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Abstract

While the fastest path problem has been widely studied with excellent results, little
research has been done on the time dependent multiobjective best paths. Applied
to multimodal urban routing, this approach offers multiple suggestions adapted to
variety of user preferences. We propose a simple model with intersting properties
that allows to use traditional algorithms with little modifications. The experimental
computation time are acceptable for a real world application.
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1 Motivations

With the growth of environmental consciousness and the increasing energy
cost, more and more people tend to use public transport or soft means of
transport as walking or cycling. However, just one mode of transport can not
cover all the needs. Therefore, combining different means of transport can be
an interesting possibility in many situations.
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However, every user has different preferences concerning time or money
spent, pollution, number of changes, etc. Furthermore, preferences depend
on circumstances: if it is raining, the user will not cycle and with heavy
luggage, he will avoid changes. Multiobjective optimisation gives the user
many equivalent suggestions where no solution is better on every objective.

2 Easy problems

2.1 Fastest route

A recent horse race to get the fastest routing algorithm resulted in impressive
results. Computing the shortest path on a road network with constant costs
across a continent can be computed in less than a millisecond (see [2] for a
survey). Algorithms have been extended to the time dependent problem (time
taken on an edge depends on the time) with success [1]. However they focus
only on one mode of transport and only consider the time taken as objective,
which is an easier problem than having arbitrary costs.

Two approaches are used: the time-dependent model and the time-expanded.
The first keeps the existing topology but uses cost functions instead of con-
stant costs. The second model splits the time in a finite number of time
interval and duplicates every node for every time interval. A general trend is
to use the time dependent model on road networks and the time expanded
in timetable based networks (like public transport). Both approaches have
been experimentally confronted on the German railways network in [9]. The
authors favor the time-expanded model due easier modelling, while the time
dependent model has slightly better performances.

2.2 Multimodal fastest route

Two issues have to be resolved: how to model the multimodal network and
how to compute the best path given that network. Considering the modeling
of the network, two approaches have been used. The first one builds a layer
for every means of transport (multi-layer model) and the second has a cost
on each edge for every means of transport (multi-valuated model). The first
model requires a larger graph but can use traditional algorithms, while the
second model is a more compact representation but needs adapted algorithms.

An important property to take in account is the Fifo constraint. This
condition states that given an edge (u,v), leaving the node u later does not
allow to reach the node v earlier. When an user decides to wait for a bus at a
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Fig. 1. Infinite mimimum cost path

node instead of walking he will arrive earlier. This problems occurs specially
in case of multimodal routing with multivaluated edges.

One of the first work on multimodal routing is [11]. The authors use a
multivaluated time-expanded graph with their own algorithm that runs in
O(¢*n®) to compute the fastest path. This algorithm is able to work even on
non-Fifo graph. This allows the authors to merge multiple pedestrian nodes
into some significant ones. The number of nodes handled is between 25 and
1000, while the number of time interval range from 50 to 250 for a runtime of
the magnitude of some seconds.

In [3] the authors model the acceptable transitions between two modes with
an automaton and offer impressive performances. However their approach is
restricted to the fastest route and defining the automaton in advance will cause
the loss of solutions that the user might not have thought about. However,
we wonder how that approache based on defining access points would behave
in a denser environment like a city. Indeed, in the largest instance that covers
Europe and north Amercian, the authors only consider 359 airports, while
the Parisian area has more than 25000 bus stops. The multimodal part being
negligible, the authors use high performance shortest path algorithms on the
road network to achieve their excellent results.

3 Hard problems

3.1  Time dependent minimum cost path

When the objective is not the duration, the optimum path might have an
inifinite length, even if the costs are strictly positive. The figure 1 shows an
example base on [7]; the time taken to walk along an edge is 1. The path of
minimum cost from 1 to 3 infinitely loops over the nodes 1 and 2 before taking
the edge (2,3) with a total cost of 72/6. The authors prove that in order
to have a finite optimal path, the cost function must eventually be bounded:
I >0,7>0,Vt>T, C(t) >b.

The time-expanded model is able to compute the minimum cost path. In
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order to avoid the explicit construction the time-space graph, [8] describes
the Chrono-SPT algorithm that computes the minimum cost path implicitly
manipulating the graph and thus saving memory. The complexity of the
algorithm is in O(m - ¢) where m is the number of edges of the original graph,
and ¢ the number of considered time intervals. The authors use the concept
of cost-consistency to describe acceptable cost functions.

3.2 Multiobjective shortest path

When we want to optimize multiple objective simultaneously, there is rarely a
solution that is better on all objectives. Two solutions where the first is better
on some objective and the second on the others are said to be equivalent. The
set of equivalent solutions is called the Pareto-front. As the number of elements
in the Pareto front grows exponentially with the graph size, so will the runtime
of an algorithm computing it. This is why the multiobjective shortest path
is a much harder problem than the fastest path. From a decider point of
view, providing multiple equivalent solutions is a very interesting approach as
there is no need to make any supposition about how he will choose between two
equivalent solutions. That is why a Pareto-optimal solution is more interesting
than linearizing the objectives into a single one.

The Martins’ algorithm is an extension of the Dijkstra algorithm to the
multiobjective problem. It computes the Pareto-fronts from a single node
to every node of the graph. Different authors suggest improvements on that
algorithm based on bounds to reduce the search space, in a similar manner to
the A* algorithm but with more sophisticated bounds [5]. One work stands
out by it computational results ([4]). However, the authors only consider few
highly correlated objective (duration, cost and distance). They therefore get
only 50 Pareto-optimal solutions on average on a area as big as Europe. A fully
polynomial approximation scheme also exists [10], but to with no experimental
comparison yet.

To our knowledge, no existing publication considered the problem of time
dependent multiobjective paths. Here is an example of edge cost that will
result in an infinite number of Pareto elements. Suppose that walking along
an edge has a cost of 5 at 8:00 and 2 at 10:00 (an urban toll to reduce the
traffic during peak hours). The cost between those two instants is a linear
interpolation; in this situation, waiting a tiny moment more, will result in a
lower cost and therefore an infinite number of Pareto-optimal solutions. A
necessary and sufficient condition to have a finite number of Pareto-optimal
solutions is that the cost functions can be split in a finite number of non-
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decreasing parts.

4 QOur model

4.1 The multimodal graph

Every means of transport is represented by one layer in the multimodal graph.
Edges connect two layers if it is possible to switch from one layer to another
(e.g. from car to foot on car parks) A cost function for each objective is
associated to every edge. The cost functions fulfill the conditions presented
earlier in order to have a finite number of finite paths.

While this model is trivial, it holds very interesting properties that greatly
reduces the complexity of the algorithm running on it: respect the Fifo prop-
erty; models which modes transitions can be done; no approximation.

4.2 Time dependent Martins’ algorithm

The algorithm 2 is a modification of Martins’ algorithm. The only is the way
to calculate the cost vector of a new label. To simplify the notations, we
consider that the first objective is the time. For an edge (u,v), the function
Cuw : R — R? computes the cost vector of the edge at a given time.

A label is a tuple of a node, the cost vector and the predecessor label. A
label is a representation of a path that can be reconstructed by iteratively
following the predecessor label. The o-vector ¢(l) is the cost of the label .

The algorithm maintains for every node i two sets of temporary (7;) and
permanent (FP;) labels. The permanent set will hold exclusively Pareto-optimal
solutions. For implementations reasons, the predecessor of a label is repre-
sented by its node and its rank in the permanent set of the predecessor node.

The algorithm 2 starts from node s at the instant ty. It iteratively selects
the label with the smallest lexical cost, adds it to permanent label set and
creates a new label for each successor. The dominated labels are discarded,
while the non-dominated labels are added to the temporary set. When all
temporary sets are empty, the algorithm stops. As cost functions are such
that there is a finite number finite paths in the Pareto front, the algorithm
will terminate, but there is no guarantee on the execution time.

4.3 Improvement heuristics

When a path from node s to t is needed, if a label is dominated by any label
of P, it is discarded. A common heuristic is the relaxed pareto dominance;
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P+ 0,T; + 0,Vi e N; Ty < {[s, (to,...,0),-, ]}
while (J; T; # 0 do
[ =[n,cy,p,r|  argmin; T;
T, < Tn./{l}; P, < P, U{l}
for ', (n,n') € £ do
U« [0, e + Crs(cn[l]), n, |T5,]]; dominated < false
for " € T, do
If(c(l') >, c(l")): T < T /{1"}
ElselIf(c(I") >, ¢(I')): dominated < true
If(not dominated): T, < T,y U{l'}

Fig. 2. Time dependent Martins’ algorithm

the dominance test is biased in order to eliminate very similar solutions [6,4].
For example a route that lasts two more minutes is not worth considering if
the extra cost is 10 euros. Some Pareto-optimal solutions will be lost, but the
solutions found are still Pareto optimal. Both approaches reduce the number
of considered labels and thus the computation time.

5 Experiments

The goal of this section is to show that our model is fast enough for an actual
application. However a comparison with existing is results if difficult. On one
hand, there are no similar experiments (existing results are for multiobjective
routing with constant costs, consider only few poorly interconnected transport
modes or even only compute the fastest route). On the other hand, we favor
a simple model that can be used with simple algorithm in over complicated
approaches with small computation times, as long as it is acceptable.

5.1 Testing scenario

We used three transport modes: cycling, walking and public transport in San
Francisco. The street map is provided by OSM and public transport (Bart
and Muni networks) data can be freely downloaded. The user can leave its
bike anywhere, but can not use it again later.

We consider up to four different objectives to be minimized: time taken
t, number of modes switches ms, number of lines switches 1s and positive
gain in altitude while cycling a. Line switching occurs when changing bus line
without moving from the bus stop. The start node is chosen randomly from
the cycling layer and the destination node from the pedestrian layer.



T. Griibener et al. / Electronic Notes in Discrete Mathematics 36 (2010) 487494 493

Pareto Optimal Relaxed dominance | No heuristic
Objectives Num. of paths | Time | Num. of paths | Time | Time
t + ms 1.2 71.9 | 1.0 56.8 | 155
t 4+ ms + Is 1.2 75.5 | 1.0 61.2 | 182
t+a 26.9 680 12.7 221 | 3099
t+a+ms+1s| 103 6898 | 16.6 332 | 59071

Fig. 3. One-to-one computation time(ms), 36694 nodes, 171443 edges

5.2 Results

The results in figure 3 shows the average number of elements in the Pareto
front and the computation time. The results are an average of 10 runs where
the source and destination are the same for every test. For every objective
the whole Pareto front is computed and compared to the relaxed dominance.

We can see that our model offers sufficient performances for a real world
application, excepted maybe with four objectives. We notice that results vary
significantly depending on the objectives considered. Indeed the computation
time with two objective can be significantly longer than with three objective
when the objectives are not correlated (like gain in altitude and duration).
When dealing with multiobjective routing, it is very important to think about
the nature of the objectives. The relaxed dominance allows significant speed-
ups when the objectives generate many equivalent solutions.

Due to lack of space, we don’t provide computational results. However,
we showed that the simple heuristics can result in an improvement up to a
factor 150 in time compared to Martins’ algorithm. Also modelling plays a
very important role. If we restrict mode changes at some nodes (the bike can
only be left at public transport nodes), then the computation time reduced to
100ms on instances that were not tractable in 10 minutes.

6 Conclusion and perspectives

Our performances might seem poor compared to the state of the art fastest
path algorithms (time dependent or multimodal). We remind that those are
computational easy problems compared to the multiobjective best path. As
far as we know, our results are the only one that compute the time dependent
multiobjective shortest path. We insist on the fact that our approach doesn’t
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make any approximation and doesn’t suppose any preference of the user.

The performances are sufficient to provide a urban route planing tool.
However, a strong focus on the performances will be needed to grow in objec-
tives and considered area.
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