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Abstract. In order to summarize and represent graphically multidimen-
sional data in statistics, projection pursuit methods look for projection
axes which reveal structures, such as possible groups or outliers, by op-
timizing a function called projection index. To determine these possible
interesting structures, it is necessary to choose an optimization method
capable to find not only the global optimum of the projection index but
also the local optima susceptible to reveal these structures. For this pur-
pose, we suggest a metaheuristic which does not ask for many parameters
to settle and which provokes premature convergence to local optima. This
method called Tribes is a hybrid Particle Swarm Optimization method
(PSO) based on a stochastic optimization technique developed in [2].
The computation is fast even for big volumes of data so that the use
of the method in the field of projection pursuit fulfills the statistician
expectations.

1 Introduction

Exploratory projection pursuit techniques aim to reveal visually an interesting
structure hidden within multivariate data ([9], [10], [1]). This family of statisti-
cal methods consists in detecting interesting linear projections by optimizing a
predetermined function called projection index that measures in some sense the
“interestingness” of a projection.

The projection pursuit is based on two important elements: the projection
index and the optimization algorithm. The literature exposes several projection
indices and optimization methods. These methods are global optimization meth-
ods such as the gradient’s method [10], the ascent’s method ([7], [13], [14], [15]),
the quasi-Newton’s method ([7], [15]) and some modified version of Newton’s
method [14]. Several projections of the data may reveal interesting structures.
So, in order to obtain different local optima, the aforementioned algorithms work
in the following way. They look for a global optimum of the projection index and
when a solution is found, it is removed from the space of solutions for instance by
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projecting the data in the orthogonal space of the global solution. Then, the in-
dex is optimized again in order to find other solutions. Several projections (local
optima) in the initial search space may not be detected when we consider the suc-
cessive orthogonal spaces. Furthermore, the optimization methods quoted above
require the calculation of the gradient and may ask for a meticulous choice of an
initial point (initial solution). Our objective is not only to find the global opti-
mum of the index but also the local optima to reveal these possible interesting
structures. We also wish to suggest to the statistician an algorithm without pa-
rameter tuning and which enough explores the space to find various local optima
of the index without considering orthogonal spaces. Furthermore, the problem
of the optimization of these projection indices is complex and expensive in com-
puting time and the solutions proposed to maximize (minimize) these indices
are not always convincing. Therefore, the projections pursuit methods are little
used and absent from the well known statistical softwares (except Matlab [12] or
quasi-clones, like SciLab and Octave, and GGobi [5]). Our purpose is to propose
powerful and fast algorithm allowing the detection of several local optima.

The Particle Swarm optimization (PSO) and Tribes are metaheuristics that
appeared recently. They differ from the other evolutionary methods (typically,
the genetic algorithms) and are based on the notion of cooperation between
agents (particles). The information exchanged between particles gets to resolve
difficult problems. These techniques present some interesting peculiarities, among
others, the notion of efficiency due to the collaboration rather than the compe-
tition. Furthermore, the fact that these methods converge early to local optima
is an interesting feature in order to find new potentially interesting projections.
In a first work, we used the PSO and the genetic algorithms to optimize certain
projection indices and both optimization methods have proven their efficiency
but they need parameters to be tuned. Note that PSO is also used for Projection
Pursuit in [16] in the context of regression.

Contrary to PSO, Tribes is presented as a black box, because it possesses
no parameter to settle and it easily exhibits satisfactory performances. In this
technique, particles are divided into several tribes or groups of variable size.
Tribes method presents the risk of a too fast convergence, which can be translated
by the fact that it finds local optima. To remedy this problem, Clerc ([3], [4])
proposed a new version of Tribes. As far as our objective is not only to find
the global optimum but also several potential local optima, we prefer to apply
the native version. Tribes was never used in the field of projections pursuit.
Its application in this article shows that it can lead to better results than the
classical PSO as shown in the previous work.

In this paper, we present a comparison of the Tribes technique with the
classical PSO version applied to the exploratory projections pursuit to optimize
one-dimensional projection index. We focus on the search of clusters among any
other interesting structure such as outliers. In section 2, we introduce briefly the
problem of projection pursuit and the two projection indices we focus on. Section
3 presents the technique of particle swarm optimization briefly and the technique
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of Tribes in more detail. The last section is dedicated to the comparison of these
two techniques on some small data sets.

2 Exploratory Projection Pursuit

The Exploratory Projection Pursuit (EPP) techniques consist in the search for
hidden aspects within a big volume of data [8]. The objective of these exploratory
techniques is to look for low (one, two or three) dimensional projections that
provide the most revealing views of the full-dimensional data. The search for such
projections requires the definition of a numerical index I(a) for every projection
a. The intent of this index is to capture nonlinear structures present in the
distribution of the projected data. This function is defined so that the interesting
projections correspond to the global optimum and to the local optima of this
function.

Principal components analysis (PCA) is a familiar exploratory technique of
this kind, it is a projection pursuit method where the index of interestingness
represents the variance of the projected data. Its efficiency has been relativized
[10] because certain important projections may not appear in the principal sub-
spaces, even if their dimension is small. Furthermore, the maximization of this
index (the variance) can be solved by using the spectral decomposition so that
PCA does not need any optimization algorithm.

As in many situations of data analysis, we consider N individuals charac-
terized by P variables. To every individual corresponds a vector Xi in IRP (i =
1, · · · , N) which is assimilated to a matrix column, the transposed of these vec-
tors leads to a matrix X with dimension N ×P . Unfortunately, it is not possible
to visualize points in P -dimensional space if P is upper to 3. However, it is pos-
sible to project a P -dimensional set of points onto a one-dimensional line. The
projection is a linear function of IRP towards IR of N observations X1, · · · , XN

such as z = Xa. The P -vector a defines a linear transformation and the N
column-vector z corresponds to the projected data coordinates. The problem
consists in determining a projection a. As usual in EPP, we suppose that the
data are spherical (by transforming the data accordingly), such that the mean
vector E(Xi) = 0 and the covariance matrix V (Xi) = IP where IP denote the
identity P -dimensional matrix. By considering spherical data, PP is going be-
yond the first and second moments of the data which are already taken into
account in standard analysis such as Principal Components analysis.

There are many possible projection indices, the present paper focus on a
one dimensional polynomial-based index named the Friedman index [7] and a
moment-based index called the kurtosis index [14]. We limit ourselves to a brief
definition of these two indices.

2.1 The Friedman index

This index is based on the Legendre polynomials [7]. It measures the departure
between the density of the projected data and the normal density which is as-
sumed to correspond to a non-interesting projection. The formula is given as
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follows:

IFh (a) =

h∑
j=1

2j + 1

2

[
1

N

N∑
i=1

Lj{2Φ(Xi)− 1}

]2

(1)

where Φ is the univariate standard normal distribution. The recursive definition
of the Legendre polynomials is given by:

L0(r) = 1, L1(r) = r, L2(r) =
1
2 (3r

2 − 1),
Lj(r) =

1
j (2j − 1)rLj−1(r)− (j − 1)Lj−2(r) pour j ≥ 3

(2)

The choice of the value of h depends on the data dimension P and the sample
size N . In the present article h is fixed to 3 according to the recommendations
given in [7] and [15].

2.2 The kurtosis index

This index is based on the fourth moment of the projected data distribution
[14]. It is the kurtosis coefficient of the projected data. The directions are chosen
by minimizing and maximizing this coefficient. The minimization of the kurtosis
coefficient implies the maximization of the “bimodality” of the projections, that
leads to the determination of clusters, whereas its maximization leads to the
detection of outliers [14]. The index is defined as follows:

Ik(a) =

N∑
i=1

(aTXi)
4 (3)

3 Bio-inspired algorithms

The optimization algorithm is an important choice in the projection pursuit
problem. It consists in finding the directions which maximize (or minimize) the
projection index I. This section presents the PSO and Tribes which are bio-
inspired algorithms. In other words, there are iterative stochastic methods for
global optimization which are inspired by the theory of the biological popula-
tions evolution. One of the interests to study these approaches is to develop an
algorithm with powerful ability to find out the global and the local optima of
the optimization problem. These methods develop a set of solutions with the
purpose to find the best results.

3.1 Particle Swarm Optimization (PSO)

The PSO algorithm is an optimization metaheuristic method, invented by Eber-
hart and Kennedy in 1995 [11]. This method incorporates concepts that lead
particles to converge gradually to a local optimum. The PSO algorithm is ini-
tialized with a swarm of random candidate solutions, called particles. All the
particles have fitness values which are evaluated by the fitness function to be
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optimized, and are assigned a randomized velocity at the beginning of opti-
mization and are iteratively moved through the problem’s searching space. Each
particle tries to improve its performance according to its own experience and the
experience of its environment.

If Xm(t) represents the position of the particle m to the iteration t, then its
velocity at iteration t+ 1 is defined by:

Vm(t+ 1) = w ∗ Vm(t) + r1 ∗ (X∗
m −Xm(t)) + r2 ∗ (X∗ −Xm(t)) (4)

where Vm(t) is the velocity at the preceding iteration, w is the inertia weight
employed to adjust the influence of the previous particle velocities on the opti-
mization process.X∗

m is the best historical position ever obtained bym,X∗ is the
best particle ever obtained during the algorithm, r1 and r2 are fixed parameters.
We define the new position of the particle m as follows:

Xm(t+ 1) = Xm(t) + Vm(t+ 1) (5)

In our work, the projection index represents the fitness function and the
vector of projection defines a particle. In the first work, we used the classic
version of the PSO with a modification of the notion of neighborhood in order
to adapt the method to EPP. So, the practical application of the algorithm
involves using X∗

l being the best particle in the neighborhood instead of X∗.

3.2 Tribes

Tribes is a hybrid PSO method based on a technique of stochastic optimization
developed in [2] (see also [4]). This technique is a competitive algorithm which
allows to find quickly local optima by investigating simultaneously several regions
of the search space, generally local optima, before making a global decision.

In Tribes, particles are divided into several tribes, a metaphor for different
sized groups of particles moving about in an unknown environment, looking
for a “good” place. Each particle is evaluated by the fitness function (the pro-
jection pursuit index I). In each tribe, information links build a completely
connected graph. Between tribes, links are looser, but the whole graph is still
connected. This graph forms a structure able to diffuse and exploit informa-
tion. This structure must be automatically generated and updated by means of
creation, evolution and deletion of particles and tribes. Moving strategies of a
particle, which indicate how a particle must modify its position, are based on
“hyperspherical” probability distributions, which may be with or without noise,
or independent Gaussian. The choice of these strategies is made depending on
the short term history of the particle. This structuring will automatically in-
duce the same purpose, namely explore several promising areas simultaneously,
usually around local optima. In this part, we are going to define some notions
allowing to understand the mechanism of this technique and give an algorithm
describing its complete progress. Let us note that a particle is always defined as
being a vector of projection.
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The algorithm begins with one particle in a single tribe. Then it consists in
creating and deleting particles and tribes. Along iterations, the position of the
particles (value of the projection vector) is updated according to some strategies
of displacement. Each time a tribe is created, links between particles are defined
in order to make possible the transfer of information between tribes (in particular
the best position of the particles in each tribe). Creating and deleting particles
and tribes rely on measures of quality.

x: is the best position memorized by the particle during its course
p: is the best position memorized by the best particle of the generating tribe
g: is the best position memorized by the best particle of the swarm
nb_iteration: the number of current iteration
Max_iteration: The maximum number of iterations
L: the total number of information links
nb_iteration = 0; L = 0;

1. Create a first tribe formed of a single free particle
2. Estimate its fitness (the projection index)
3. Calculate x = p = g
4. nb_iteration++
5. Create the second tribe, from the first tribe,

consisted of a couple of free and stuffy particles
6. L = 1

for nb_iteration = 1 to Max_iteration do
Estimate fitness of every particle
Calculate x, p, g for each particle
Determine the quality of every particle and every tribe
if Number of tribes < 3 and Both tribes do not improve their performance
then

Create the third tribe, from the first two tribes,
formed of two pairs of free and stuffy particles
L++

else
if nb_iteration = L

2
then

/* Do an adaptation */
Create a new tribe
Remove the worst monotribe of the swarm
Remove the worst particle of each "good" tribe
L++

end if
end if

end for
Algorithm 1: The Tribes algorithm

A particle is characterized by four possible qualities. It is labeled “good” if
it has just improved its best performance (fitness value), “neutral” otherwise.
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A particle having the least good performance within its tribe is said “worse”, it
is said “excellent” if its two last variations of performance (between successive
iterations) are improvements.

The tribes themselves also receive the labels “good” or “bad”, depending on
the number of good particles in the tribe. A tribe containing T particles is itself
“good” only if U() ≤ G/T , where G is the number of good particles in a tribe
and U() is drawn from a standard uniform distribution. Otherwise the tribe is
“bad”. Good tribes, because they are doing well and presumably do not need as
many particles, will remove one of their particles and only the worst of them,
i.e. the particle with the highest value of I, if we assume that the projection
index I is the function being minimized. When this occurs, any external links
to the particle are re-assigned to the best performer in the tribe, i.e. the particle
with the lowest value of I. In the case of a monoparticle tribe, the tribe itself
is removed only if we are certain to keep in contact with all the tribes, i.e. all
external links to the particle are reassigned to the external best particles. Bad
tribes, on the other hand, presumably need more information, so each creates
two new particles outside of its tribe and forms a link between the new particles
and the best particle within the tribe. The set of all new particles created by all
the bad tribes during one adaptation step forms a new tribe.

An adaptation is the realization of a deletion and/or a creation of particles,
as described above. It occurs once at the beginning of the algorithm and then
periodically as it progresses in order to propagate the information between parti-
cles. If, after adaptation, the number of links in the swarm is L, then adaptation
will occur again after L/2 swarm iterations.

A particle adopts a strategy of movement according to its recent past and
which looks like a local search. Three possibilities of variation of a particle’s
performance exist: deterioration (-), status quo (=) and improvement (+). The
confinement of the particle in the search space is realized in the same way as in
PSO but without velocity. Because the history of a particle includes two varia-
tions of performance, we find 9 possibilities of variation grouped in 3 strategies
of movement according to the recommendations of Clerc [2]. The strategies are
the pivot if the history of performance is (−−) or (= −) or (− =) or (==),
the disturbed pivot if the history is (+ =) or (−+) or (+−) and the local by
independent gaussian if the history is (= +) or (++).

Pivot strategy: the new position of the particle is chosen at random accord-
ing to an isotropic distribution centred on the pivot, for example a gaussian
distribution.

xd ← C2 ∗ alea(Hp) + C3 ∗ alea(Hg) (6)
with p the best position memorized by the particle in the course of movement,
g the best position stored by the best particle of the swarm, Hp, Hg two hy-
perspheres centred on p and g respectively and of the same radius equal to the
distance ||g − p||, C2 = I(p)

I(p)+I(g) , C3 = I(g)
I(p)+I(g) and I the projection index

Disturbed Pivot strategy: it is the same strategy as the previous one but with
a noise. When we determine the new position, we modify it again according to
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a random gaussian noise. This noise will be very low if the performance of the
particle is good. For every dimension of the space, we have:

σ =
I(p)− I(g)
I(p) + I(g)

bd = Nd((0, σ)
xd = (1 + bd)xd

(7)

Local by independent gaussian strategies: the idea is to look for locally
and only around the best position g known by the best particle. So, for every
dimension d of the space, a coordinate close to the coordinate gd of g is chosen
at random according to a Normal law

xd ← gd +Nd(0, |gd − xd|) (8)

After the first iteration, if the situation does not improve, two particles will
be generated, forming a second tribe. One of its two particles, called free, is
generated anywhere in the search space according to a uniform distribution in
the whole space and the other, said stuffy, is uniformly generated in a D-sphere
of center g and of radius ||g−x||, where g is the best position stored by the best
particle of the swarm and x is the best position memorized by the best particle
of the generating tribe. The idea of this generation is to intensify the search in
a region which seems already interesting. At the next iteration, if neither of the
two tribes improves its situation, each of the two tribes will generate another
couple of new particles simultaneously, forming a new tribe of four particles, and
the process will continue as described in the following algorithm. We note that
as the number of links increases, the importance of the number of iterations
between the two adaptations increases. Between two adaptations, the swarm
then has more and more chances to find a solution.

The Tribes method is very useful in the resolution of the PP problem. This
technique is efficient in most of the cases and allows the statistician to gain time
by avoiding the tuning stage of the metaheuristic. Indeed, the statistician has to
supply only the stopping time criterion and the objective function. Furthermore,
[4] and [3] indicate that because the parameters are not assigned to their optimal
values, the method converges early, resulting in being local optima on certain
problems. Tribes is thus a very promising tool for the determination of several
local optima which can reveal potentially interesting projections.

4 Application

Clustering is a set of statistical methods that separate data into classes (clus-
ters) but, it is not clear how to assert that a data set contains well defined
clusters. Our objective is to detect the presence of potential clusters in multidi-
mensional data by using exploratory projections pursuit methods. We consider
the two projection indices defined in section 2. In the present section, we give
some results of the PSO and Tribes optimization methods applied to four data
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sets and demonstrate the interest to apply Tribes for the determination of the
local optima of projection pursuit indices. The algorithms of these methods are
implemented in language Java.

At first, we specify the number of particles for the PSO and the number of
iterations for the PSO and Tribes. As it was recommended by Clerc [2], the PSO
needs no more than 50 particles for small data sets. As regards to the number
of iterations, we fixed it to 100 for the simulated and olive oil data for both
methods. This value has been obtained by carrying out some preliminary runs
on each data set and checking the convergence of the indices to local optima.
We ran 100 times each optimization algorithm on the different data sets and we
present below some of the obtained results. In order to summarize the results
in an efficient way, we draw the ranked values of the indices to each of the one
hundred local optima with the projection vector corresponding to the best value
of the index.

We present plots of the ranked values of the projection indices for the data
sets using PSO and Tribes. We note that the number of launches can be increased
during the exploration of big volumes of data. We also plot some histograms
of the distributions of the projected data associated with local optima of the
different indexes in order to visualize possible structure(s).

4.1 Simulated data

We generated three data sets of N = 1000 observations and P = 5 variables. The
observations are distributed according to various mixtures of standard normal
distribution indicated as follows:

Normal2 contains two clusters of 500 observations with gaussian distribution
N5(µi, I5) with i = 1, 2 where µ1 = (0, ..., 0)T and µ2 = (10, 0, ..., 0)T are 5-
dimensional vectors.

Normal4 contains four clusters of 250 observations with gaussian distribution
N5(µi, I5) with i = 1, ..., 4 where µ1 = (0, ..., 0)T , µ2 = (10, 0, ..., 0)T , µ3 =
(0, 10, 0, 0, 0)T , µ4 = (0, 0, 10, 0, 0)T are 5-dimensional vectors.

Normal10 contains ten clusters of 100 observations with gaussian distribution
N5(µi, I5) with i = 1, ..., 10 where µ1 = (0, ..., 0)T , µ2 = (10, 0, ..., 0)T , µ3 =
(0, 10, ..., 0)T , µ4 = (0, 0, 10, 0, 0)T , µ5 = (0, ..., 0, 10)T , µ6 = −µ1, µ7 = −µ2,
µ8 = −µ3, µ9 = −µ4, µ10 = −µ5 are 5-dimensional vectors and I5 is the identity
matrix.

The purpose of this example is to show the efficiency of the Tribes method
in the detection of local optima which correspond to projections revealing the
clusters structures of the data sets. On figure 1 we plot the 100 ranked values
of the minimum kurtosis index for the simulated data with PSO (right curves)
and Tribes (left curves). While the PSO method leads to small variability of the
projection index values for the one hundred launches, Tribes supplies different
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Fig. 1. Simulated data: Plots of the ranked values of the kurtosis index for the Normal2
(top curves), the Normal4 (middle curves) and the Normal10 (bottom curves) with PSO
(right curves) and Tribes (left curves).

local optima as soon as the interesting structure is complex and cannot be vi-
sualized on one dimension (Normal4 or Normal10). For the first two plots at
the top, we tested the first data set Normal2 which contains two clusters. There
is an unique interesting structure associated with an optimum index detected
by the two methods. Both plots at the middle correspond to the data Normal4
which contain four clusters. We don’t give the plots of the projections of the
data but the structure in four clusters is detected by looking at the projections
associated with the local optima corresponding to the three landings of Tribes.
On the contrary, the PSO method does not allow to detect the four clusters.
The index values associated to the last data set Normal10, which contains 10
clusters, are represented in the last two plots below. We notice that Tribes pro-
poses several different local optima (see the landings) which represent various
interesting projections. For these particular examples, the Friedman index gives
the same results as the kurtosis index using both optimization methods.

4.2 Olive data

The file consists in the percentage composition of P = 8 fatty acids found in the
lipid fraction of N = 572 Italian olive oils. The 572 samples come from three
different Italian regions subdivided themselves into nine areas. This data set
has been analyzed by several authors in the context of exploratory multivariate
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analysis (see [6] and [1]). The structure of the data set is quite complex with
nine clusters which have different shapes in an eight-dimensional space. Due to
the large number of classes, discovering all of them by using one-dimensional
EPP is challenging but the results we obtain clearly highlight a complex groups
structure since several groups are detected by processing the data with the two
proposed indices using Tribes.

Fig. 2. Olive data: histogram corresponding to the global optimum (left figure) and a
local optimum (right figure) for the minimum kurtosis index using Tribes.

As for the simulated examples, the plots (not given in the present paper)
of the 100 ranked values of the minimum kurtosis index give different results
according to the optimization method. For PSO, it seems that there is only one
potential interesting projection while we visualize at least two local minima for
the kurtosis and the Friedman index with Tribes. In figure 2 we visualize two
interesting projections corresponding to different local optima of the kurtosis
index using Tribes method. On these two plots the data are split in two parts
which correspond to different regions for the oils (see the clusters defined by the
nine areas below the histograms). For the same method, the Friedman index
gives different projections which separate other areas. As mentioned above, PSO
yields a single interesting structure by optimizing any of both indices.

As illustrated in these small examples, EPP with the Tribes algorithm is a
powerful tool for discovering clusters structures if present in the data. It would
be interesting to test the proposed method on higher multidimensional datasets.
Once EPP has revealed the presence of clusters, the data analyst may perform
some clustering algorithm in order to define precisely the clusters.

5 Conclusion

In this paper, we used two metaheuristics (PSO and Tribes) to optimize two
projection indices. We showed the performance of these methods using multi-
dimensional data sets for the detection of groups. The important result of our
study is the performance and the efficiency of Tribes method for projection pur-
suit. By using several simulations, we can easily obtain several local optima of
the projection index susceptible to reveal interesting structures.

The difference between PSO and Tribes is that Tribes requires no parame-
ter to settle. The statistician has only to define the objective function and the
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stopping criterion. A study of this method was led by [4] and [3] who found
that Tribes converges very quickly to a local optimum which is not generally the
global optimum. This characteristic, which the authors [4] and [3] consider as a
drawback, motivates our choice and serves perfectly our objective

Both Friedman and Kurtosis projection indices give good results on the con-
sidered examples. Concerning the computing time, we noticed that the kurtosis
index is faster than the Friedman index. Although the evaluation number of
the objective function is not the same for both methods (because the number
of particles in the method Tribes is variable), we observed that Tribes is faster
than PSO. For the small-size data sets we consider, the time is unimportant for
both methods and both indices but for very large data sets the kurtosis index
together with the Tribes algorithm are recommended.
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