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Abstract—The aim of declarative modeling is to help the user to 

build a three-dimensional scene from a high level description. As 
underlying problems are combinatorial, constraints programming 
and related solving techniques are a neat and effective way to 
depict and to solve such problems. In this paper we focus on 
object layout in a three-dimensional environment that is usually a 
consuming time and tedious task. This study is restricted to 
isothetic1 objects only. In this way, it is related to classical bi-
dimensional space planning problems. 
 

Index Terms—Declarative modeling, Constraint-based 3D-
scenes generation, constraint solver, combinatorial problems, 
isothetic object layout. 

I. INTRODUCTION 
eclarative modeling [10] is an emergent paradigm in the 
world of computer-aided design tools. A declarative 

modeler allows designers to produce 2D or 3D models from a 
high-level description. Unlike the imperative geometric 
modeling, it does not require particular skills or a long 
training. Moreover, consistency of the description can be 
automatically and continuously maintained by the system.  

A declarative modeler is the combination of three sub-
systems [6]: a description unit to describe the problem, a 
generation unit to generate solutions and an insight unit to 
visualize the results. These three main components interact in a 
spiral design process to progressively converge towards the 
solution. 

The generation system can be considered as the kernel of 
the application. Its task is to produce one or several models 
that match the description given by the user. Capabilities and 
performance of the application depends on the generation 
phase: it is a critical stage. 

In this paper we focus on this problem. This study considers 
constraint-based 3D generation process but is restricted to 
isothetic objects only. Our contribution is the description of an 
efficient geometric constraint solver, Manhattan, able to solve 
a wide range of problems. Originality of this work is to take 

 
 

1 isothetic = parallel and/or orthogonal to world coordinate system 

into account the 24 possible isothetic orientations of each 3D-
object.  

 
  

 

 

 

 

  
Fig. 1: four of twenty-four possible isothetic orientations of a 3D 
object. These orientations are the canonical ones for most of our 3D-
objects. 
 

This study is a part of our federative project DEM²ONS2. At 
this time our tool runs on a restricted platform (i.e. the 
multimodal layer is missing) DEMONS which allows to 
compare various generation approaches (see screenshots fig. 4 
and 5). 

This paper is organized as follows. Part II presents some 
related works. Part III introduces our approach and describes 
the inner architecture of our Manhattan constraint solver. In 
part IV, we give first experimental results. Part V discusses on 
advantages and drawbacks of our tool. We also present a 
qualitative comparison of our system with related ones. Finally 
part VI concludes this study. 

II. RELATED WORKS  
Although procedural methods [7] [18] and shape grammars 

[14] [15] are used in automatic scene generation, most of the 
applications lead on the constraint programming paradigm. 

In constraint programming there are mainly two approaches 
to deal with the object layout problem: 

- stochastic approach: this efficient and flexible approach is 
based on the iterative improvement [17] or metaheuristics  
[16] (e.g. simulated annealing or evolutionist strategies). 
However, it suffers from incompleteness; 

- constructive appoach (e.g. [2] [3] [9] [12]): the solution is 
built step by step. Used algorithms are determinist and 
exhaustive and based on an enumeration process. This 
approach has proved to be very efficient, dealing with 
under-constrained problems. 

 
2 DEM²ONS = Declarative Multimodal ModeliNg System 
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Most of object layout and space planning applications are bi-
dimensional systems (e.g. [5] [12]). But 3D systems can also 
be found [3] [9]. However, none of these applications handle 
all possible 3D isothetic orientations. 

Finally, tractable problem subclasses can be obtained, 
admitting some restrictions on constraints [1].  In this case, 
related algorithms are polynomial. Unfortunately, required 
conditions are too restrictive for our class of problems. 

III. OUR APPROACH: THE MANHATTAN CONSTAINT SOLVER 

A. Overview 
In this section we present our constraint solver called 

Manhattan. This generation tool is based on the combinatorial 
CSP approach (i.e. the main algorithm is a backtracking 
process). To take into account the geometric specificities of 
our problem we introduce a well-suited local-consistency 
inspired by [5]. 

B. Definitions 
Our generation process is based on an extended CSP 
paradigm. 
 

Definition 1: our geometric CSP P =  <V, D, C> is defined 
as follows: 

- a finite set of 3D-boxes V = { b1,…bn } ; each box bi is 
defined by 5 sub-variables: 
- xyz: position of the reference point; 
- o: orientation of the 3D-box (see section II.C); 
- dx, dy, dz: dimension of the box along the three axis. 

- a set of domains D = { D1,…Dn }, where Di is the domain 
associated with bi (i.e. Di defines the only authorized 
instanciation of bi).  

- a set of binary constraints C = { C1,… Cn }; each c∈C is a 
subset of the Cartesian product ∏ ∈ cVi iD  where Vc⊂V is 

the set of variables of c. Each constraint is defined 
intentionally from a procedural method. 

 
Definition 2: solution of the CSP 
A solution is an assignment of a value to each variable from 

its domain so as to satisfy all the constraints. 
 
Definition 3: partial (or local) consistencies (PC) 
A partial consistency is a consistent relaxation of a CSP that 

can be computed in a polynomial time. 
 
Instead of testing individually each possible configuration, 

we employ a suitable partial consistency. This consistency is 
based on a spatial reasoning that use the Minkowski sums and 
differences over 3D-boxes. The resulting filtering algorithm is 
much more efficient than classical arc-consistency [11]. 

 
Definition 3: Minkowski sum 
Let A and B be two 3D isothetic boxes. The sum of A and B 

is defined by: 
A  ⊕  B = { x + y | x ∈ A,  y ∈ B } [13] 

Note:   
- the set A  ⊕  B and A  ⊕  -B are also 3D isothetic boxes. 
- unlike general algorithms on complex polygon, computing 

Minkowski sums on 3D-boxes is a basic and very efficient 
operation (time cost is O(1)). 

 
Definition 4: semi-geometric arc-consistency (SG-AC) 
Let C be a constraint on two boxes b1 and b2 and ext(C) be 

the set of authorized tuple for 
{vxyz1, vo1, vdx1, vdy1, vdz1, vxyz2, vo2, vdx2, vdy2, vdz2 }. 

By definition, the domains Dxyz1, Do1, Ddx1, Ddy1, Ddz1, Dxyz2, 
Do2, Ddx2, Ddy2, Ddz2 are SG-AC with the constraint C if and 
only if: 

∀ vo1 ∈ Do1, ∀ vxyz1 ∈ Dxyz1, ∃ vdx1 ∈ Ddx1, ∃ vdy1 ∈ Ddy1, ∃ 
vdz1 ∈ Ddz1, ∃ vo2 ∈ Do2, ∃ vxyz2 ∈ Dxyz2, ∃ vdx2 ∈ Ddx2, ∃ 
vdy2 ∈ Ddy2, ∃ vdz2 ∈ Ddz2  such that 
(vxyz1, vdx1, vdy1, vdz1, vo1, vxyz2, vdx2, vdy2, vdz2, vo2) ∈ ext(C)  

and 
{∀ vo1 ∈ Do1, ∀ vdx1 ∈ Ddx1, ∃ vxyz1 ∈ Dxyz1, ∃ vdy1 ∈ Ddy1, 
∃ vdz1 ∈ Ddz1, ∃ vo2 ∈ Do2, ∃ vxyz2 ∈ Dxyz2, ∃ vdx2 ∈ Ddx2, ∃ 
vdy2 ∈ Ddy2, ∃ vdz2 ∈ Ddz2  such that  
(vxyz1, vdx1, vdy1, vdz1, vo1, vxyz2, vdx2, vdy2, vdz2, vo2) ∈ ext(C) 
(resp. v dy1 and v dz1)}  

 
Informally speaking, this definition indicates that a 

compatible configuration for the two boxes can be found 
according to C. 

 
Note: the original definition given in [5] has been extended 

to 3D but restricted to binary constraints. It can easily be 
extended to any n-ary constraints. 
 

Proposition 1: let P be a geometric CSP; by definition of 
SG-AC, the following proposition holds: 

ΦSG-AC(P)  ≤  ΦAC (P) 
where ΦPC(P) is the closure by partial consistency of P. 

C. Data structures 
A specific data structure is associated to each kind of 

variable: 
- dimension parameter: a disjunctive union (sorted in an 

ordered linked-list) of 1D-intervals;  
- position parameter: a disjunctive union (a linked-list) of  

isothetic 3D-boxes; 
- orientation parameter: a 24 values bit-field; each bit shows 

if the associated orientation is allowed. Most of the time, 
only the 4 orientations around the Z-axis are considered.   

See appendix for algorithms and illustrations of these 
structures. 

D. Kernel of the solver 
The search algorithm is based on a classical backtracking 

algorithm completed with SG-AC filtering and dynamic 
heuristics. Both forward-checking (FC) and real-full lookahead 
(RFL) have been implemented. 
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E. The constraints 
 

The system is able to handle several kinds of constraints  (see 
example 2 in section IV) including: 

- dimensional constraints: size of an object along one axis, 
relative sizes of two objects, etc; 

- topological constraints: adjacency, non-overlapping, etc; 
- constraints over orientation: the 24 initial possible 

orientations can be reduced using either unary constraints 
or binary constraints, linking the orientation of two 
objects. 

 
A specific filtering method is defined for each constraint 

(see example on fig. 2 and 3).  
 
 

dxmin 

dymin 

dymin 

dxmin 

P 

R 

 
 

  R must not overlap this zone 

  the result = domain of R (i.e. possible location for P) 

  gap, due to discretization of the world 

  rectangle to be placed (R) ; P is the reference point 

 
Fig. 2: Authorized positions for P (i.e. the pair (R.x, R.y)) after 
application of the non-overlapping constraint between R and the gray 
zone. In 2D, the resulting domain generates 0 to 4 zones. This 
illustration is inspired by [5]. 
 

F. Improvements 
Symmetries: most of objects own one or several planar 

symmetries. Taking into account such symmetries allows 
pruning of similar branches into search trees to avoid 
redundant computation. 

 
Scene realism: to avoid compacted scenes generation, we 

replace the classical ordered enumeration technique by a 
stochastic enumeration. Nevertheless, the used stochastic 
technique preserves exhaustivity. 
 

 
Fig. 3: Extended to 3D, our reduction algorithm for the non-
overlapping constraint generates 0 (in case of inconsistency) to 6 
boxes. A position domain is represented using a disjunctive union of 
boxes. On the above picture, the blue box must not overlap the gray 
one: the resulting domain is composed of 4 boxes. 

 

 
Fig. 4: screenshot #1 of our experimentation platform DEMONS - 
3D-objects manager: it allows the import of 3D objects from others 
applications and the definition of canonical parameters for each 
object (including dimension, orientation, planes and axis of 
symmetry, etc.) 
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Fig. 5: screenshot #2 of our experimentation platform DEMONS - a 
Manhattan view (4 objects in a discretized world). Final scenes can 
be exported into the VRML format. 

IV. FIRST EXPERIMENTAL RESULTS 
Our experimentation platform, DEMONS, is developed in 

Java. All tests are performed on a PC Athlon 2Ghz / 256 Mb 
using Java JDK 1.4.1 (option–server). 

 
Example1: the nine perfect squares problem. 

 

 
Fig. 6: the first solution found to the 9 perfect squares problem (in 
~0.45 seconds). The goal is to place 9 squares (1x1, 4x4, 7x7, 8x8, 
9x9, 10x10, 14x14, 15x15, 18x18) in a 33x32 world. As this problem 
is well-constrained (there are only 4 solutions), it is hard to solve: it 
corresponds to a peak  of complexity also called the transition phase. 
To solve this 2D problem with our tool, we fix the dimension along 
z-axis and we restrict possible orientations to only one value. The 
classical bigger first heuristic has been used. 
 

Example2: a simple 3D scene example. 
 

/* Script Manhattan 1.0 – by OLR, 01/2003 */ 
/* Scene: outside */ 
 

createWorld “theWorld” 180 180 100 5 5 5 
 

/* Add objects to the scene */ 
/* Templates are extracted from our object database */ 
/* Syntax: add [#instance] “name” instanceOf “template” */
 

/* Generates tree0, tree1, ... tree9 */ 
add 5 “tl1”  instanceOf "templateTree1"   
add 5 “tl2”  instanceOf "templateTree2"   
add 10 “tl3”  instanceOf "templateTree3"   
add 3 “tr1”  instanceOf "templateTree1"   
add 2 “tr2”  instanceOf "templateTree3"   
add “theRoad”  instanceOf "templateRoad"   
add “theCar”  instanceOf "templateCar"   
add “theEagle”  instanceOf "templateEagle"   
 

/* Apply constraints */ 
/* Note: dimensions are extracted from the database */ 
/* Syntax: apply constraint arg1...argn to obj1... objn */ 
apply in “theWorld” to all 
apply orientationAroundZOnly to all 
apply orientationAroundZEqual 0 to “theCar” “theEagle” 
apply setXYZ 0 50 0 to “theRoad” 
apply setZ 0 to “tl1” “tl2” “tl3” “tr1” “tr2”  
apply on “theRoad” to “theCar” 
apply above “theRoad” to “theEagle” 
apply nonOverlapping to “theCar” “theEagle” 
apply onTheLeft “theRoad’ to “tl1” “tl2” “tl3” 
apply onTheRight “theRoad’ to “tr1” “tr2” 
apply nonOverlapping to “tl1” “tl2” “tl3”  
apply nonOverlapping to “tr1” “tr2”  

The scripted description corresponding to the following scene. 
 

 

road 
car 

ground 

eagle 

trees 

trees 
 

Fig. 7: orthographic projection of a resulting scene. This scene 
contains 28 objects. Each object can take one of the four possible 
isothetic orientations around the Z-axis; in the above scheme the dark 
gray arrows symbolize orientations. To improve the realism of the 
result, our stochastic enumeration heuristic is used. Computation 
time: ~10 seconds. Note that the problem is widely under-
constrained. 
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Fig. 8: The same scene after rendering (exported to VRML then ray-
traced after some minor improvements including texturing and 
skydome). 

V. DISCUSSION 
By now, there are no standardized benchmarks for 

comparing 3D isothetic layout problems. Although our solver 
can deal with 2D space planning problems (see fig. 6), it has 
not been specially designed for this task. For these reasons 
Table1 (see below) proposes a qualitative comparison with 
others related works. 
 

In the following of this section we give a summary of the 
main advantages and drawbacks of our tool. 

Advantages: 
- most of the descriptions entail under-constrained CSP 

which are easy to solve (i.e. a first solution can be 
produced in a short time); 

- global convergence is guaranteed (i.e. the algorithm is 
exhaustive and sound); 

- all the solutions can be generated; 
- if there is no solution, inconsistency of the description can 

be proved; 
- scenes that look realistic can be produced using a 

stochastic enumeration technique instead of classical 
sorted enumeration. 

Drawbacks: 
- computation time cannot be foreseen. Some problems can 

be very time consuming; 
- in the worst case, the time complexity  is exponential; 
- at this time, the system cannot deals with over-constrained 

problems; 
- Manhattan is not designed for pure space planning 

problems. Many applications are more suited for this kind 
of problems (e.g. ARCHiPLAN [12]). 

Project EAAS DEM²ONS 
ORANOS 

MultiFormes 
4 ARCHiPLAN DEMONS GA DEMONS 

Manhattan 
Year 1993-1995 1997-1998 1999 2001 2003 2003 

Main reference [5] [9] [3] [12] [16] This paper 
Approach constructive constructive constructive constructive iterative constructive 
Is result 

guaranteed? YES NO 
(discretization) YES YES NO 

(stochastic) YES 

Objects / degrees 
of freedom 

2D 
rectangles 

4 

3D 
boxes 

9 

3D 
 boxes 

6 

2D 
rectangles 

4 

3D 
 boxes 

7 

3D 
 boxes 

5 

Orientation 0° or 90° the 24 isothetic 
orientations 1 0° or 90° any around the 

Z-axis 
the 24 isothetic 

orientations 
Hierarchical 
constraints NO YES NO NO YES NO 

Algorithm 

S-CSP 
FC or RFL 

+ 
CBJ 

(optional) 
+ 

filtering 
SG-AC 

(derived from 
AC3) 

+ 
dynamic 
heuristic 

(FFP based) 

DHN-CSP 
dynamic and 
hierarchical 
numerical 

pre-filtering 
+ 

incremental 
FC or RFL 

+ 
dynamic 
heuristic 

(FFP based) 
 

CSP 
incremental 
FC or PL 

(multi-process) 
+ 
BJ 
+ 

AC5-filtering 
+ 

dynamic 
heuristic 

(FFP based) 

Branch and 
bound 

(optimization) 
 

+ 
dynamic 

space ordering 
heuristic 

(dso) 

GA 
 

About 300 
individuals 

 
domain pre-

filtering 
+ 

classical 
genetic 

algorithm 
 

S-CSP 
FC or RFL 

+ 
filtering 

SG-AC 3D 
(derived from 

AC3) 
+ 

dynamic 
heuristic 

(FFP based) 
+ 

stochastic 
enumeration 

CSP=Constraint Satisfaction Problem; S=Spatial; DHN=Dynamic Hierarchical Numerical; BT=Backtracking; FC=Forward Checking; RFL=Real-
Full-Lookahead; PL=Partial Lookahead;  BJ=Backjumping; CBJ=Conflict directed Backjumping; FFP=Fail First Principle; AC = Arc Consistency. 

Table 1: qualitative comparison of our solver with related systems 
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VI. CONCLUSION  AND FUTURE WORKS 
In this paper we have presented a combinatorial approach so 

as to solve the constraint-based 3D isothetic object layout 
problem. The resulting solver, Manhattan, can be used as an 
efficient generation tool for declarative modeling.  

First results are promising, nevertheless many improvements 
are necessary to get a  more convenient system. For example: 
- add new geometric constraints;  
- make the algorithm incremental in order to improve 

performances; 
- add functional and semantic aspects; 
- handle sub-parts of objects to take into account their 

functionalities; 
- etc. 
 

 

 
Fig. 9: three subparts - still isothetic boxes - are defined on this 
wheelchair: the sitting, the back and legs. Using a hierarchy of sub-
objects will allow a better representation and a more accurate 
description. 

APPENDIX 
In this section we give the basic geometric algorithms 

required to implement the solver: 
 

 
Fig. 10: geometric union and intersection of UI objects (disjunctive 
Union of Intervals). Possible dimensions of 3D-objects are 
represented using an UI along each axis. 

 

// UI = Union of Intervals = an ordered list of intervals 
// Computes and returns intersection between two union of intervals, O(n). 
// Returns Ddx ∩ Ddy or EMPTY if  the two UI are separated. 
 

intersection ( in UI Ddx, in UI Ddy ) return UI { 
    if (empty(Ddx) || empty(Ddy)) return EMPTY; 

  Iterator itx = iterator( Ddx ); 
  Iterator ity = iterator( Ddy ); 
  Interval a = next( itx ); 
  Interval b = next( ity ); 
  UI result;    // create a new instance of UI 
  while (true) { 
      if (lo(b) < lo(a))    // compare low bound

            exchange a↔b and itx↔ity 
      if (hi( a ) < lo( b )) { 
          if (!hasNext( itx )) break; 
          a = next( itx ); 
          continue; 
      } 
      if (hi( b ) < hi( a )) { 
          addLast( res, b ); 
          if (!hasNext( ity )) break; 
          b = next( ity ); 
          continue; 
      } 
      addLast(res, makeInterval(lo(b), hi(a)); 
      if (!hasNext( itx )) break;  
      a = next( itx ); 
  } 
  return result; 

}

Algorithm. 1: the algorithm used to intersect two dimension domains 
(represented by a disjunctive UI = union of intervals). The union and 
difference operators on UI are similar functions (see fig. 10). 

 
 

// UB = disjunctive Union of  3D-Boxes = a list of boxes 
// A box is represented by a reference point (x, y, z) and its 
// dimension (dx, dy, dz) 
// Computes and returns intersection between two disjunctive  
// unions of boxes ; O(n²). 
// Returns Dxyz1 ∩ Dxyz2 or EMPTY if the two UB are separated. 
 

intersection ( in UB Dxyz1, in UB Dxyz2 ) return UB { 
    if (empty(Dxyz1) || empty(Dxyz2 )) return EMPTY;

  Iterator it1 = iterator( Dxyz1 ); 
  UB result;    // create a new instance of UB 
  while (hasNext( it1 )) { 
      Box a = next( it1 ); 
      Iterator it2 = iterator( Dxyz2 ); 
      while (hasNext( it2 )) { 
          Box b = next( it2 ); 
          Box r = intersection( a, b ); 
          if (!empty( r )) 
              result.addLast( r );    

        } 
    } 

  return result; 
}  
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// Computes and returns difference between two disjunctive  
// unions of boxes ; O(n²). 
// W is the bounding box of the world. 
// Returns Dxyz1 - Dxyz2 or EMPTY if the two UB are separated. 
 

difference ( in UB Dxyz1,  in UB Dxyz2, 
                    in  Box w,  in float gap ) return UB { 
    if (empty(Dxyz1) || empty(Dxyz2 )) return EMPTY;

  Iterator it1 = iterator( Dxyz1 ); 
  UB result;    // create a new instance of UB 
  while (hasNext( it1 )) { 
      Box a = next( it1 ); 
      List tmpList; 
      Iterator it2 = iterator( Dxyz2 ); 
      while (hasNext( it2 )) { 
          Box b = next( it2 ); 
          List r = difference( a, b, w, gap ); 
          if (!empty( r )) 
              list.add ( r );    

        } 
        result.addAll( tmpList ); 
    } 

  return result; 
}  
Algorithm. 2, 3: the algorithms used to compute intersection and 
difference between two position domains (represented by a separated 
UB = union of 3D-boxes) (see fig. 11).  
 
Note: the difference operator between two 3D-boxes is 
implemented as follows: 

B1  –  B2 =  B1  ∩  Complement(B2, world) 
 

To preserve separation of every box, the union operator is 
defined from the difference by: 

A ∪∪∪∪ B = A ∪ (A – B) 
where ∪ consists in merging the two lists of boxes. 

 

 
Fig. 11: orthographic projections (i.e. 2D representation) of 
geometric union, intersection and difference of UB objects 
(disjunctive Union of 3D-Boxes).  
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