thrashing by pruning some detected inconsistent branches 
of the search tree.  

Declarative modeling is an interactive designing task. 
Consequently most of the resulting generation problems 
are under-constrained or over-constrained. Hard problems 



(transition phase) are very singular. Due to its specificity 
the intractability of CSP approach must not be considered 
as a handicap. 

To learn more about CSP, refer to [5, 7, 8]. 

3. A generic constraint solver  

In this part, a generic oriented object constraint solver 
based on CSP is presented. It can be adapted for various 
generation problems in declarative modeling.  

3.1. Architecture 

The adaptability of the solver leans on genericity of 
both constraints and domains. Here are the main classes 
and the most important associated fields and methods. 

The CSP class embeds the problem description: 

Class CSP 
Main fields 

V: list<Variable> 
D: list<Domain> 
C: list<Constraint> 

Main methods 
static boolean solve(in p:CSP, in/out c:Context) 

finds the first solution (see definition 2) if it exists and others by 
successive calls (see section 3.2) 
void addVariable(in v:Variable, in d:Domain) 
void removeVariable(in v:Variable) 
void addConstraint(in c:Constraint) 
void removeConstraint(in c:Constraint) 
void List<Domain> createBackupDomains() 
makes a copy of all domains (line 10 - algorithm solve) 

Table 1: CSP class description 

The Variable class describes free parameters of the 
generation problem: 

Class Variable 
Main fields 

D: Domain 
domain associated with this variable 
C: list<Constraint> 

constraints that share this variable 

Table 2: Variable class description 

The solver is able to manipulate a heterogeneous set 
of variables. That means several types of domains can be 
handled simultaneously in the resolution process. This 
permits to precisely model a wide range of complex 
generation problems (an example is presented on part 4). 
Its specificity requires the implementation of a generic 
support of domains. Such an idea has already been used; 
for example in [3] to design effective algorithms for a 2D 
isothetic2 planning application (EAAS). Note it is a much 
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more general approach than [1, 2, 9] which restrict all the 
domains to only one mathematical reference set.  

The performance of the resolution process strongly 
depends on the domains internal representation. These 
representations must take into account the following 
considerations: 
- Optimization of the ratio filtering quality / filtering 
computation time: the more a domain data structure is 
precise and in accordance with its mathematical reference 
set the more its memory cost and related filtering 
evaluation time are important. In case of continuous 
domain, combinatorial explosion due to disjunctive 
constraints (see definition 7) and domain splitting should 
be avoided by setting a lower bound for domain size. 
- Intersection and union operators should be supported to 
allow boolean combination of constraints (see section 
3.3). When using an exact representation - for example in 
the case of finite domains, the complementary operator 
should be added. 

Abstract Class Domain 
Main fields 

V: Variable 
variable associated with this domain 

Main methods 
abstract boolean isEmpty() 

returns true iff the domain is empty 
abstract List<Value> discretize() 

returns a discrete representation of the domain (a list of values) 
( line 9 – algorithm solve – see section 3.2) 
Domain createBackup() 
returns a clone of the Domain object 
static abstract Domain Inter(in d1, d2:Domain) 

computes and returns d1 ∩ d2 
static abstract Domain Union(in d1, d2:Domain) 

computes and returns d1 ∪ d2 
abstract void setSingleValue(in val:Value) 

reduce domain to a single value 

Table 3: Domain class description 

In the solver, constraints are generic. They can be 
defined according to the application. 

Abstract Class Constraint 
Main fields 

V: list<Variable> 
variables of this constraint 
RM : list<ReductionMethod> 

Main methods 
abstract boolean  
             testConsistency(in t: Assignment) 
returns true if the constraint is satisfied, false otherwise 
Assignment t is a list of pairs (variable, value) 
boolean reduceDomains() 
constraint filtering method: applies reduction methods on free 
parameters (i.e. not yet instanciated); returns false iff 
inconsistency has been detected, (at least one domain is empty) 

Table 4: Constraint class description 



A reduction method is an over-estimated projection 
function of a constraint on one of its variables (see 
definition 6). In the search process reduction methods are 
used to tighten domains. 

Abstract Class ReductionMethod 
Main fields 

C : Constraint 
outVar : Variable 
variable on which the constraint is projected 

Main methods 
abstract Domain proj() 

the projection method of C on outVar 

Table 5: ReductionMethod class description 

Requirements: let CE be a constraint on E = D1x…xDn. 
Let F a set such that F ⊆ E. We denote CF the restriction 
of the constraint CE to F. The method proj – here 
written proj(C, outVar) - must satisfy the two following 
conditions: 

(1):  ∀i∈{1..n} CE↓Vi ⊆ proj(CE,Vi) 
(2):  ∀i∈{1..n} proj(CF,Vi) ⊆ proj(CE,Vi) 

3.2. Main algorithms 

This section presents the main algorithms required by 
the solving process. 

The search algorithm, called solve, is an improved 
non-recursive backtracking algorithm using both 
constraint propagation (line 17) and generic dynamic 
heuristics (chooseVariable on line 8 and chooseValue on 
line 15). First call to solve gives the first solution of 
the CSP (see definition 2). Successive calls enumerate all 
the other solutions of the problem via Context structure. 
LocallyConsistent (line 16) checks consistency of 
partial assignments (using the method testConsistency 
of constraints). This test is necessary because of possible 
inexactness of reduction methods.  

About local consistency: in the general case the useful 
arc-consistency3 cannot be achieved in practice. It is 
replaced by a weaker local consistency that only depends 
on implemented reduction methods. 

Glossary: Context is a structure containing five stacks: 
NIVar = Non Instanciated Variables: stack of Variable 
IVar = Instanciated Variables: stack of Variable 
Sol = Solution: stack of pairs (Variable, Value) 
DDom = Discretized Domains: stack of list of Value 
Bak = Backup of domains: stack of list of Domain 

                                                           

3 A constraint c∈C is said arc-consistent iff ∀Vi∈Vc, ∀d∈Di, d is 
supported by c. A CSP is arc-consistent iff all its constraints are arc-
consistent.  

boolean solve( in p : CSP; 
               in/out c : Context ) 
Precondition: c is a valid Context structure 
Postconditions: return either true if p has a global 
solution according to c or false if there is no more 
solution (the entire search space has been explored). 

 c is a new valid context: it can be used to get next 
solution. Current solution (pairs of (var,val)) is 
returned in the field c.Sol. 

1 IF |c.NIVar| = 0 THEN getNextVar ← false 
2   ELSE getNextVar ← true 
3 globalSolutionFound ← false 
4 searchNotFinished ← true 
5 WHILE NOT globalSolutionFound  
6       AND searchNotFinished 
7 |  IF getNextVar THEN 
8 |  |  c.IVar.push(chooseVariable(c.NIVar)) 
9 |  |  c.DDom.push(c.IVar.top.D.discretize()) 
10 |  |  c.Bak.push(p.createBackupDomains()) 
11 |  |  getNextVar ← false 
12 |  localSolutionFound ← false 
13 |  WHILE |c.DDom.top()| ≠ 0      
14 |        AND NOT localSolutionFound 
15 |  |  val = chooseValue(c.DDom.top()) 
16 |  |  IF locallyConsistent(c,val) AND 
17 |  |     constraintPropagation(c,val) THEN 
18 |  |  |  localSolutionFound ← true 
19 |  |  |  c.Sol.push( {c.IVar.top(), val} ) 
20 |  |  |  BREAK   // exit while (line 13) 
21 |  |  p.restoreDomains(c.Bak.top()) 
22 |  IF localSolutionFound  
23 |    THEN IF |c.NIVar|=0  
24 |   THEN globalSolutionFound ← true 
25 |           ELSE getNextVar = true  
26 |    ELSE   // backtrack 
27 |    |  c.NIVar.push(c.IVar.pop()) 
28 |    |  c.DDom.pop() 
29 |    |  c.Bak.pop() 
30 |    |  c.Sol.pop() 
31 |    |  IF |c.IVAR| = 0  
32 |    |    THEN searchNotFinished ← false 
33 IF globalSolutionFound THEN RETURN true 
34   ELSE RETURN false   // no more solution 

Algorithm 1: solve 

Constraint propagation can be either limited to direct 
neighborhood (Forward-Checking = FC) or performed on 
the complete CSP (Real-Full-Lookahead = RFL) [8].  

boolean constraintPropagtion( 
      in c : Context; 
      in val : Value ) 
Precondition: c is a valid Context structure 
Postconditions: return false iff constraints 
propagation detects inconsistency, i.e. one domain at 
least has been emptied.  

  P is an equivalent and simpler CSP. 
1 Variable var = c.IVar.top() 
2 var.D.setSingleValue(val) 
3 FOR EACH v IN c.NIVar  
4 |  IF v ∈ Γ(var) THEN   // Γ=neighborhood 
5 |    FOR EACH cn ∈ v.C 
6 |      IF NOT cn.reduceDomains() 
7 |        RETURN false 
8 RETURN true 

Algorithm 2: constraintPropagation (FC version) 



3.3. Extension: combinations of basic 
constraints using boolean operators 

Let’s consider a set of basic constraints defined for a 
specific application. An interesting issue is: is it possible 
to combine them using boolean operators (AND, OR, NOT) 
to create meta-constraints, i.e. more complex constraints? 
In the case of homogeneous variables and extensional 
constraints the answer is positive and trivial: 
let { } nnii iivv DDEcC ××=⊂= ...

11
1...1

and C2 be two 

extensional constraints on homogeneous variables; then:  

(3):  C1 AND C2 = C1 ∩ C2 
(4):  C1 OR C2 = C1 ∪ C2 
(5):  NOT C1 = CE1C1  (complementary of C1 on E1) 

The only task consists in implementing the three 
classical set operators (∩,∪,C) on considered domains. 

Intentionally given constraints (for example, constraints 
defined by a procedural method): unlike the extensional 
previous case, classical set operators cannot be directly 
applied. However it is possible to preserve filtering by 
observing: 

(6):  (C1 AND C2) ↓Vi   =  (C1↓ Vi) ∩ (C2↓ Vi) 
(7):  (C1 OR C2) ↓ Vi   =  (C1↓ Vi) ∪ (C2↓ Vi) 
where Vi is both a variable of C1 and C2 

Hence, (1) and (2) (see section 3.1) imply: 

(8): proj (C1 AND C2, Vi) ⊆ proj (C1, Vi) ∩ proj(C2, Vi) 
(9): proj (C1 OR C2, Vi) ⊆ proj (C1, Vi) ∪ proj (C2, Vi) 

Therefore, instead of defining reduction methods for          
(C1 {AND, OR} C2), intersection and union operators can 
be implemented on concerned domains while generally 
preserving a correct filtering. 

The NOT operator is more problematic. In fact     
proj(NOT C1, Vi)  ⊆  CE1 proj(C1, Vi) cannot be used 

because when Di has been reduced – i.e. proj(C1, Vi) has 
been computed - we don’t know yet if its values can be 
extended to global solutions or not. In conclusion: 
specific reduction methods must be given to negate an 
intentional constraint. 

Heterogeneous constraints: for example if c1 and c2 are 
two unary constraints on two heterogeneous variables v1 
and v2, then evaluating proj(C1 AND C2, V1)  and     
proj(C1 AND C2, V2) consists in both computing     
proj(C1, V1) and proj(C2, V2). Because of independence 
between domains D1 and D2, the constraint (C1 OR C2) 

cannot be filtered. A new kind of domain - the cartesian 
product of D1 and D2 - should be added to perform a 
reduction. 

Note: in real applications boolean combinations of 
heterogeneous constraints can appear when handling 
combination of meta-constraints. 

4. An application: a declarative planning 
system for virtual-environments 

4.1. Overview 

This part presents a declarative modeler called 
DEM²ONS-NG4. A functionality of this application is to 
place 3D-objects – for example furniture – in a virtual 
environment according to a high-level description. Notice 
that the goal is neither to create the most efficient space 
planning system, nor to propose the most complete one; 
but only to design a generative system to illustrate solver 
capabilities.  
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Figure 2: synoptic of DEM²ONS 

As said, the underlying generation problem is a 
space-planning problem. Each 3D-object is identified 
with its local coordinate space and defined by three 
different kinds of parameters: 
- Position variable: location of the local coordinate space 

origin in the world coordinate space. A position 
variable is made up of three one-dimensional values;  

- Orientation variable: an angle in degree. Three 
orientation parameters (the three Euler angles) are used 
to orientate an object; 

-  Size variable: a one-dimensional parameter. It 
describes a dimension along an axis. Three size 
parameters are needed to define the size of a 3D-object. 

                                                           

4 DEM²ONS-NG = Declarative Multimodal Modeling System – 
Next Generation (initial version, called DEM²ONS, was partly 
developed by Kwaiter in [9]). 



Consequently to describe an object in the application, 
seven Variable objects are required: one for position, 
three for orientation and three for size.  

For 2D space planning problems, it is proven [3] that 
such a representation gives good results. Here, this idea is 
extended to 3D. Furthermore one of the most important 
differences with [3] is the ability of the system to handle 
any orientation, not only isothetic ones. Notice also that 
objects can be identified with hierarchical structures of 
bounding boxes - i.e. a set of local coordinate spaces - for 
a more accurate representation. 
 

 

O 
Y 

Z 

X 

 
Figure 3: a 3D-object identified with its local 

coordinate space 

4.2. About domains internal representation 

As parameters are heterogeneous, a different kind of 
domain is assigned to each other. 

Orientation variable domains: in this application, 
consistency tests often require a fixed orientation. So 
associated domains are represented by a finite list of 
values. 

Example: DO = { 0°; 15°; 30°; 90° } 

Size variable domains: to achieve a correct filtering even 
processing disjunctive size constraints, a list of 
independent and continuous intervals is used. 

Example: DS = { [0, 100]; [150,155]; [250;300] } 

Position variable domains: as position is a three-
dimensional parameter, the internal representation must 
describe a 3D-space. Various representations, either 
continuous or discrete can be used; for example: a list of 
polyhedra, a voxel array, an octree, a list of 3D-points, a 
set of 3D-isothetic boxes, etc. Actually a good choice is a 
trade-off between accuracy of modeling and efficiency of 
resulting reducing algorithms. As the system must hold 
both equality and inequality constraints, the chosen 
modeling is finally a voxel array coupled with a set of 
geometrical elements (like 3D-point, lines and planes). 
Voxels describe volumic space generated by inequality 
constraints while geometrical elements are used to tighten 
domain in case of equality constraints. The two 
complementary models are maintained simultaneously. In 

practice each voxel owns a list of pointers towards the 
geometrical elements that pass through it. 

 

∩ = 

a point 

Figure 4: two position domains and the resulting 
intersection (2D-orthographic projection) 

4.3. About constraints 

The application kernel is composed of a set of basic 
constraints. Some examples of significant basic 
constraints are: 
- On position parameters (pos): 

• Position-fixed (pos, value) (unary) 
- On orientation parameters (ort): 

• Orientation-fixed (ort, value) (unary) 
• Orientation-same-as (ort1, ort2) (binary) 

- On size parameters  (size): 
• Size-fixed-in (size, min, max) (unary) 
• Size-equal-to (size1, size2) (binary) 
• Size-greater-than (size1, size2, k) (binary) 

- Heterogeneous ones (obj = {pos, ort, size}): 
• Non-overlapping (obj1, obj2) (arity is 14) 

• In-fixed-half-space (obj, half-space) (arity is 7) 
Information: a half-space is defined by a 3D-plane 
that splits 3D-world space in two parts. 

• On-relative-plane (obj1.pos, plane<obj2>) 
It constrains position parameter of obj1 to be on a 
plane defined from obj2. 

Each basic constraint has a set of appropriate 
reduction methods to perform domain reduction during 
the search phase. They can be combined (see section 3.3) 
to get high-level constraints such as: 

object target spatial preposition object landmark 

Examples: obj1 on obj2; obj1 in-front-of obj2. 

5. Experimental results 

Some experimental results are presented to illustrate 
what can be expected from such a system.  

Test scene description: the scene is composed of 30 
complex geometric objects (four walls, three tables, two 
chairs, a TV, two computers, shelves, books, etc.). The 
high-level description contains meta-constraints like 
SCREEN1 is on TABLE1, dimensions of TABLE1 are 2m x 



0.7m x 0.8m, TABLE2 is against the back wall, TABLE1 is 
to the right of TABLE2, etc. 

Solver configuration is: 

Voxel size (for position parameter domains) 20 cm 
Step for position parameters 20 cm 
Step for orientation parameters 15° 
Step for size parameters 10 cm 
Size of the room (in meters) 4.4 x 3.4 x 2.5 

 
Translation of the description in the internal 
representation gives: 

Number of variables 210 
Number of basic constraints 245 

 

 

Figure 5: four views of a scene generated by the 
application that meets the description 

Time to get the first solution – the first valid scene 
according to the given constraints – is approximately 3 
seconds. In this example, there are too many solutions to 
generate them all. However, some other solutions can be 
obtained (required computation time is generally < 1 
second). 

Note:  the implementation of our application is in Java 
(JDK 1.3) / OpenGL and runs under Windows 2000 on 
a PIII600 / 256Mb. With a good implementation in C++ 
and some heuristics adjustments, computation time should 
probably be highly restricted. 

6. Conclusion and future works 

A generic constraint solver based on classical CSP 
techniques for the generation phase in declarative 
modeling has been presented in this paper. The use of 
generic constraints and heterogeneous parameters (via 
generic domains) allows the adaptation of this tool to 

various generation problems while preserving correct 
performances. 

Future works concern the improvement of existing 
generation tools, the design of new ones, and other 
aspects of declarative modeling like declarative lighting 
and shading. 
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