
 1

Abstract—The aim of declarative modeling is to help the user to

build a three-dimensional scene from a high level description. As
underlying problems are combinatorial, constraints programming
and related solving techniques are a neat and effective way to
depict and to solve such problems. In this paper we focus on
object layout in a three-dimensional environment that is usually a
consuming time and tedious task. This study is restricted to
isothetic1 objects only. In this way, it is related to classical bi-
dimensional space planning problems.

Index Terms—Declarative modeling, Constraint-based 3D-
scenes generation, constraint solver, combinatorial problems,
isothetic object layout.

I. INTRODUCTION
eclarative modeling [10] is an emergent paradigm in the
world of computer-aided design tools. A declarative

modeler allows designers to produce 2D or 3D models from a
high-level description. Unlike the imperative geometric
modeling, it does not require particular skills or a long
training. Moreover, consistency of the description can be
automatically and continuously maintained by the system.

A declarative modeler is the combination of three sub-
systems [6]: a description unit to describe the problem, a
generation unit to generate solutions and an insight unit to
visualize the results. These three main components interact in a
spiral design process to progressively converge towards the
solution.

The generation system can be considered as the kernel of
the application. Its task is to produce one or several models
that match the description given by the user. Capabilities and
performance of the application depends on the generation
phase: it is a critical stage.

In this paper we focus on this problem. This study considers
constraint-based 3D generation process but is restricted to
isothetic objects only. Our contribution is the description of an
efficient geometric constraint solver, Manhattan, able to solve
a wide range of problems. Originality of this work is to take

1 isothetic = parallel and/or orthogonal to world coordinate system

into account the 24 possible isothetic orientations of each 3D-
object.

Fig. 1: four of twenty-four possible isothetic orientations of a 3D
object. These orientations are the canonical ones for most of our 3D-
objects.

This study is a part of our federative project DEM²ONS2. At
this time our tool runs on a restricted platform (i.e. the
multimodal layer is missing) DEMONS which allows to
compare various generation approaches (see screenshots fig. 4
and 5).

This paper is organized as follows. Part II presents some
related works. Part III introduces our approach and describes
the inner architecture of our Manhattan constraint solver. In
part IV, we give first experimental results. Part V discusses on
advantages and drawbacks of our tool. We also present a
qualitative comparison of our system with related ones. Finally
part VI concludes this study.

II. RELATED WORKS
Although procedural methods [7] [18] and shape grammars

[14] [15] are used in automatic scene generation, most of the
applications lead on the constraint programming paradigm.

In constraint programming there are mainly two approaches
to deal with the object layout problem:

- stochastic approach: this efficient and flexible approach is
based on the iterative improvement [17] or metaheuristics
[16] (e.g. simulated annealing or evolutionist strategies).
However, it suffers from incompleteness;

- constructive appoach (e.g. [2] [3] [9] [12]): the solution is
built step by step. Used algorithms are determinist and
exhaustive and based on an enumeration process. This
approach has proved to be very efficient, dealing with
under-constrained problems.

2 DEM²ONS = Declarative Multimodal ModeliNg System

Constraint-Based 3D Isothetic Object Layout
for Declarative Scene Modeling

Olivier LE ROUX, Véronique GAILDRAT

Department of Computer Science IRIT
UPS, 118 route de Narbonne, 31062 Toulouse Cedex 4, France

Phone. (33) 05 61 55 83 29 Fax. (33) 05 61 55 62 58
E-mail: { leroux, gaildrat }@irit.fr

D

 2

Most of object layout and space planning applications are bi-
dimensional systems (e.g. [5] [12]). But 3D systems can also
be found [3] [9]. However, none of these applications handle
all possible 3D isothetic orientations.

Finally, tractable problem subclasses can be obtained,
admitting some restrictions on constraints [1]. In this case,
related algorithms are polynomial. Unfortunately, required
conditions are too restrictive for our class of problems.

III. OUR APPROACH: THE MANHATTAN CONSTAINT SOLVER

A. Overview
In this section we present our constraint solver called

Manhattan. This generation tool is based on the combinatorial
CSP approach (i.e. the main algorithm is a backtracking
process). To take into account the geometric specificities of
our problem we introduce a well-suited local-consistency
inspired by [5].

B. Definitions
Our generation process is based on an extended CSP
paradigm.

Definition 1: our geometric CSP P = <V, D, C> is defined
as follows:

- a finite set of 3D-boxes V = { b1,…bn } ; each box bi is
defined by 5 sub-variables:
- xyz: position of the reference point;
- o: orientation of the 3D-box (see section II.C);
- dx, dy, dz: dimension of the box along the three axis.

- a set of domains D = { D1,…Dn }, where Di is the domain
associated with bi (i.e. Di defines the only authorized
instanciation of bi).

- a set of binary constraints C = { C1,… Cn }; each c∈C is a
subset of the Cartesian product ∏ ∈ cVi iD where Vc⊂V is

the set of variables of c. Each constraint is defined
intentionally from a procedural method.

Definition 2: solution of the CSP
A solution is an assignment of a value to each variable from

its domain so as to satisfy all the constraints.

Definition 3: partial (or local) consistencies (PC)
A partial consistency is a consistent relaxation of a CSP that

can be computed in a polynomial time.

Instead of testing individually each possible configuration,

we employ a suitable partial consistency. This consistency is
based on a spatial reasoning that use the Minkowski sums and
differences over 3D-boxes. The resulting filtering algorithm is
much more efficient than classical arc-consistency [11].

Definition 3: Minkowski sum
Let A and B be two 3D isothetic boxes. The sum of A and B

is defined by:
A ⊕ B = { x + y | x ∈ A, y ∈ B } [13]

Note:
- the set A ⊕ B and A ⊕ -B are also 3D isothetic boxes.
- unlike general algorithms on complex polygon, computing

Minkowski sums on 3D-boxes is a basic and very efficient
operation (time cost is O(1)).

Definition 4: semi-geometric arc-consistency (SG-AC)
Let C be a constraint on two boxes b1 and b2 and ext(C) be

the set of authorized tuple for
{vxyz1, vo1, vdx1, vdy1, vdz1, vxyz2, vo2, vdx2, vdy2, vdz2 }.

By definition, the domains Dxyz1, Do1, Ddx1, Ddy1, Ddz1, Dxyz2,
Do2, Ddx2, Ddy2, Ddz2 are SG-AC with the constraint C if and
only if:

∀ vo1 ∈ Do1, ∀ vxyz1 ∈ Dxyz1, ∃ vdx1 ∈ Ddx1, ∃ vdy1 ∈ Ddy1, ∃
vdz1 ∈ Ddz1, ∃ vo2 ∈ Do2, ∃ vxyz2 ∈ Dxyz2, ∃ vdx2 ∈ Ddx2, ∃
vdy2 ∈ Ddy2, ∃ vdz2 ∈ Ddz2 such that
(vxyz1, vdx1, vdy1, vdz1, vo1, vxyz2, vdx2, vdy2, vdz2, vo2) ∈ ext(C)

and
{∀ vo1 ∈ Do1, ∀ vdx1 ∈ Ddx1, ∃ vxyz1 ∈ Dxyz1, ∃ vdy1 ∈ Ddy1,
∃ vdz1 ∈ Ddz1, ∃ vo2 ∈ Do2, ∃ vxyz2 ∈ Dxyz2, ∃ vdx2 ∈ Ddx2, ∃
vdy2 ∈ Ddy2, ∃ vdz2 ∈ Ddz2 such that
(vxyz1, vdx1, vdy1, vdz1, vo1, vxyz2, vdx2, vdy2, vdz2, vo2) ∈ ext(C)
(resp. v dy1 and v dz1)}

Informally speaking, this definition indicates that a

compatible configuration for the two boxes can be found
according to C.

Note: the original definition given in [5] has been extended

to 3D but restricted to binary constraints. It can easily be
extended to any n-ary constraints.

Proposition 1: let P be a geometric CSP; by definition of
SG-AC, the following proposition holds:

ΦSG-AC(P) ≤ ΦAC (P)
where ΦPC(P) is the closure by partial consistency of P.

C. Data structures
A specific data structure is associated to each kind of

variable:
- dimension parameter: a disjunctive union (sorted in an

ordered linked-list) of 1D-intervals;
- position parameter: a disjunctive union (a linked-list) of

isothetic 3D-boxes;
- orientation parameter: a 24 values bit-field; each bit shows

if the associated orientation is allowed. Most of the time,
only the 4 orientations around the Z-axis are considered.

See appendix for algorithms and illustrations of these
structures.

D. Kernel of the solver
The search algorithm is based on a classical backtracking

algorithm completed with SG-AC filtering and dynamic
heuristics. Both forward-checking (FC) and real-full lookahead
(RFL) have been implemented.

 3

E. The constraints

The system is able to handle several kinds of constraints (see
example 2 in section IV) including:

- dimensional constraints: size of an object along one axis,
relative sizes of two objects, etc;

- topological constraints: adjacency, non-overlapping, etc;
- constraints over orientation: the 24 initial possible

orientations can be reduced using either unary constraints
or binary constraints, linking the orientation of two
objects.

A specific filtering method is defined for each constraint

(see example on fig. 2 and 3).

dxmin

dymin

dymin

dxmin

P

R

 R must not overlap this zone

 the result = domain of R (i.e. possible location for P)

 gap, due to discretization of the world

 rectangle to be placed (R) ; P is the reference point

Fig. 2: Authorized positions for P (i.e. the pair (R.x, R.y)) after
application of the non-overlapping constraint between R and the gray
zone. In 2D, the resulting domain generates 0 to 4 zones. This
illustration is inspired by [5].

F. Improvements
Symmetries: most of objects own one or several planar

symmetries. Taking into account such symmetries allows
pruning of similar branches into search trees to avoid
redundant computation.

Scene realism: to avoid compacted scenes generation, we

replace the classical ordered enumeration technique by a
stochastic enumeration. Nevertheless, the used stochastic
technique preserves exhaustivity.

Fig. 3: Extended to 3D, our reduction algorithm for the non-
overlapping constraint generates 0 (in case of inconsistency) to 6
boxes. A position domain is represented using a disjunctive union of
boxes. On the above picture, the blue box must not overlap the gray
one: the resulting domain is composed of 4 boxes.

Fig. 4: screenshot #1 of our experimentation platform DEMONS -
3D-objects manager: it allows the import of 3D objects from others
applications and the definition of canonical parameters for each
object (including dimension, orientation, planes and axis of
symmetry, etc.)

 4

Fig. 5: screenshot #2 of our experimentation platform DEMONS - a
Manhattan view (4 objects in a discretized world). Final scenes can
be exported into the VRML format.

IV. FIRST EXPERIMENTAL RESULTS
Our experimentation platform, DEMONS, is developed in

Java. All tests are performed on a PC Athlon 2Ghz / 256 Mb
using Java JDK 1.4.1 (option–server).

Example1: the nine perfect squares problem.

Fig. 6: the first solution found to the 9 perfect squares problem (in
~0.45 seconds). The goal is to place 9 squares (1x1, 4x4, 7x7, 8x8,
9x9, 10x10, 14x14, 15x15, 18x18) in a 33x32 world. As this problem
is well-constrained (there are only 4 solutions), it is hard to solve: it
corresponds to a peak of complexity also called the transition phase.
To solve this 2D problem with our tool, we fix the dimension along
z-axis and we restrict possible orientations to only one value. The
classical bigger first heuristic has been used.

Example2: a simple 3D scene example.

/* Script Manhattan 1.0 – by OLR, 01/2003 */
/* Scene: outside */

createWorld “theWorld” 180 180 100 5 5 5

/* Add objects to the scene */
/* Templates are extracted from our object database */
/* Syntax: add [#instance] “name” instanceOf “template” */

/* Generates tree0, tree1, ... tree9 */
add 5 “tl1” instanceOf "templateTree1"
add 5 “tl2” instanceOf "templateTree2"
add 10 “tl3” instanceOf "templateTree3"
add 3 “tr1” instanceOf "templateTree1"
add 2 “tr2” instanceOf "templateTree3"
add “theRoad” instanceOf "templateRoad"
add “theCar” instanceOf "templateCar"
add “theEagle” instanceOf "templateEagle"

/* Apply constraints */
/* Note: dimensions are extracted from the database */
/* Syntax: apply constraint arg1...argn to obj1... objn */
apply in “theWorld” to all
apply orientationAroundZOnly to all
apply orientationAroundZEqual 0 to “theCar” “theEagle”
apply setXYZ 0 50 0 to “theRoad”
apply setZ 0 to “tl1” “tl2” “tl3” “tr1” “tr2”
apply on “theRoad” to “theCar”
apply above “theRoad” to “theEagle”
apply nonOverlapping to “theCar” “theEagle”
apply onTheLeft “theRoad’ to “tl1” “tl2” “tl3”
apply onTheRight “theRoad’ to “tr1” “tr2”
apply nonOverlapping to “tl1” “tl2” “tl3”
apply nonOverlapping to “tr1” “tr2”

The scripted description corresponding to the following scene.

road
car

ground

eagle

trees

trees

Fig. 7: orthographic projection of a resulting scene. This scene
contains 28 objects. Each object can take one of the four possible
isothetic orientations around the Z-axis; in the above scheme the dark
gray arrows symbolize orientations. To improve the realism of the
result, our stochastic enumeration heuristic is used. Computation
time: ~10 seconds. Note that the problem is widely under-
constrained.

 5

Fig. 8: The same scene after rendering (exported to VRML then ray-
traced after some minor improvements including texturing and
skydome).

V. DISCUSSION
By now, there are no standardized benchmarks for

comparing 3D isothetic layout problems. Although our solver
can deal with 2D space planning problems (see fig. 6), it has
not been specially designed for this task. For these reasons
Table1 (see below) proposes a qualitative comparison with
others related works.

In the following of this section we give a summary of the
main advantages and drawbacks of our tool.

Advantages:
- most of the descriptions entail under-constrained CSP

which are easy to solve (i.e. a first solution can be
produced in a short time);

- global convergence is guaranteed (i.e. the algorithm is
exhaustive and sound);

- all the solutions can be generated;
- if there is no solution, inconsistency of the description can

be proved;
- scenes that look realistic can be produced using a

stochastic enumeration technique instead of classical
sorted enumeration.

Drawbacks:
- computation time cannot be foreseen. Some problems can

be very time consuming;
- in the worst case, the time complexity is exponential;
- at this time, the system cannot deals with over-constrained

problems;
- Manhattan is not designed for pure space planning

problems. Many applications are more suited for this kind
of problems (e.g. ARCHiPLAN [12]).

Project EAAS DEM²ONS
ORANOS

MultiFormes
4 ARCHiPLAN DEMONS GA DEMONS

Manhattan
Year 1993-1995 1997-1998 1999 2001 2003 2003

Main reference [5] [9] [3] [12] [16] This paper
Approach constructive constructive constructive constructive iterative constructive
Is result

guaranteed? YES NO
(discretization) YES YES NO

(stochastic) YES

Objects / degrees
of freedom

2D
rectangles

4

3D
boxes

9

3D
 boxes

6

2D
rectangles

4

3D
 boxes

7

3D
 boxes

5

Orientation 0° or 90° the 24 isothetic
orientations 1 0° or 90° any around the

Z-axis
the 24 isothetic

orientations
Hierarchical
constraints NO YES NO NO YES NO

Algorithm

S-CSP
FC or RFL

+
CBJ

(optional)
+

filtering
SG-AC

(derived from
AC3)

+
dynamic
heuristic

(FFP based)

DHN-CSP
dynamic and
hierarchical
numerical

pre-filtering
+

incremental
FC or RFL

+
dynamic
heuristic

(FFP based)

CSP
incremental
FC or PL

(multi-process)
+
BJ
+

AC5-filtering
+

dynamic
heuristic

(FFP based)

Branch and
bound

(optimization)

+
dynamic

space ordering
heuristic

(dso)

GA

About 300
individuals

domain pre-

filtering
+

classical
genetic

algorithm

S-CSP
FC or RFL

+
filtering

SG-AC 3D
(derived from

AC3)
+

dynamic
heuristic

(FFP based)
+

stochastic
enumeration

CSP=Constraint Satisfaction Problem; S=Spatial; DHN=Dynamic Hierarchical Numerical; BT=Backtracking; FC=Forward Checking; RFL=Real-
Full-Lookahead; PL=Partial Lookahead; BJ=Backjumping; CBJ=Conflict directed Backjumping; FFP=Fail First Principle; AC = Arc Consistency.

Table 1: qualitative comparison of our solver with related systems

 6

VI. CONCLUSION AND FUTURE WORKS
In this paper we have presented a combinatorial approach so

as to solve the constraint-based 3D isothetic object layout
problem. The resulting solver, Manhattan, can be used as an
efficient generation tool for declarative modeling.

First results are promising, nevertheless many improvements
are necessary to get a more convenient system. For example:
- add new geometric constraints;
- make the algorithm incremental in order to improve

performances;
- add functional and semantic aspects;
- handle sub-parts of objects to take into account their

functionalities;
- etc.

Fig. 9: three subparts - still isothetic boxes - are defined on this
wheelchair: the sitting, the back and legs. Using a hierarchy of sub-
objects will allow a better representation and a more accurate
description.

APPENDIX
In this section we give the basic geometric algorithms

required to implement the solver:

Fig. 10: geometric union and intersection of UI objects (disjunctive
Union of Intervals). Possible dimensions of 3D-objects are
represented using an UI along each axis.

// UI = Union of Intervals = an ordered list of intervals
// Computes and returns intersection between two union of intervals, O(n).
// Returns Ddx ∩ Ddy or EMPTY if the two UI are separated.

intersection (in UI Ddx, in UI Ddy) return UI {
 if (empty(Ddx) || empty(Ddy)) return EMPTY;

 Iterator itx = iterator(Ddx);
 Iterator ity = iterator(Ddy);
 Interval a = next(itx);
 Interval b = next(ity);
 UI result; // create a new instance of UI
 while (true) {
 if (lo(b) < lo(a)) // compare low bound

 exchange a↔b and itx↔ity
 if (hi(a) < lo(b)) {
 if (!hasNext(itx)) break;
 a = next(itx);
 continue;
 }
 if (hi(b) < hi(a)) {
 addLast(res, b);
 if (!hasNext(ity)) break;
 b = next(ity);
 continue;
 }
 addLast(res, makeInterval(lo(b), hi(a));
 if (!hasNext(itx)) break;
 a = next(itx);
 }
 return result;

}

Algorithm. 1: the algorithm used to intersect two dimension domains
(represented by a disjunctive UI = union of intervals). The union and
difference operators on UI are similar functions (see fig. 10).

// UB = disjunctive Union of 3D-Boxes = a list of boxes
// A box is represented by a reference point (x, y, z) and its
// dimension (dx, dy, dz)
// Computes and returns intersection between two disjunctive
// unions of boxes ; O(n²).
// Returns Dxyz1 ∩ Dxyz2 or EMPTY if the two UB are separated.

intersection (in UB Dxyz1, in UB Dxyz2) return UB {
 if (empty(Dxyz1) || empty(Dxyz2)) return EMPTY;

 Iterator it1 = iterator(Dxyz1);
 UB result; // create a new instance of UB
 while (hasNext(it1)) {
 Box a = next(it1);
 Iterator it2 = iterator(Dxyz2);
 while (hasNext(it2)) {
 Box b = next(it2);
 Box r = intersection(a, b);
 if (!empty(r))
 result.addLast(r);

 }
 }

 return result;
}

 7

// Computes and returns difference between two disjunctive
// unions of boxes ; O(n²).
// W is the bounding box of the world.
// Returns Dxyz1 - Dxyz2 or EMPTY if the two UB are separated.

difference (in UB Dxyz1, in UB Dxyz2,
 in Box w, in float gap) return UB {
 if (empty(Dxyz1) || empty(Dxyz2)) return EMPTY;

 Iterator it1 = iterator(Dxyz1);
 UB result; // create a new instance of UB
 while (hasNext(it1)) {
 Box a = next(it1);
 List tmpList;
 Iterator it2 = iterator(Dxyz2);
 while (hasNext(it2)) {
 Box b = next(it2);
 List r = difference(a, b, w, gap);
 if (!empty(r))
 list.add (r);

 }
 result.addAll(tmpList);
 }

 return result;
}
Algorithm. 2, 3: the algorithms used to compute intersection and
difference between two position domains (represented by a separated
UB = union of 3D-boxes) (see fig. 11).

Note: the difference operator between two 3D-boxes is
implemented as follows:

B1 – B2 = B1 ∩ Complement(B2, world)

To preserve separation of every box, the union operator is
defined from the difference by:

A ∪∪∪∪ B = A ∪ (A – B)
where ∪ consists in merging the two lists of boxes.

Fig. 11: orthographic projections (i.e. 2D representation) of
geometric union, intersection and difference of UB objects
(disjunctive Union of 3D-Boxes).

REFERENCES
[1] P. Balbiani, J-F. Condotta, L. Farinas del Cerro, “A new

tractable subclass of the rectangle algebra”, IVCAI'99,
1999.

[2] C. Baykan, M. Fox, “Constraint Satisfaction Techniques
for Spatial Planning”, in Intelligent CAD Systems III,
Practical Experience and Evaluation, 1991.

[3] P-F Bonnefoi, D. Plemenos, “Object Oriented Constraint
Satisfaction for Hierarchical Declarative Scene
Modeling”, WSCG'99, Plzen, Czech Republic, February
2-12, 1999.

[4] P. Charman, “Solving Space Planning Problems using
Constraint Technology”, Technical report CS 57/93,
Institute of Cybernetics - Estonian Academy of Sciences,
1993.

[5] P. Charman, “Gestion de contraintes géométriques pour
l'aide à l'aménagement spatial”, PhD, Ecole Nationale
des Ponts et Chaussées. November 1995.

[6] C. Colin, E. Desmontils, J.Y. Martin, J.P. Mounier,
“Working Modes with a Declarative Modeler”,
Compugraphics'97, pp. 117-126, 1997.

[7] B. Coyne, R. Sproat, “WordsEye: an automatic text-to-
scene conversion system”, SIGGRAPH 2001.

[8] C. Eastman, “Automated space planning”, Artificial
Intelligence 4, pp. 41-64, 1973.

[9] G. Kwaiter, V. Gaildrat, R. Caubet, “DEM²ONS: A High
Level Declarative Modeler for 3D Graphics
Applications”, in Proceedings of the International
Conference on Imaging Science Systems and Technology,
CISST’97, pp. 149-154, Las Vegas, June 30-July 3, 1997.

[10] M. Lucas, D. Martin, P. Martin, D. Plemenos, “Le projet
ExploFormes, quelques pas vers la modélisation
déclarative de formes”, Journées Groplan, 1989.

[11] A. K. Mackworth, “Consistency in Networks of
Relations”, Artificial intelligence, Vol. 8 (1), pp. 99-118,
1977.

[12] B. Medjdoub, B. Yannou, “Dynamic space ordering at a
topological level in space planning”, Artificial
intelligence in engineering, Vol 15, pp. 47-60, 2001.

[13] J. O’Rourke, “Computational Geometry in C”, Cambridge
University Press, 2nd edition, 1998.

[14] Y. Parish, P. Müller, "Procedural modeling of cities",
SIGGRAPH'01, Los Angeles, pp. 301-308, August 2001.

[15] A. Rau-Chaplin, B. MacKay-Lyons, P. Spierenburg, "The
LaHave House Project: Towards an automated
architectural design service", Cadex'96, pp. 24-31,
September 1996.

[16] S. Sanchez, O. Le Roux, H. Luga, V. Gaildrat,
“Constraint-Based 3D-Object Layout using a Genetic
Algorithm”, in 3IA’03, Limoges, France, 2003.
Submitted.

[17] K. Shahookar, P. Mazumder, “VLSI Cell Placement
Techniques”, ACM Computing Surveys, Vol. 23, No. 2,
June 1991.

[18] K. Xu, J. Stewart, E. Fiume, “Constraint-based Automatic
Placement for Scene Composition”, Graphics Interface
2002.

