
Controlling Object Natural Behaviors in a 3D Declarative Modeler

Kwaiter Ghassan Gaildrat Véronique Caubet René
Institut de Recherche en Informatique de Toulouse

Paul Sabatier University; 118 route de Narbonne, 31062 Toulouse Cedex, France

Phone. (33) 5 61 55 83 29, Fax. (33) 5 61 55 62 58

E-mail : {kwaiter,gaildrat,caubet}@irit.fr

Abstract

In this paper, we present an extension of DEM2ONS
declarative modeler. DEM2ONS provides the designer
with the possibility to easily describe a scene in a high
level of abstraction, using various types of constraints. It
also integrates knowledge about normal use of objects in
order to offer the closest solution to what the designer
wants. Constraints are maintained by a new incremental
constraints solver called ORANOS, that dynamically
satisfies the system when a designer’s intervention occurs.
It integrates constraint hierarchies to deal with over-
constrained problems.

1. Introduction

Declarative modeling is a global approach of the
designing process. One can distinguish three phases:
description, generation and understanding. First phase
allows the designer, using constraints, to describe scenes
by only defining a set of relations among objects in a high
level of abstraction where the underlying geometrical
model of the scene is hidden from the designer’s point of
view. In consequence, a constraints solver must maintain
these constraints and provide the closest solutions to a
designer’s intention.

In current literature, several approaches have been
attempted to describe the scene in a declarative manner. A
first approach uses traditional geometrical models of
common CAD systems [1]. This approach forces the
designer to use imperative methods in a bottom-to-top
design methodology; thus it won’t be suitable when the
design scene becomes more and more complex or when
the designer thinks about it in a more abstract and
semantic way. A second approach uses iterative
approximation techniques, such as classical relaxation or
Newton-Raphson techniques, to solve linear and non-
linear constraints [2]. However, this approach has a major

problem; it can be very slow to converge as the number of
constrained variables grows up, and it may give one
solution. Recently, some considerable researches in this
area have addressed the artificial intelligence domain; an
extended technique, which is well known as Constraint
Satisfaction Problem, either to generate one or multiple
solutions [3], or to reduce execution time [4,5].

A truly declarative modeler should provide a rich user
interface allowing the designer to easily interact with the
studied model. It should contain an incremental constraints
solver to dynamically handle designer's interventions. This
solver must solve crucial over and under-constrained
problems, and take into consideration semantic constraints
and relationships among objects. However, most of
requirements have generally been ignored in previous
declarative modelers works.

In this paper, we present a new declarative modeler
called DEM2ONS (DEclarative Multimodal MOdeliNg
System). DEM2ONS provides the designer with the
following possibilities:

- Describing easily 3D scenes in a high level of
abstraction using different type of constraints.

- Delegating to the incremental constraints solver,
ORANOS [6], the task to dynamically satisfy the system
as a designer’s intervention occurs.

- Reacting as closely as possible to the hints of the
designer, by integrating knowledge about normal use of
objects.

The purpose of this paper is to show a view of our
declarative modeler. Some concepts are not exhaustively
discussed, references are provided to find more details.
The paper is organized as follows: Section 2 gives an
overview of the structure of our modeler DEM2ONS.
Section 3 presents the design principles of our constraints
solver. Section 4 presents various types of constraints.
Section 5 defines some of the important object attributes.
Section 6 explains our computation method. Section 7
shows an implementation, and finally the conclusion.

2. System overview

DEM2ONS is composed of two main parts: a
multimodal interface and a 3-D scene modeler (cf. fig. 1).

History

Constrained
Objects

GUI
(Inventor)

ORANOS
Constraints Solver

Event manager

Monomodal Data Reception

Multimodal
Dialog

Manager

Task Model

Dedicated Interfaces

2D
gestures

3D
gestures

Syntactic Analysis

words speech

Natural
language

Gestural
language

mouse dataglove keyboard microphone

History

Figure 1. Architecture of DEM
2

ONS.

2.1. Multimodal interface

The DEM2ONS multimodal interface allows the
designer to easily communicate with the system
throughout multiple combined ways. Several input devices
(such as dataglove, speech recognition system, spaceball,
mouse...) are provided. Syntactic analysis and Dedicated
Interface modules [7,8] analyze and control the low-level
events in order to merge them into multimodal events.
These events are collected and treated by an Event
Managing module that provides a single command to be
sent to the modeler. Moreover, it uses a Historical List to
solve anaphora problems. In this way, the designer will be
able to interactively add predefined objects, define the
constraint’s type, apply constraints among objects and
change the strength of a constraint. Consequently, the
designer can combine different input modes in order to
build a single command. For example: "Put the console
against the wall", "Move it to the left", and "Put the view
point in front of them", where "it" refers to the same
console retrieved by the system from the dialogue history.

2.2. The 3D scene modeler

The 3D constrained objects are instantiated from
several abstract classes using object oriented techniques
and are modeled and rendered using Inventor ToolKit [9].
ORANOS handles constraints passed either through the
Inventor or the Events Manager. It maintains the system,

and transmits the evaluated variables to Inventor in order
to update constrained objects attributes.

3. ORANOS constraint solver

This section outlines the various design principles and
different phases of our constraints solver. However, in
order to give a global view of ORANOS, some related
concepts are not deeply explained, they refer to their
references.

3.1. Design principles

A number of design principles are based on the fact
that ORANOS must be integrated in a declarative
modeler, and used in an interactive application.

Generally: ORANOS is a domain independent
approach; it can be applied in declarative modelers,
Computer Aided Design Systems (CAD), and layout
aspect in a user interface. It extends the constraint
satisfaction problem [10] by using an interval propagation
technique to satisfy both linear equality and inequality
constraints. For instance, it supports geometric constraints
expressed by linear equality equations (such as distance
constraint, parallel constraint and horizontal constraint); as
well as topologic constraints that correspond to the
relative positioning of objects expressed by linear
inequality equations (such as object A is to the left of
object B).

Avoiding inconsistency: in declarative applications,
halting and error signaling are not normally acceptable
when the constraints solver encounters an over-
constrained or an under-constrained problems. ORANOS
is based on constraint hierarchies [11] in order to deal with
over-constrained problem. It allows the designer to attach
arbitrary strengths to the constraints, indicating how
strongly the designer wants particular constraints to be
satisfied. Given an over-constrained hierarchy, ORANOS
leaves the weakest constraints unsatisfied in order to
satisfy the strongest ones. If under-constrained problem
occurs, DEM2ONS proposes only one solution, and the
designer can as well ask the modeler for other possible
solutions. It controls the produced solution either by
changing the strength of existing constraints or by adding
additional ones.

Incrementally: one important technique in declarative
applications is the dynamic changing of the relationships
among the objects. In such applications, user would be
able to add more constraints on objects, or remove some
constraints from the objects to release them to a certain
degree. He would also have the possibility to weaken the
strength of a constraint to satisfy the other stronger ones,
or inversely, strengthen a particular unsatisfied constraint
to emphasize it over the others. For all these requirements,
ORANOS re-satisfies dynamically the constraints set when

new constraints are added, existing constraints are
removed, or a constraint’s strength is changed.

3.2. ORANOS phases

This section sketches out the high levels of ORANOS
algorithms. The reader should refer to [12] for more
details.

3.2.1. Data structures: A constraint object class is
specified by its strength, a finite set of constrained
variables, methods, and a history field containing a set of
variables whose bounds are reduced when this constraint
is satisfied. A variable object class has boundary values
that represent the lower and upper bounds of a closed
continuous interval and an instant of the variable. A
method object class has an input field containing a list of
the input variables, an output field containing a list of the
output variables, and a code field that implements this
method. Finally, the system uses three global lists whose
elements are in descending order depending on the
constraint's strengths. Satisfied Constraints List that
contains the consistent constraints. Unsatisfied Constraints
List that contains the inconsistent constraints. Retracted
Constraints List containing the weakest strength
constraints that will be retracted from the Satisfied
Constraints List in order to satisfy constraints with greater
strengths.

3.2.2. The entries phase: ORANOS is called when a
designer’s intervention occurs to add, remove, or change
the strength of a constraint. Since ORANOS saves the
modified variables domains for a constraint after satisfying
it, only a local sub-constraints set will be treated when a
new constraint is added, or existing constraint is removed.

Adding constraint: If ORANOS is invoked to add a
new constraint, it retracts from the Satisfied Constraints
List the constraints whose strengths are less than the
strength of the newly added constraint. It puts them with
the new constraint in the Retracted Constraints List in a
descending order. This order guarantees that no satisfied
constraint will be retracted again to satisfy any following
constraint. Then, the Retracted Constraints List is passed
to the refinement phase.

Removing constraint: If ORANOS is invoked to
remove a satisfied constraint, it is possible to satisfy some
other unsatisfied constraints. This possibility will be given
to those constraints that share variables with the removed
one. Thus, ORANOS retracts from the Satisfied
Constraints List the constraints whose strengths are less
than the strength of the removed one. It puts them with the
related unsatisfied constraints in the Retracted Constraints
List in a decreasing order, to be passed to the refinement
phase. However, if ORANOS is invoked to remove an

unsatisfied constraint, it simply removes this constraint
from the Unsatisfied Constraints List.

Changing the strength of a constraint: If ORANOS
is invoked to change the strength of a constraint, it
distinguishes two cases:

- Strengthening an unsatisfied constraint: where this
constraint may get a chance to be satisfied, therefore,
ORANOS should retract this constraint from the
Unsatisfied Constraints List and put it into the Retracted
Constraints List.

- Weakening or strengthening a satisfied constraint: in
this case, ORANOS retracts this constraint from the
Satisfied Constraints List with the constraints whose
strengths are less than this one, putting them all into the
Retracted Constraints List. Weakening a satisfied
constraint may give a chance to other constraints in the
Unsatisfied Constraints List to be satisfied, so only
unsatisfied constraints that are equivalents or stronger than
this constraint will be added to the Retracted Constraints
List. Finally, the Retracted Constraints List is passed to
the refinement phase, in both cases.

3.2.1. The refinement phase
In this phase, ORANOS attempts to satisfy all the

retracted constraints in the Retracted Constraints List; it
removes each constraint from this list and calls a Global
Propagation Filtering algorithm to satisfy it [13]. The
Global Propagation Filtering algorithm tries to satisfy the
given constraint by tightening the bounds around its
variables employing the method associated with the
constraint; and then propagates these variables to the
constraints that have already been satisfied in the Satisfied
Constraints List. If the constraint is satisfied, it is added to
the Satisfied Constraints List, otherwise, it is added to the
Unsatisfied Constraints List. The algorithm iterates for all
the constraints in the Retracted Constraints List, removing
them from the list and adding them to either Satisfied
Constraints or Unsatisfied Constraints lists. When the
algorithm terminates ORANOS passes to DEM2ONS only
the variables whose interval domains are being reduced;
thus, a few object attributes will be updated; i.e. a local
change will take place on the scene.

4. Constraints

In DEM2ONS, constraints may be applied to an object
from different sources: either during object modeling, or
as a result of its relations with other objects. A distinction
between two constraint types can be made: internal and
external constraints.

Internal constraints are applied on one object and used
to define its intrinsic properties such as its position,
orientation, or fixed dimensions without any relation to
other objects. They may be applied implicitly (like a
dimension constraint, considered as an internally required

constraint that the designer can’t violate), or explicitly
(like position and orientation constraints).

On the other hand, an external constraint is applied
between two objects and has a unique representation:

" Ntarget is spatial preposition Nlandmark with
Strength "

Where subject Ntarget refers to the located object and
the subject Nlandmark refers to the site object. Strength
refers to the constraint’s strength, and spatial preposition
refers to the locative prepositions used. A designer can use
several locative prepositions available in DEM2ONS, such
as: in front of, behind, against, on the left of, or a distance
x of, in order to express a relationship between two
objects.

However, some spatial prepositions have also an
implicit functional constraint [14]. The functional
constraint comes simply from the functional factors of the
objects themselves and their interactions with other
objects. For example, constraints such as: "put the
cupboard against the wall", or, "put the chair in front of
the table" have both geometrical and functional
constraints. The first constraint is applied on the position
attribute of the object (cupboard, chair), and the second
one is applied on its orientation. Thus, a constraint must
integrate the functional role of the object, and reflect this
functionality in a geometric way.

Object-oriented techniques, with encapsulation and
inheritance, provide DEM2ONS with important
mechanisms to define various types of constraints. Each
constraint refers to a particular class that contains a
particular method to satisfy it. Thus, meanings of each
constraint are accomplished by using constraint
constructors. Moreover, DEM2ONS uses constraint
inheritance to deal with complex constraints. For instance,
figure (2) shows a hierarchy of constraint classes.

constraint

Position

Left

 Distance

 On Front Against

 Orientation

Figure 2. Constraint Classes.

The class "Constraint" is an abstract class that contains
information about target and landmark objects, and
strength of the constraint.

5. Objects

Each object refers to a particular class that describes
the properties of each instance objects. Thus, we can
differentiate between objects that are always landmarks
(like floor or walls), and objects that might be both
landmarks and targets. Shared attributes, such as type of
object, position, volume, and bounding box are inherited
from an ancestor class. In this section, we only treat of the
orientation and positioning zone attributes.

Orientation attributes: intrinsic and deictic
orientations are some of the essential attributes, they
define the functional level of an object. The orientation
processes, which is greatly conditioned by functional
features, consist of making correspondence between an
abstract orientation and a concrete one; i.e., the intrinsic
front of a computer is derived from the usual position of
its screen.

Three attributes are attached to an object to express the
three intrinsic orientations, if exist: up, front, and left
orientations. An object is always described in its own local
coordinate space. The upper direction attribute coincides
with the gravitational upper direction (for instance: bottle,
chair and table). The front and left directions are defined
from a tandem or mirror canonical use of objects (for
instance: the front direction of a TV is well known).

Furthermore, the designer’s location is required to
define the deictic orientations of the landmark object, and
in consequence to define the position and the orientation
of the target object. In the following example (Figure 3),
for the constraint: "the chair in front of the table", the table
has only up intrinsic orientation, so the modeler uses the
designer’s location to define the chair’s position and
orientation. A new constraint "the chair in front of the
table" is applied on another chair according to a new
designer’s position.

Figure 3. Deictic positioning of a target object.

Positioning zone of a target object: by definition:
zone of space that satisfies all the constraints applied on
this object, considering it as a target object. Each
constrained object in the scene has a positioning zone,
since it is constrained somehow; for example: table, vase,
and chair always have a landmark object that supports
them.

In mathematical terms, the positioning zone
corresponds to three variables, each one is an interval of
continuous values that have a lower and upper bounds.

Positioning zone = {[Xmin, Xmax], [Ymin, Ymax],

[Zmin, Zmax]}
Each interval presents the possible positions of an

object according to each axis. Thus, relative positioning of
an object into the scene corresponds to a set of values for
all the interval variables.

6. Positioning task

When a designer applies a constraint, DEM2ONS
creates an instance of this constraint, according to its type,
and passes it to ORANOS that tries to satisfy it by
executing its method. The method determines the target
object’s positioning zone, in light of landmark object’s
position and orientation, applying the following steps:

- First, it transforms the target object’s positioning zone
into the landmark object’s local coordinate.

- Second, it refines each interval variable in the target
object’s positioning zone, if needed.

- Third, an inverse transformation is applied to obtain
the refined target zone in the world coordinate system.

Figure (4) explains the method for a constraint such as
"Object A is in front of Object B".

 B

 A

X W orld

Y W orld

Front

T he position ing zone

fron t

Figure 4. Positioning zone of a target in light
of the landmark’s location.

If the constraint is satisfied, every interval’s variable of
the target object’s positioning zone is not empty.
ORANOS will pass a message to DEM2ONS containing
the new refined interval domain for all the variables whose
intervals have been affected by this constraint.
Enumerating all the possible solutions is a NP-hard
problem. So DEM2ONS gives only one solution in order
to satisfy the entire Satisfied Constraints List. Then,
DEM2ONS re-instantiates only the variables whose
interval’s domains are reduced and whose previous
instantiations are not included in the new refined intervals.
Thus, few object attributes will be updated and a local
change will take place on the scene. Moreover, the

designer can as well ask DEM2ONS for other possible
solutions, control the produced solution either by changing
the strength of an existing constraint or by adding a new
constraint.

Others approach as [2,15] have main drawbacks: First,
all objects are always orthogonal oriented, thus, it does not
take into account natural orientations of objects in the
scene, and consequently relative positioning is not natural.
And, expressing each constraint by three primitive
constraints is memory-consuming and makes the
constraints solver relatively slow, when the number of
constraints grows up.

On the other hand, our approach deals efficiently with
these drawbacks: it takes into account the orientation of
the landmark object to naturally place the target object and
uses only three variables to represent the object’s
positioning zone.

7. A DEM2ONS implementation

Objects have various uses depending on the context.
Dealing with any context is a too large domain to be
studied. So, we restrict our study to the fitting-out of a
particular scene: the founded model will be, in a great
part, transposable to another scene type. For instance, a
chair and a table have always the same function wherever
they are placed.

We chose to fit-out a living room because it is a
familiar scene, giving to the designer a large freedom to
place objects as he wants, respecting their normal use. The
living room is initially composed with the floor, the walls,
and the roof. The designer tries to furnish the living room
simulating natural processes in the real world. He adds and
removes objects, applies constraints to them, strengthens
unsatisfied constraints in order to make them satisfied.

Figure (5) shows the previous scene with two added
objects: a small table and a lamp. The designer applies
three constraints:

1- Put the small table on the floor
2- Put the lamp on the small table
3- Put the small table at the right of the table

Figure 5.

In this example, when the designer adds the small table
into the scene, an available positioning zone must be

found. For that, the bigger table is moved by the solver to
give the possibility to the small table to be placed. If the
solver cannot found enough space, the constraint is
unsatisfied.

The last examples figure (6) shows a complete scene
with various constraints applied to the objects.

Figure 6.

8. Conclusion

This paper has presented a new version of our
declarative modeler DEM2ONS that offers to the designer
an easy way to describe a scene in a high level of
abstraction using various types of constraints. It integrates
a new constraints solver, ORANOS, based on an efficient
refinement model that supports linear equality and
inequality constraints organized in constraints hierarchy to
deal efficiently with over-constrained problem.

Our implementation deals with a particular scene. Even
the proposed context will be, in a great part, transposable
to another scene type. We hope to explore the ability of
our declarative modeler to support objects with large
domain contexts.

Acknowledgments

The authors would like to thank other members of the
team: Frederic Rubio, Olivier Balet, for their contributions
in implementing several parts of our modeler. Thanks to
Olivier Lhomme who has been generous with his time in
explaining the inner functionality of his global consistency
filtering algorithms. Thanks to Jean-Christophe Aurisset
and Fouad Jennawi, for discussions and comments on an
earlier draft of this paper.

References

[1] Light R., and Gossard D., “Modification of geometric models
through variational geometry”, Computer Aided Design, V. 14,
N. 4, PP. 209-214, July, 1982.

[2] Donikian S., and Hégron G., “A Declarative Design Method for
3D Scene Sketch Modeling”, EUROGRAPHICS’93, V. 12, N. 33,
PP. 223-236, 1993.
[3] Liege S., and Hégron G., “An Incremental Declarative
Modelling applied to Urban Layout Design”, WSCG’97. V. 2,
PP. 272-281, February, 1997
[4] Plemenos D., and Tamine K., “Increasing the efficiency of
declarative modelling”, Constraint evaluation for the hierarchical
decomposition approach. WSCG’97. V. 2, PP. 414-423,
February, 1997
[5] Champciaux L., “Declarative Modelling : speeding up the
generation”, CISST’97, Las Vegas, Nevada, USA, June 30-July
3, PP. 120-129,1997.
[6] Kwaiter G., Gaildrat V., and Caubet R., “ORANOS : Un
Solveur Dynamique de Contraintes Hiérarchiques et
Géométriques”, MICAD’97, International Journal of CADCAM
and Computer Graphics. V.12, N. 1-2, PP. 139-152, 1997.
[7] Caubet R., Djedi N., Gaildrat V., Rubio F., Pérennou G., and
Vigouroux N., “NOVAC: A drawing tool for blind people”,
Interface to real and virtual worlds, France. 1992
[8] Balet O., Gaildrat V., and Caubet R., “Le geste comme
moyen d’expression”, Proceedings of 3IA’94, PP. 177-185,
April, 1994.
[9] Strauss S., and Carey R., “An Object-Oriented 3D Graphics
Toolkit”, Computer Graphics, V. 26, N. 2, PP. 341-349, July,
1992
[10] Mackworth A. K., “Consistency in networks of relations”,
Artificial Intelligence, V. 8, PP. 99-118, 1977.
[11] Borning A., Benson B-F and Wilson M., “Constraint
Hierarchies. Lisp And Symbolic Computation”, An International
Journal, V. 5, PP. 223-270, 1992.
[12] Kwaiter G., Gaildrat V., and Caubet R., “Dynamic and
Hierarchical Constraints Solver with Continuous Variables”,
JFPLC’97.,Sixth French Conference on Logic Programming
and Constraint Programming, PP. 1-11, Orlréans, 26-28 may,
1997
[13] Lhomme O., “Consistency Techniques for Numeric CSPs”,
Proceeding of the 13th international Joint Conference on IA ’93,
PP. 232-238, 1993.
[14] Aurisset J.C., “Interpretation of Spatial Orders in Natural
Language : Integration of Functional and Pragmatical Factors”,
Fifth International Conference on the Cognitive Science of
Natural Language Processing. Dublin, 2-4 September, 1996.
[15] Ligozat G., “Toward a General Characterization of
Conceptual Neighbourhoods in Temporal and Spatial
Reasoning”, Proceeding. of the AAA-94, Workshop on Spatial
and Temporal Reasoning, PP. 55-59, Seattle, Washington, USA,
1994.

