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ABSTRACT

This paper presents a new method to generate the body
plans of modular robots. In this work, we use a develop-
mental model where cells are controlled by a gene regulatory
network. Instead of using morphogens as in many existing
works, we evolve a more flexible “hormonal system” that
controls the inputs of the regulatory network. By evolving
the regulatory network and the hormonal system in parallel
with a blind watchmaker, we have generated various virtual
robots with interesting inherent properties such as regular-
ity and symmetry. The prototypes of the robotic blocks that
will be used to actually build the real machines are also pre-
sented in this paper.

Categories and Subject Descriptors
1.2.9 [Artificial Intelligence]: Robotics
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1. INTRODUCTION

Modular robots built over the last several years have got-
ten more and more complex. Usually based on cubic blocks,
they embed complex mechatronics to make them more accu-
rate, more efficient and more diversified [25]. In this domain,
the “Molecube” may be seen as an example. First based on
a cube able to turn around its central axis to demonstrate
limited self-replication, Lipson and his team went on to de-
velop new modules to build more complex machines [26].
For example, we can cite the gripper modules able to pick up
objects, the wheel cubes, the camera cubes, etc. To control
these blocks, a neural network is then evolved. However, the
user has to imagine the morphology of the robots by himself.
It means that, in case of modification of the machine’s pur-
pose, a human has to redesign the morphology of the robot
before evolving its controller. In 2007, Christensen proposed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’12, July 7-11, 2012, Philadelphia, Pennsylvania, USA.

Copyright 2012 ACM 978-1-4503-1177-9/12/07 ...$10.00.

Jordan Pollack
DEMO Lab, Volen National Center for Complex
System - Brandeis University MS018
415 South street, Waltham, MA 02454, USA
pollack@brandeis.edu

a robotic approach where the behavior of the machine, also
composed of rotating cubic blocks, is strongly linked to its
morphology [5]. Indeed, instead of having a fixed morphol-
ogy, the robot is self-reconfiguring in order to accomplish its
function. This method generates a very interesting property:
generated robots are capable of self-healing, as multicellular
organisms are.

On the other side, many works have been done in sim-
ulation to generate virtual modular robots. The first ma-
jor work evolving realistic virtual robots is Karl Sims in
1994 [24]. It took another six years before evolved robots
took a step from virtual to reality [18]. Sims used a graph-
based genotype-phenotype map to generate a morphology
controlled by a neural network, while Lipson & Pollack di-
rectly evolved the morphology. Both systems are coevolved
so that the controller is as much as possible adapted to the
morphology. L-Systems have also been used for the same
purpose. Komosinski has made one of the most advanced
work in this domain. Here again, a neural network is coe-
volved with the morphology generator (a L-System) to pro-
duce artificial robots. More recently, artificial Gene Reg-
ulatory Networks (GRN’s) appear to be able, at the first
hand, to generate complex morphologies when they control
a developmental model [11, 3] and, at the second hand, to
control different kinds of agents [16, 19]. Schramm was even
able to grow a digital aquatic worm that moves by oscillation
generated by the same regulatory network [22].

However, few of these works have been designed to ac-
tually build a real robot. With this idea in mind, Hornby
proposed a model where a L-System is evolved to control
a “turtle” factory which could produce a virtual robot con-
trolled by a neural network [14]. Here, the best robots have
actually been built by hand and were capable of moving like
the virtual robots.

The main motivation of this paper is to use a cell-based
developmental system driven by a gene regulatory network
to generate real robot morphologies. To present this new
method to generate robots’ body plans, the paper is orga-
nized as follows. The next section presents the prototypes
of real robotic blocks that will be used to build the robots.
Section 3 presents the developmental model, the gene reg-
ulatory network and the hormonal system. In section 4,
the blind watchmaker interactive evolutionary method is de-
scribed. Section 5 presents a set of results obtained with this
model and proposes a discussion about the complexity of the
morphologies and the emergent properties obtained such as
regularity and symmetry. The paper concludes with possible
extensions of this work.
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Figure 1: The robots are composed of three different
blocks (from left to right): a noop block, a hinge block
and a motor block. Blocks are tied together by the
use of dovetail latches inserted between the blocks.

2. THE ROBOTIC BLOCKS

In this work, we took inspiration from living organisms to
design our machine. An organism is usually comprised of
billions of functional units: the cells. Cells can have various
functions (neural, muscular, etc.). Thus, our machine uses
multiple blocks that have different functions. The blocks
must be easy to assemble to be able to conceive an automatic
assembly process. When a machine is built, its morphology
will not evolve anymore (as many grown living beings do
not modify their morphology). With this constraint, the
blocks do not need a dynamic linking and unlinking system.
Finally, each block must be cheap to produce to keep the
robot’s overall cost low.

With all these requirements, we have designed each block
as a cube, scaled to 2 inches (about 5cm) per side. As pre-
sented in figure 1, three different units are used in the work:
(1) A noop block is used to build the structure of the robots
(such as bones are the structure of the body). This block
does not have any function, except the capacity to be linked
to other blocks. (2) A hinge block can rotate around a cen-
tral axis within the range [—m/3;7/3]. This block does not
move by itself, but can be actuated by a neighboring motor
block through two actuators, as tendons are actuating a real
articulation. (3) A motor block actuates the hinge block.
The actuators protubing from the hinge blocks are tied to
the motor so that the motor can actuate the hinge.

This choice to separate the hinge and the motor comes
from a biological observation. In Nature, most articula-
tions and muscles are separated. They are linked together
with tendons. With this method, muscles can have vari-
ous shapes and sizes, according to local constraints (space,
needed strength, etc.). We decided to use this idea for our
building blocks for two main reasons. First, motors are usu-
ally the heaviest parts of the robots. Modifying the position
of the motors in the robot can modify its center of mass,
which can be relevant. Secondly, we can also imagine the
possibility to increase the strength of a joint by having mul-
tiple motors actuating the same hinge (as multiple muscular
cells actuate the same articulation).

Because, our robotic system does not reconfigure itself
since each block’s position is given by the evolved body plan
of the robot (its morphology), we can keep the linking sys-
tem as simple as possible. As presented in figure 1, it consists
in a dovetail latch slipped between two blocks.

These blocks are currently at the stage of prototypes but
are close to a final version. A 3-D printer is used to produce

the plastic structure of the blocks and the dovetail latches.
Servo motors (Futaba S3102) are embedded in the motor
blocks and are linked to the hinge block via the actuators.
These actuators are still the main issue of realization: they
need to be strong, light and inelastic. Three solutions have
been tested: using nylon strings, steel strings or having the
actuators embedded to the hinge, as presented in figure 1.
Because the two first solutions provide very unprecise move-
ment due to the complexity of the strings’ length calibra-
tion, the last solution should be the one adopted for the
final robots. It requires a more elaborated conception of the
hinge blocks but strongly simplify the assembly process of
the blocks and increase the precision of the movement of the
global articulation.

To produce the plans of the robots, we propose a novel
approach based on a developmental model in which cells are
controlled by a gene regulatory network coupled to a novel
hormonal system. In comparison to other methods such as
Graphtals or L-Systems, this approach has the advantage to
be biologically plausible. Moreover, some properties such as
regularity and symmetry emerge from the system, without
any prior encoding. The next section presents this model.

3. THE DEVELOPMENTAL MODEL

3.1 The cells and their environment

The developmental model is based on cells that act in a
3-D discrete environment. Each cell has a unique identi-
fier given at its birth, a division plan and a position in the
environment. Two main types of cells are available: (1) un-
differentiated cells or stem cells that can divide as much as
they want to and (2) differentiated cells coming from a spe-
cialization of a stem cell to one of the three following types
of cells: B-cells, H-cells or M-cells. When a cell is differen-
tiated, it cannot divide anymore. The use of stem cells to
drive the organism’s growth has already been successfully
used to developed complex shapes by Fontana in [12].

At each time step of the simulation, the stem cells can
perform one of the following actions:

o Symmetric division: when a stem cell performs this
action, a new stem cell is positioned in the position
of the mother cell while the mother cell migrates in
direction to its division plan. Whereas the mother cell
keeps the same identifier, the new cell receives a new
unique one. Its initial division plan is oriented as its
mother’s one.

o Asymmetric division: a stem cell can divide to create
a new differentiated cell. In this case, the mother cell
first produces an exact copy (same internal state) of
itself in the direction indicated by its division plan.
While the newly created cell stays a stem cell, the
mother cell differentiates to a B-cell. Thus, this cell
cannot divide anymore.

e Differentiation: a stem cell can become a B-cell. Be-
cause a differentiated cell cannot divide, this action
stops the proliferation of a stem cell.

e Rotation: a cell can reorient its division plan. When
it choses this action, it can turn in one of the four
following directions: right, left, top or bottom. While
turning, the cell stays at the exact same position.



e Special division: a cell can divide asymmetrically twice
during one time step. In this case, it first produces a
H-cell at the initial position, a M-cell one voxel away
from the initial position in the direction of its division
plan and a copy of itself two voxels away.

Naturally, two cells cannot be in the same voxel of the
environment. To satisfy this requirement, all inconsistent
actions are disabled at a time step of the growth. For exam-
ple, if a cell wants to divide, the position in direction of the
division plan is first checked. If the position is not free (in
other words, already occupied by another cell), the division
is disabled. The cell will have to choose another action. At
least two actions are guaranteed to be always available: ro-
tation and differentiation. Indeed, both actions only affect
the cell itself: no new voxels are necessary.

After the growth of the organism from a single cell to a
connected set of cells, each cell is translated to a robotic
block: B-cells and stem cells are interpreted as noop blocks,
M-cells produce motor blocks, and, finally, H-cells produces
hinge blocks.

To evaluate the morphologies generated, a virtual robot is
built and dropped down in a 3-D physics environment. This
simulator is used to visualize the produced robots before ac-
tually building them. We use the well-known Bullet physics
engine coupled with OpenGL for the graphic visualization.

To select an action, cells are using a gene regulatory net-
work. The next section details our model based on a simpli-
fication of Banzhaf’s GRN [1].

3.2 The gene regulatory network

3.2.1 Background on GRN’s

In Nature, each cell of a living organism has a gene regula-
tory network (GRN) that controls its behavior. The possible
actions are coded by genes in its DNA and their expressions
are controlled by the regulatory network [8]. The GRN uses
external proteic signals from the cell’s environment to ac-
tivate or inhibit the transcription of genes. Cells can col-
lect external signals thanks to protein sensors localized on
the cell membrane. The expression of genes determines the
cell’s behavior.

Artificial regulatory networks are based on the same prin-
ciple. Torsten Reil was one of the first to propose a biolog-
ically plausible simulation of a GRN [20]. He defined the
genome as a bit string. In his model, each gene started with
the particular sequence of 4 bits, named the “promoter”.
The dynamics of this regulatory network is very close to
Banzhaf’s, detailed below.

Banzhaf proposed an artificial regulation network model
strongly inspired by real gene regulation [1]. The aim of
this model was to study the behaviors generated by a bi-
ologically plausible regulatory network. He has generated
many random bit strings and observed various behaviors
from oscillators to faster or slower transitory patterns.

Regulatory networks have been proven successful to grow
cell based artificial creatures with more or less complex mor-
phologies [11, 10, 15]. More recently, regulatory networks
have also been used as behavior generators to solve the pole
balancing problem [19] or to control a foraging virtual robot
[16]. Schramm also used a GRN to control the morphology
development and the behavior of swimming worms [22].

However, no real robotic application has been yet pro-
posed for this system. Our work proposes to use a simplifi-

cation of Banzhaf’s regulatory network to control the cells
of our developmental model.

3.2.2  Presentation of Banzhaf’s regulatory network

Banzhaf’s GRN may be currently one of the best models.
It has been designed to be as close as possible to a real gene
regulatory network. As DNA is composed of a sequence of
nucleotides, Banzhaf’s network is encoded within a sequence
of bits. As a real gene starts with the particular sequence
of nucleotides, a gene in Banzhaf’s network starts with a
particular sequence of 8 bits named the “promoter”. A gene
is then encoded next to this sequence by 5 32-bit integers,
named the “sites”. This mechanism allows the generation
of a variable number of genes in a fixed size chromosome.
However, as in Nature, it also generates a certain amount of
noncoding DNA, the probability to have a promoter being
very low (278). This noncoding DNA (98% of human DNA)
is thought to be used in Nature to protect the genome from
mutation by lowering the probability that a mutation will
affect a coding nucleotide.

Banzhaf’s model has not been designed to be evolved nor
to control any kind of agent. However, Nicolau used an
evolution strategy to evolve the GRN to control a pole-
balancing cart [19]. Even if the cart behavior has been shown
consistent within its environment, the evolution of the GRN
has been an issue. In our opinion, the difficulty of the evolu-
tion is due to: (1) the noncoding DNA and (2) the dynamics
of the network. The next section details these two points
and proposes a possible adaptation of the model to be more
efficient as a computational model.

3.2.3 Adaptation of Banzhaf’s model to an efficient
computational model

Encoding of the network

As presented above, the noncoding DNA, which may have
positive benefits in natural systems, impedes the evolution
of artificial GRNs.

To get rid of the noncoding DNA, we propose a new en-
coding of the network. In our model, each protein is encoded
as an indivisible component composed of four attributes:

e The protein identifier coded as an integer between
0 and p. The upper value p of the domain can be
changed in order to control the precision of the GRN.
In Banzhaf’s work, p is equal to 32, which is the size
of a site. In our work, we have decided to increase the
precision by setting p to 64.

e The enhancer identifier coded as an integer between 0
and p. The enhancer identifier is used to calculate the
enhancing matching factor between two proteins.

e The inhibitor identifier coded as an integer between 0
and p. The inhibitor identifier is used to calculate the
inhibiting matching factor between two proteins.

e The type determines if the protein is an input protein
(whose concentration is given by the environment of
the regulatory network and which regulates other pro-
teins but is not regulated), an output protein (whose
concentration is used as output of the network and who
is regulated but does not regulate other proteins) or a
regulatory protein (internal protein that regulates and
is regulated by other proteins).



The GRN is defined as a set of these proteins. A GRN
can have a variable number of proteins. To be evolved, the
GRN is encoded in a genome defined as a variable length
chromosome of indivisible proteins. Each protein is encoded
within four integers: three between 0 and p for the three
different identifiers and one between 0 and 2 for the type
of the protein. If an evolutionary algorithm has to evolve
this chromosome, the modification operators have to be re-
defined. First, the crossover consists in exchanging subparts
of two different networks. Because proteins are indivisible,
the crossover points have to be chosen between two proteins.
It ensures the integrity of each sub-network. The local con-
nectivity is thus kept. Only new links between the different
sub-networks are created. The mutation can be applied in
three equiprobable ways: mutating an ezisting protein by
randomly changing one of its four integers, adding a new
protein randomly generated or remowving one protein ran-
domly chosen in the network.

Dynamics of the network

The dynamics of the network is, in our opinion, a cru-
cial point that determines the reactivity of the network. In
Banzhaf’s network, the enhancing dynamics of each protein
are given by the following equation:
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where e; is the enhancing value for a protein i, N is the
number of proteins in the network, c¢; is the concentration
of protein j, uj’ is the enhancing matching factor between
protein ¢ and protein j (calculated by counting the num-
ber of different bit of the proteins signatures) and wu},, is
the maximum enhancing matching factor observed. f is a
control parameter described later. The modification of the
concentration of a protein ¢ is then given by the differential
equation dc; /dt = §(e; —hi)c; — P, where e; is the enhancing
signal previously presented, h; is the inhibiting signal (cal-
culated exactly as the enhancing signal by using inhibiting
matching factors instead of the enhancing matching factors),
¢; is the current concentration of the protein i and ® is a
function that keeps of the sum of all protein concentrations
equal to 1.

As presented in this last equation, the evolution of the
concentration of a protein i is directly related to its current
concentration. In other words, if a protein’s concentration
appears to be null, this protein will never be produced any-
more. This is problematic because, in the case of a compu-
tational model, it means that an output completely disabled
at a particular time of the simulation will never be activated
anymore. With this observation, we propose to change the
differential equation by the following one:
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With this new equation, the current concentration of the
protein i does not intervene anymore. The scaling function
is also divided instead of subtracted in order to have a more
proportional scaling factor.

With this new encoding and these new dynamics, the reg-
ulatory network should be easier to evolve and more reactive
to its environment. Next section presents how this regula-
tory network is embedded within the cells of our develop-
mental system.

GRN
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Figure 2: The chromosome that encodes the GRIN
is subdivided into two parts: the first nine proteins
are output proteins and the remainder of the chro-
mosomes encodes input and regulatory proteins.

3.2.4 Encapsulation into the cells

Cells have 5 different actions: symmetric division, asym-
metric division, differentiation, division plan reorientation
(rotation) and special division. However, if a cell choses to
rotate, it also has to decide in which direction it wants to
(left, right, top or bottom). To encode this in the GRN,
we decided to subdivide the outputs into two groups of out-
put proteins: the first group contains 5 output proteins that
match with the 5 possible actions and the second group con-
tains 4 output proteins that encodes the 4 possible rotation
directions when the rotation is selected in the first group of
proteins. Thus, 9 output proteins are necessary to encode
the possible actions of the cells.

As illustrated by figure 2, these 9 output proteins are en-
coded at the beginning of the genome. Their three identi-
fier (protein, enhancer and inhibitor) can be mutated but
the type cannot. The remaining elements of the genome
are composed of 25% of input proteins and 75% of regula-
tory proteins (empirically chosen'). It can be mutated and
crossed over as previously presented.

At each step of the simulation, the cells execute the reg-
ulatory network for 25 steps (found to be within reasonable
range during prelimanery tests) and select the action corre-
sponding to the maximum protein concentration of the first
5 proteins: if the first protein has the maximum concen-
tration, the cell divides symmetrically, if the second protein
has the maximum concentration, the cell divides asymmetri-
cally and so on. When the rotation action is chosen, it gives
access to the second group of output proteins. The cell cal-
culates the maximum value of the last 4 output proteins’
concentrations to determine in which direction to turn.

The coefficients S and ¢ presented in the dynamics model
are also encoded in the genome. They modify the dynamics
of the network. [ affects the importance of the matching fac-
tor and ¢ affects the level of production of the protein in the
differential equation. The lower both values, the smoother
the regulation. At the opposite, the higher the values, the
more sudden the regulation. Both values are encoded as
a second independent chromosome that only contains both
values. They are coded with double-precision floats in [0.5; 2]
(empirically chosen').

Finally, we must provide inputs to the regulatory network
in order to be able to select an action at every time step of
the growth. In most developmental models, cells can pro-
duce morphogens such as in [17, 15]. They are informative
molecules that diffuse in the environment and are the in-

!Empirically chosen values have been determined by a series
of pre-tests to find a reasonable range.
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Figure 3: Examples of generated inputs with Bézier
surfaces. They show the diversity of signal we can
obtain by using this generative method.

puts of the GRN. In few other models, the morphogens are
hand-coded in the environment [4, 7]. This method is less
realistic than the first one but strongly reduces the com-
plexity of the simulation. Because of its complexity, the
first method generally leads to simple shapes such as 2-D
colored rectangles, 2-D salamanders or 3-D tubes. The sec-
ond method make possible to generate more complex 3-D
colored structures such as cubes, diamonds or spheres. In
this work, we choose an intermediate solution. Cells have a
hormonal system that produces the inputs of the regulatory
network. The next section details this system.

3.3 The hormonal system

The genotype of our developmental model also describes a
novel hormonal system. This hormonal system generates the
inputs to the gene regulatory network based on the timestep
and index number of the cell. In order to be efficient, each
input protein of the GRN must have a different hormonal
production profile that provides the concentration of the in-
put protein all along the simulation. Moreover, this profile
must also be different for each stem cell in the organism.
Indeed, if all the cells would have the same profile, it would
not allow any variation of their behaviors: they would all
perform the same sequence of actions. In summary, the
concentration ¢; of an input protein i is related to two pa-
rameters: the current time step ¢ of the simulation and the
identifier of the cell in which the concentration is calculated.

Many models of artifical hormones exist in the literature.
From those applied to robotics, we can cite AHHS used to
control the behavior of Symbrion and Replicator reconfig-
urable robots [13]. Here, an hormone is diffusing throught
the robot and is used for local communication purpose.

Thus, the hormonal profile of an input protein can be
coded by a 3-D surface. The first two dimensions of the
surface correspond to the simulation time in abscissa and
the identifier of the cells in ordinate. The third dimension
gives the concentration of the corresponding input protein’s
concentration according to the two first dimensions. The
global hormonal system is thus defined as a set of p 3-D
surfaces. Each surface is associate with the identifier of the
input protein (which varies between 0 and p, p being the
precision of the GRN).

To generate these surfaces, we used Bézier’s algorithm [2].
Originally used to design car bodyworks, it allows the gener-
ation of a surface by the mean of a given set of checkpoints.
In this work, we use a Bézier surface of order (n = 10,m =
10). This order corresponds to the number of checkpoints.
For a (10, 10) order surface, (104 1) % (104 1) = 121 check-
point k; ; are necessary. With these checkpoints, the z co-
ordinate of every point of coordinate (z,y, z) of the surface

is given by the following equation:
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Figure 3 presents some examples of randomly generated
surfaces using this method. They show the diversity of pos-
sible landscape generated with only 121 checkpoints.

Each possible input protein must have a Bézier surface
assigned. To do so, we have decided to allocate a surface
to each possible protein identifier. When the identifier of
an input protein is changed by mutation to another value, a
new surface is thus assigned. With this method, p surfaces
are necessary for a GRN of precision p (a protein identifier
is coded with an integer between 0 and p. Here p = 64).
To encode this system into the genome, the checkpoints are
encoded in the third chromosome that consists in a common
set of 121 x p double-precision floats. Each value can vary
in the range [—1.0;1.0]. This chromosome can be classi-
cally crossed over and mutated. In order not to overflow the
regulatory network with the input proteins, the input con-
centrations given by Bézier surfaces are normalized between
0 and 0.05.

3.4 Summary of the model

To summarize, cells are acting in a 3-D discrete environ-
ment. Stem cells can divide symmetrically, asymmetrically
or twice in the same time step to produce an articulation.
They can also reorient their division plan and differentiate to
B-cells. To control their developmental behavior, cells have
a gene regulatory network coupled to a hormonal system.
We have proposed an adaptation of Banzhaf’s well-known
GRN to make it more efficient for computational purposes.

Figure 4: 9 robots evolve at the same time in the
physics simulator. A 6-second phase oscillator gen-
erates the robots’ movements. The user can select
the robot that he wants to evolve. The evolution
only consists in mutating 10% of the genome. Spac-
ing between robots has been reduced for this par-
ticular picture.
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Figure 5: Examples of robots obtained in a single run of the blind watchmaker. Generated robots are
complex and diversified, especially in few generations with few individuals evaluated at each generation (9

robots only).

The hormonal system uses Bézier surfaces to generate the
inputs to the GRN. Each input protein is produced by a
hormone, a 3-D surface indexed by the simulation time and
the cell identifier.

In order to evolve the organisms (and thus the robots’
body plan), both systems are encoded in a genome com-
posed of three independent chromosomes: the first chromo-
some encodes a set of indivisible proteins used to build the
architecture of the GRN, the second chromosome encodes
the dynamics parameters and the third chromosome encodes
the checkpoints necessary to generate the hormonal system’s
Bézier surfaces.

In order to evaluate the complexity of possible morpholo-
gies generated by this model, we have decided to use a Blind
WatchMaker instead of a classical evolutionary algorithm.
The aim is to study the capacity of the GRN to inherently
produce properties that other models usually include such
as symmetry or regularity. We also want to verify that our
system is able to generate a wide variety of morphologies
keeping in mind its possible evolution with an evolutionary
algorithm.

4. EVOLUTION OF THE ROBOTS:
THE BLIND WATCHMAKER

The Blind WatchMaker is an interactive evolutionary method

first proposed in 1986 by Richard Dawkins [9]. He originally
used this method to sustain the theory of natural evolu-
tion using a pedagogical model called biomorphs, fractal-like
creatures generated with a small set of genes. This method
gave birth more recently to the field of interactive evolu-
tion. Many applications are nowadays based on this princi-
ple to solve various problems. It has for example been used

with genetic programming to generate realistic camouflage
[21], or with HyperNeat to generate 2-D pictures [23] or 3-D
shapes [6].

In this work, we first generate 9 random genomes. The
developmental model is then executed to generate the cor-
responding virtual robots. When the robots are created,
they are dropped down in the physics simulator in 9 differ-
ent points of the environment so that they cannot interact
with one another. Figure 4 illustrates nine random robots
evolving in the physics simulator. In this particular exper-
iment, we have limited the number of developmental steps
to 20 and the number of stem cells to 10 in order to control
the scale of morphologies. Later, these limits will be needed
based on the actual availability of robotic cells, but might
be based on simulating biologically plausible mechanisms.

During the first 5 seconds, the robots do not move in order
to stabilize their structure on the floor. Then, to make the
robots move in the environment, an oscillator controls the
movement of every hinge of the robots: they rotate clockwise
for 3 seconds (the rotation angle of a hinge cannot be above
—m/3) and then counterclockwise for 3 seconds (within a
m/3 limit). A third of the oscillators are inverted: when
it should turn clockwise, an inverted hinge actually turns
counterclockwise and vice versa. Even though this method
generates simple movements, it is sufficient to visualize the
potential of the generated morphologies.

The user can use window controls to navigate from a robot
to another to observe its movement and its properties. The
user can also select the robots he wants to evolve. The
application then generates 9 new robots by mutating 10%
of the selected robot’s genome. We have decided not to use
the crossover operator to enhance the diversity of generated



robots. For the same reason, the mutation rate has been
deliberately chosen high.

With this method, we have generated a pool of diversi-
fied robots. The next section presents some of them and
discusses properties of robots obtained.

S. RESULTS AND DISCUSSION

Figure 5 presents 5 robots obtained during the same run
of the interactive evolutionary algorithm. These examples
show the diversity of morphologies obtained.

The first observation we can make about these robots is
the capacity of the regulatory network to generate robots of
different sizes. The GRN is able to generate as well small
robots (such as robot R4) or bigger ones (such as R1 or R2).
This is mainly possible by using the differentiation action
that stops the proliferation of the stem cells.

Moreover, interesting properties emerge during the evolu-
tion. After only 9 generations, the robot R1 already presents
some regularity in its morphology. We call a regularity a set
of cells with the same organization (relative positioning and
differentiation of the cells) that appears at different places
in the organism. For example, the robot R1 is composed of 3
similar “legs” and two identical structure build with double-
row structure of cells (see the second picture of R1 on figure
5). The robot R2 also has some regularities. It is composed
of 2 long “legs” of the same size. The same observation can
be done on robots R3 and R5 (2 small legs on one side for
the robot R5).

In some cases, these regularities can be very interesting:
on the robot R4, it produces a double row of H-cells and M-
cells, which generates a double joint in the robot. This struc-
ture multiplies the strength of the resulting joint. Figure 6
presents the growth sequence of the robot R4. The double-
row cell structure appears at the beginning of the growth,
from step 1 to 3. The initial cell first divides. Then both
cells perform the same actions for 2 steps, before changing
their behaviors, certainly because of a change in the hor-
mone profile of some input proteins at this particular point
of the simulation. While the first cell produces the left part
of the robot, the second cell quickly stops its development
after few more (parasitic) reorientations of its division plan.

As proven by the blind watchmaker approach, some of the
robots can be symmetric such as robots R2 and R3 on figure
5. This property is particularly interesting because it is usu-
ally expected in robot’s morphologies. A symmetric machine
will have more chances to be stable. The symmetry seems
to be achieved using a similar method which achieves regu-
larity — but with a rotation before two equivalent sequences
of actions are performed.

The use of a developmental model to generate robot body
plans seems to be a promising approach. Some desirable
properties such as regularity and symmetry is easily ob-
tained with this system. As presented above, we have ob-
tained these properties in few generations with a very small
population. This is not necessarily the case in works based
on HyperNEAT or L-Systems which requires many more
generations of evolution. Moreover, the hormonal system
provides for much more creativity than a classical morphogens
production regulated by the GRN. For now, the profiles of
the hormone are encoded in the genome, but we could eas-
ily imagine using hormones and morphogens simultaneously.
Morphogens produced by the cells could, for example, con-
trol the production profile of the hormones.

Step | Cell1 | Cell 2 | Cell 3 | Cell 4 || Organism
0 Birth r
1 SyD2 Birth T
2 TurnB | TurnB T
3 SpD SpD T
4 SyD3 | TurnB | Birth T
5 TurnB | TurnB | SyD4 | Birth T
6 TurnB Diff Diff | TurnB F
7 TurnB - - Diff F
8 SpD - - - F
9 AsD - - - W
10 Diff - - - W

Figure 6: Actions performed by the stem cells only.
Each line corresponds to a growth step. Signi-
fication of the acronyms: SyDz=Symmetric divi-
sion to create a new cell r; AsD=Asymmetric Di-
vision, SpD=Special division, Diff=Differentiation
and TurnB=Turn to Bottom

6. CONCLUSION AND PERSPECTIVES

This paper presents an innovative system to generate robot
body plans. It is based on a developmental model in which
cells are controlled by a gene regulatory network. We have
based our GRN model on Banzhaf’s by modifying the en-
coding of the GRN into a chromosome without any non-
coding DNA and by modifying its dynamics. The resulting
GRN is easier to evolve and is more adapted to a compu-
tational purpose. Instead of using morphogens as in most
developmental models, we have decided to provide input to
the GRN using a hormonal system which is differentiated
by the cell identifier, the input protein, and the simulation
time. These hormone profiles are generated by the use of
Bézier surfaces controlled by a finite set of 121 checkpoints
which are evolved with the GRN.

We have produced various virtual robots by evolving in
the same time the GRN and the hormonal system with a
blind watchmaker. Resulting robots have various sizes, from
small to very large, and two interesting properties emerge
from the systems: many creatures have regularities in there
morphologies, such as “legs” or double-joints, and some of
them are symmetric. This is possible because of the oscilla-
tions, which is a well-known property of GRN system.

We anticipate much future work on this model. First, we
have to produce more robotic blocks and actually build the
virtual robots into reality. The prototypes of the robotic
blocks already exist but the building of a whole robot will
likely require some modifications and re-engineering of the
robotic blocks (actuators, motors, dovetail latches, etc.) as



well as cause constraints to be added to the physics simulator
(motor strength, block friction, etc.).

The joints’ controllers are also something we have to work
on. They only consist of oscillators moving the joints clock-
wise and then counterclockwise. Two main solutions are
currently considered to improve the controller. First, we
can imagine that the same GRN also controls the joints when
the growth of the robot is finished. This method has already
been applied with success by Schramm in [22]. The second
solution could be to plug a neural network or an equivalent
method to the joints. Here, two solutions are possible: at the
first hand, the neural network and the developmental model
can be evolved at the same time or, at the second hand, it
can be evolved after the evolution of the morphology.

In order to generate efficient robots, their genomes will
have to be evolved by an evolutionary algorithm. The fitness
function continues to be the main issue, as the field needs to
move beyond linear movement in a simulated environment.
To have other kinds of morphologies, we are considering in-
cluding complexity, symmetry and regularity measures to
the fitness function as well as utilizing multi-objective tech-
niques for the co-evolution of body and behavior.
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