Simultaneous cooperative and conflicting behaviors
handled by a Gene Regulatory Network

Sylvain Cussat-Blanc!2, Stéphane Sanchez', Yves Duthen'
! University of Toulouse - IRIT; 2 rue du Doyen Gabriel Marty 31042 Toulouse, France
2 DEMO Lab, Volen National Center for Complex System; Brandeis University MSO18, 415 South street,
Waltham, MA 02454, USA
cussat@brandeis.edu; sanchez @irit.fr; duthen @irit.fr

Abstract—In many current developmental models, artificial
Gene Regulatory Networks (GRN) simulate cell behavior. More
specifically, GRN can determine and regulate cell behaviors using
collected external signals through protein sensors. In this paper,
we propose to use the GRN properties to control an agent using
external perception. More precisely, we will try to evaluate how
a GRN can handle and manage simultaneously four conflicting
and cooperative continuous actions to solve a new experiment,
the Radbot.

I. INTRODUCTION

Artificial Gene Regulatory Networks are usually used in
developmental models to perform cell behavior such as migra-
tion, division or differentiation. In such models, a GRN can
determine, and regulate, cell behaviors through the production
of internal and external proteins. Over the past ten to fifteen
years, regulatory networks have been proved efficient as a
central system for cell based developmental models such
as [1], [2]. Since 2010, new experiments using GRN as a
controller have emerged in the literature as in Nicolau, in
Joachimczak or in Schramm works [3], [4], [5]. From our
past experiences using GRN [6] and from the works of [3],
we will try to show that a GRN can make a decent adaptive
behavioral controller. More specifically, we think that a GRN
can successfully learn how to handle simultaneously several
continuous actions or behaviors to fulfill a specific task. By
continuous actions, we mean parametrized actions that stay
active for a while in the simulation and that only evolves
through their parameters changes. To prove this, we have to
evaluate how a GRN performs in learning how to keep several
competitive and/or cooperative actions active at the same time,
and how it can switch from one to another to fulfill its assigned
task. To that end, we propose a new experiment, the Radbot.
This experiment is designed to evaluate the learning of the
management of four continuous actions and, thanks to its easy
parametrization, it allows a correct study of how a known GRN
[7] converges while learning. If successful, this GRN will be
used to produce controllers for agents that need to coordinate
several actions, to prioritize one of them or to maintain the best
compromise amongst them according to the current situation.
Examples of such trained agents can be found in many works
related to artificial intelligence in video games as different
as car racing [8], first person shooter [9], [10], [11] or real
time strategy games [12]. It is however important to note

that in most of these works, actions or behaviors are played
sequentially and at full intensity while our intend is to obtain,
using machine learning, a controller that can play simultane-
ously different actions and/or mitigate their effects if necessary
instead of systematically stopping them. The following section
of this paper will present the Radbot experiment. Section III
proposes a method based on a gene regulatory network to solve
the Radbot problem. Section IV shows the results of three main
experiments with two different environments (discrete and
continuous) and different complexities. The paper concludes
with a discussion of obtained results and many perspectives
as well for the benchmark as for regulatory networks.

II. THE RADBOT PROBLEM

The Radbot problem is designed as a benchmark to evaluate
performance in learning how to manage and coordinate mul-
tiple continuous actions (or behaviors) in a dynamic world.
More specifically, we are interested in problems where an
agent must maintain and manage more than one action to
correctly perform in its environment. These actions share
critical resources or/and they benefit from each other influence.
In such cases, the agent might need to simultaneously perform
at least two tasks or it might need to switch continuously from
one task to another. The Radbot problem puts an agent in
such a situation: the agent will have to handle accurately four
parametrized actions that are either conflicting or cooperative
to solve the problem. Obviously, any mistake in the manage-
ment of the four continuous actions will lead to a more or
less quick failure. The problem consists in a robot, the Radbot,
which have to go through a linear environment while managing
two energy accumulators, A and B, and its internal tempera-
ture 7. Within this environment, two different radiations, R1
and R2, increases the temperature of the robot according to
their respective intensity. The Radbot can gradually activate
two shields, S1 and 52, to protect itself from respectively
radiations R1 and R2. The more it activates a shield, the more
it absorbs corresponding radiation and the more it prevents the
robot from heating up. If temperature 7" reaches its maximum,
the Radbot overheats and it is destroyed. The shields share and
consume the energy from accumulator 5. Each shield converts
absorbed radiation in energy stored in accumulator A. The
Radbot consumes energy from accumulator A to run through
the environment, but it produces energy to fill accumulator B

Level Activate S1 Activate S2 Cool down Run
at dg1 at g0 at deo0l at drun
A +as1 * 051 +as2 * 052 | —Acool * Ocool |—@run * Orun
B _bSI * 651 _bSZ * 6(1 NA +brun * 6'run
Temp |+radgy * 051 |+radse * d52|—Scool * Ocool NA
Speed NA NA NA Msp * Orun
TABLE I

EFFECT OF THE DIFFERENT BEHAVIORS ON THE STATE PARAMETERS OF
THE RADBOT

doing so. The Radbot can cool down its internal temperature
T by consuming exclusively energy A. Finally, all behaviors
cannot be fully applied. The sum of activation of the actions
cannot exceed 100%. In other words, if the Radbot decides
to trigger only one action at 100%, all other actions will be
disabled. Figure 1 summarizes the possible behaviors of the
Radbot. These actions can be formalized by table I. In this
table, each column corresponds to the modification of each
parameter of the Radbot’ state (lines). All the equation are
applied at every time step of the simulation. J, can take values
between 0 and 1. They correspond to the degree of activation
of the corresponding action. The sum of J, must be equal to
one. It means that all the resources are distributed to all the
actions. a., by, Scoor and My, are positive values set up during
the definition of the Radbot. According to their values, they
will directly influence the complexity of the problem. Finally,
radgy (respectively radgs) is the quantity of radiation R1
(respectively R2) emitted by the environment at the considered
time step. For example, the activation of shield S1 at §g; will
increase (+) the level of energy A of agy * dr1, where apg; is
a parameter given during the definition of the Radbot. The run
behavior will calibrate the speed of the Radbot with the value
My, *%6yyn, Where M, is a predefined parameter that expresses
the maximum possible speed of the Radbot. The difficulty of
this problem is to coordinate and manage the four actions (run,
cool, activate shield S1, activate shield S2) to go through
the maximum distance in the environment: all the actions
cannot be fully applied at the same time; the robot has a total
behavioral load and has to share it out among the different
actions. For example, the robot can allocate 25% of its load
to each action and, if the robot wants to increase the intensity
of a specific action, it has to decrease the intensity of another
one. Besides, due to the share and production of energetic
resources stored in A and in B, the actions to handle cooperate
two by two (Activate S1 with cool down or Run; Activate S2
with cool down or Run) and compete two by two (Activate
S1 against Activate S2 ; cool down against Run). There are
many ways to configure the Radbot: we can configure the gain
and the loss of each component for each action; the changes of
intensity of both radiations in the environment (discrete values
within discrete areas as represented in figure 2, continuous
values along the environment (functions, see figure 3) or totally
random values) and the maximum behavior load of the Radbot.
Playing with these parameters allows to implement very easy
to very complex problems. To generate the necessary inputs
to make chose an action in reaction to its environment and
its internal variables the Radbot can use a maximum of six
Sensors:

R1 R2

" 4

Protect from external radiations

Cool internal

1emperature - . X
<t > Competitive actions

D e

<:> Cooperative actions

Fig. 1. Behaviors interactions : Activate S1 and Activate S2 are conflicting
because they consume the same energy resource B and the activation of one
of them competes directly with the activation of the other (preventing the
Radbot to protect itself from one of the two radiations). Cool down and Run
are conflicting for they share energy A and cooling down the Radbot prevents
to move forward at maximum speed (and vice versa). Activate S1 (or S2)
cooperates with cool down for it fills accumulator A that cooling down needs,
and cool down can compensate a partial shielding from activation of S1 (or
S52). At last, Activate S1 (or S2) cooperates with Run for they produce needed
energy of each other and an effective shielding allows a slower run while a
faster run allows a more partial shielding.

— consumes energy
< -- fills energy

Run forward

AI t it | |
ntensity | distance |
10 ! . R1=f()
. R2 = g(x)
0 100 200 300 400 X
Fig. 2. The Radbot in discrete environment. distance is a sensor of the

RadBot that represents the distance to the next radiation switch.

o energya (0 to 100) that indicates its current energy level
stored in A,

e energyp (0 to 100) that indicates its current energy level
stored in B,

o tempr (0 to 100) that indicates its current internal
temperature (0: cold to 100: overheated),

o Tad®’™™1 (0.0 to 1.0) that indicates the normalized level
of radiation R1 in current position,

e rady’™™2 (0.0 to 1.0) that indicates the normalized level
of radiation R2 in current position,

e distance that indicates the distance to the next switch
of maximum intensity of radiations R1 and R2, as
represented on figures 2 and 3.

A . |
Intensity ! distance
] -
10 K b o~ R1=1(x)
N I ! / \ 7 i
\ I Vs \ p:
1
AN PN N ¢
\ I \ ’
\ /
\N R2 =g(x)
0 AV >
0 100 200 300 400 X
Fig. 3. The Radbot in continuous environment. distance is a sensor of the

RadBot that represents the distance to the next radiation switch.

In this paper, we propose a first approach to solve the
Radbot problem. This approach is based upon an artificial
gene regulatory network that regulates the activity of the
different continuous actions of the Radbot. This method seems
to be well-adapted to this problem. Indeed, the expression of
the different genes involved in the regulatory network will
represent the expression of the behavior in the Radbot and
will be regulated by the network. The next section presents
the Banzhaf’s regulatory network used in this paper.

III. THE GENE REGULATORY NETWORK
A. Background on artificial regulatory networks

Many current developmental models rely on an Artificial
GRN to simulate cell differentiation. These systems are more
or less inspired by gene regulation systems of living systems.
In living systems, cells of organisms have several functions.
They are described in the organism genome and their expres-
sions are controlled by the regulatory network [13]. Cells use
external signals from their environment to activate or inhibit
the transcription of genes into mRNA (messenger Ribonucleic
Acid), the copy of the daughter cell’s DNA (Deoxyribonucleic
Acid). Cells collect external signals through protein sensors
localized on the cell membrane. Then, gene expression within
a cell determines its behavior. Eggenberger [14] was one
of the first to use a regulatory network to generate a 3-D
organisms able to move in its environment by modifying its
morphology. In [15], Reil proposed a biologically plausible
model, with a genome defined as a vector of numbers. In this
model, each gene starts with a particular sequence (0101),
named the “promoter”. Then, a graph is used to visualize
the gene activations and inhibitions over time with randomly
generated networks. Observations revealed the existence of
several patterns such as gene activation sequencing, chaotic
expressions or cyclic expressions. The author also pointed
out that the system was able to display pattern self-repairing
after random genome deteriorations. Banzahf also described
an artificial GRN model strongly inspired by real-world gene
regulation [7]. This model will be detailed in the next section.
Starting from these two seminal models, various extensions
and variations have been explored, for addressing various
concerns and applications. Several works addressed Artificial
Embryogeny problems with models of GRN ranging from
cellular automaton modeling [16] to stripped-down version of
GRN combined with complex developmental systems [2], [1],
[17]. Some works have also addressed control problems: using
GRN as a control function to map a virtual robot’s sensory
inputs to its motor actuator values. This has been applied in
various setup, from foraging agents [4] to pole balancing [3].

B. The model

In this work, we consider the artificial Gene Regulatory
Network (GRN) introduced by [7]. In this model, the network
is coded into the genome as a sequence of 32-bit strings
(termed sites). Each gene in the genome is marked by a
particular sequence named the “promoter”. When a promoter
is detected, the next five sites represent a gene sequence that
codes for a protein to be produced. Each site codes for a

different molecule of the protein. The concentration of this
protein will determine the expression level of the matching
gene. To determine the protein’s concentration and thus
the gene expression level, two sites, coded upstream of the
promoter, enhance and inhibit the protein production. The
dynamics of enhancer signal e; and inhibitor signal h; of a
protein ¢ are given by the following equations:

€; =

=|

1 N + ot
Z Cj eXpB(uJ' _umam)
j=1

1
N 4
J

¢; expPy ~tmes)

WE

hi =

Il
A

where N is the total number of proteins, c; is the concentration
of the protein j, § is a scaling factor, u;r (resp. u;) is the
matching degree of the enhancer (resp. inhibitor) site with the
protein j and u} . (resp. u. ..) is maximum enhancer’s (resp.
inhibiter’s) matching degree observed in the whole genome.
The matching degree uj (resp. ;) consists in counting
the number of “1” resulting from the application of a XOR
operation to the protein j and the enhancer (resp. inhibitor)
pattern. The exponential function increases the impact of high
value of gene expression and filter low values. Finally, the
concentration of produced protein p; follows the differential
equation dc; /dt = 6(e; — h;)e; — ®(1.0), where ¢ is a scaling
factor and ®(1.0) constrains the sum of all concentration
equals to 1.0.

C. Extension to a computational model

Originally, Banzhaf’s artificial GRN is limited to study
internal network dynamics. In order to use this model as a
control function, [3] proposed an extension by adding inputs
and outputs to the regulatory network. This extension is
detailed in the following.

1) Inputs: Input values are coded with integers that will
correspond to existing proteins. These input proteins can be
involved in the regulatory process in two different ways: with
their signatures to be considered during the matching process
(in equations of e; and h;) or with their input value to modify
the differential equation dc;/dt of protein concentrations.
Here, the second solution has been chosen as it allows a better
resolution with regard to a continuous domain of the problem
addressed in this paper.

2) Outputs: In order to produce outputs in the regulatory
networks, genes are separated into classes: transcription fac-
tors TF-genes and product proteins P-genes. Whereas TF-
genes play the roles of regulatory proteins as in the original
Banzhaf’s model, P-genes are only regulated but do not regu-
late other proteins: their expression levels provide the desired
output signals. These two kinds of genes are identified by
introducing two new promoters, whose signatures are chosen
so that their probability of occurrence is equivalent and their
matching as low as possible.

D. Evolutionary algorithm

1) Evolution strategy: A classical (250+250) evolution
strategy (ES) evolves a population of regulatory networks
coded by the binary string previously presented. The
(250+250) evolution strategy consists in producing 250 off-
spring from 250 parents and choosing the 250 best genomes
to form the next population. The fitness function that evaluates
each genome consists of calculating the distance traveled by
the Radbot. The evolution strategy evolves the genome in
order to maximize this distance. Genome modifications are
only regulated by a common bit-flip mutation operator. The
mutation rate is set to 2% at the beginning of the run and
adapted by the 1/5 rule of evolution strategies [18]: (1) the
mutation rate is doubled when the rate of successful mutation
is higher than 20%; (2) the mutation rate is divided by two
when the rate of successful mutation is lower than 20%; (3) the
mutation rate is doubled when the number of gene mutations
in the population is less than 250 by generation. The regulatory
network’s genome is randomly initialized. It is then duplicated
9 times with a mutation rate of 2% in order to increase the
appearance probability of regulation sites.

2) Radbot problem encoding: In this paper, the 6 inputs and
4 outputs are used to control the Radbot. The 4 outputs directly
regulate the 4 possible behaviors of the Radbot (Activate
S1, Activate S2, Run and cool). Each input is mapped to a
sensor: input; to energya, inputy to energyp, inputs to
tempr, inputy to radgi, inputs to radgrs and inputg to
distance. The inputs are normalized then scaled between O
and 0.05 in order not to overflow the regulatory network with
input proteins. Outputs are also normalized. They express the
activation level of each behavior. The sum of the four output
values is lower or equal to 1 (which is an inherent property of
the regulatory network). Because more than 4 output proteins
are generally available in the regulatory network, we decide
to split the genome in 4 parts, one for each output. The actual
value of an output is given by the maximum concentration
of proteins in its matching part. At last, to help manage
the complexity of the problem, shields S1 and S2 have an
activation threshold . The shield outputs follow the equation:

OutputcrN
4

if Outputgry <=0

Outputspicrqg =
PUtshield {1 if Outputgry > 0

where Outputspierq is the final value sent to the Radbot to
activate shields S1 or S2 and Qutputggry is the value read
from the regulatory network. 0.4, 0.5 and 0.6 are the 3 values
used as threshold 6 in the next experiments. They allow to
gradually increase the problem complexity and to stress the
Radbot more. Next section presents two experiments we have
made using the GRN-based approach to control the Radbot.

IV. EXPERIMENTS
A. Parameters of the Radbot

In the following experiments, the Radbot is set up with
identical parameters. It allows us to study the behavior of the
Radbot according to the environment and not according to its
setup. This setup has been empirically determined, through a
set of tests, to generate a rather complex problem that can

100000

10000
%)
1]
9]
£
i
1000
100
0 20 40 60 80 100 120 140 160
Generations
Fig. 4. Influence of the shield’s full activation threshold on the convergence

of the evolution strategy

Level Shield S1 Shield S2 Cool down Run
at dg1 at dgo at d.oo0l at drun
A +5051 +5052 —50co0l —5drun
B 154, /s NA [+120un
Temp | +radry * 051 | +radsze * dso2 | —100.00; NA
Speed NA NA NA 100,un

TABLE II
RULES WITH ALL PARAMETERS INCLUDED. rad. AND radg WILL EVOLVE
DURING THE SIMULATION ACCORDING TO THE POSITION OF THE RADBOT
IN THE ENVIRONMENT. 8, WILL BE REGULATED BY GRN AND WILL
DRIVE THE RADBOT.

be solved with reasonable computation time. The Radbot’s
maximum speed is 10 units per time step. It means that if the
Radbot only activates the running behavior, it will go forward
by 10 units at each simulation step. When the Radbot reaches
the maximum speed, it consumes 5 units of energy from A and
fills B with 12 units of energy. The activation at full intensity
of shield S1 (or shield S2), within an area that receives x
units of radiation R1, consumes ‘i—(,) units of energy from B
and fills A with % units of energy. Cooling down at full rate
consumes 5 units of energy from A to decrease temperature
T by 10 units. Finally, the Radbot energy levels A and B and
the temperature 7" can vary from O units to 100 units. When
T is equal or greater than 100 units, the Radbot overheat and
is (virtually) destroyed. This marks the end of the simulation.
At the beginning of each simulation, energy levels of A and
of B are set up to 100 units and the Radbot is cool (i.e. T
set up to O unit). Table II summarizes all the parameters and
their effect on the equation presented in table 1.

B. Discrete mode

In the discrete mode of the Radbot problem, the environ-
ment is built as a sequence of areas with different levels of
radiations. In this experiment, the environment has 1000 areas.
Each area is numbered from 0 to 999 and its size is 100 units.
Even areas receive a 10 units of radiation R1 and O units of
radiation R2 at each time step and odd areas 10 units of radia-
tion R2 and 0 units of radiation R1. The 10 units correspond to
the temperature T' caused at each time step to the Radbot if the
shield is activated at 0%. The activation of the shield reduces

0
0 20000 40000 60000 80000 10000C o 20000 40000

(@) (b)

(a) Energy and temperature levels during all the simulation; (b) Behavior levels during all the simulation; (c) Zoom on all the levels between time

Fig. 5.
steps 20000 and 20500.

the heat increase according to the equation presented in table
II. The regulatory network has been evolved for each value of
shield activation threshold previously given (0.4, 0.5 and 0.6).
Figure 4 shows the different convergence curves obtained with
the three threshold values. The convergence is longer as the
threshold increase. As expected, the problem is more complex
as the threshold increase.

1) Threshold 0.4: Figure 5 represents the data extracted
from the simulation with the threshold set up at 0.4. Whereas
curves (a) and (b) represents levels of energy, temperature
and actions activation through the whole simulation, curves
(c) focus on a particular region of the simulation. On curves
(a) and (b), a short period of stabilization of the regulatory
network before having constant behaviors is observable. This
period is about 12000 time steps. After that, all levels remains
globally stable, oscillating area after area. Curve (c) focuses
on few time steps after the oscillatory stage to detail the
behavior of the Radbot. First of all, we can notice that the
shields (blue curves) are never activated to their maximums.
The regulatory network prefers balance this by pushing up the
cooling behavior (dark-green curve). Whereas the shield S1 is
sufficiently high, the shield S2 stays relatively low. In order to
protect the Radbot from radiation R2, the regulatory network
chooses to increase the cooling down and the speed behaviors
of the Radbot. However, the dark-orange dotted curve shows
the heating of the Radbot that this choice implies. Finally, we
can also notice the variety of possible behavior shifts generated
by the regulatory network. It can be smooth such as for cooling
down and running behavior, very steep such as during the
inhibition of the shield S'1 or between such as for the activation
of both shields.

2) Threshold 0.5 and 0.6: Curves on figures 6 and 7 present
the data extracted from the simulation using a threshold value
of 0.5 (first line) and 0.6 (second line). Curves 6(a) and 7(a)
represent the behavior levels during the whole simulation. We
can notice that the simulation is more complex through the
increase of the threshold and this causes a strong optimization
of the regulatory network stabilization stage. Indeed, whereas
the stabilization stage takes about 12000 time steps with the
threshold at 0.4 (see curves (a) of figure 5), its duration
strongly decreases with the increase of the complexity: about
2500 time steps with a 0.5 threshold and 1000 time steps with

. - -
60000 80000 100000 20000 20100 20200 20300 20400 20500

(©)

HH
1l

(@) (b)

Fig. 6. Threshold=0.5 (a) Behavior levels only during all the simulation; (b)
Behavior, energy and temperature levels between time steps 20000 and 20500

(a) (b)

Fig. 7. Threshold=0.6 (a) Behavior levels only during all the simulation; (b)
Behavior, energy and temperature levels between time steps 20000 and 20500

0.6. This optimization is necessary in order to keep the Radbot
alive in the first steps of the simulation. Another observation
we can make is about the management of different behaviors.
Whereas the use of the shield was not very optimal with a
threshold value equal to 0.4 (figure 5(c)), a more complex
simulation helps a better use of them. First, with threshold
equal to 0.5 (figure 6(b)), the transitional stages between shield
shifts have been strongly optimized: the regulatory network
shift from a shield to the other in very few time steps. When
the threshold increase again to 0.6 (figure 7(b)), the shields
are really used as expected, the shield S1 being used at 80%
and the shield S2 at 100%. Moreover, even if the transition
phases during a shield shift are not so optimized, the regulatory
network balances with a strong use of the cool down behavior
for a short period.

3) Preliminary conclusion: The more the Radbot problem
is complex, the more the convergence time lasts. However,

[0
20000 20100 20200 20300 20400 20500 20000 20100 20200

o /
20300 20400 20500 20000 20100 20200 20300 20400 20500

Shield S1 ——

Shield S

[ob=
20000 20100 20200 20300 20400 20500 20000 20100 20200

(a) threshold=0.4
Fig. 8.

this also implies a strong optimization of the transitory phase
of the behaviors and a better use of all the system embedded
in the Radbot. Whereas this section was treating with discrete
shift of radiation in the environment, next section deals with
a continuous environment. Areas will be replaced by two
opposite sinusoidal variation for the radiations.

C. Continuous: sinusoidal variation of the radiations

In the continuous mode, two functions replace the areas
of the discrete mode. These functions give the levels of
radiations R1 and R2 according to the position of the Radbot
in the environment. In this particular experiment, the levels of
radiations are given by following equations:

radC =5 * sin(x/20) + 5
radD = —5 x sin(x/20) + 5

where x is the position of the Radbot in the environment.
These equations have been made in order to produce sinusoidal
radiations in opposite-phases. The size of a phase is equal
to 40m = 125. In other words, the Radbot will receive
exactly the same radiations every time it travels for 125
steps. Figure 8 represents the curves of level of energy and
temperature (top) and of the different behavior (bottom) for
each possible activation threshold of the shields (from left to
right: 0.4, 0.5 and 0.6). We can observe that on every curves,
the Radbot compensates the lack of shield S2 by a strong
amount of reparation. Shield S1 is usually sufficiently well-
used to protect the Radbot from the corresponding radiation.
An interesting behavior has emerged with the threshold 0.5:
the Radbot leaves the shield S2 and prefers strongly speed-up

(b) threshold=0.5

Behavior levels of the Radbot in a continuous environment between time steps 20000 and 20500.

20300 20200 20300 20400 20500

(c) threshold=0.6

and cool down in the same time. This behavior is regulated
in order to keep all the level in good ranges. Whereas level
A strongly decreases and level B and temperature T strongly
increase during the fast run, the Radbot strongly slows down
and keeps a high level of shield S1 in order to regenerate
as much as possible all the resources. This behavior was not
expected and proposes an interesting alternative to the perfect
use of the shields. With a threshold value equal to 0.6, the
shields are both globally well managed but transition phases
do not match with the radiation curves. Once again, the Radbot
compensates this lack of precision by speeding up during the
transition phases. The experiment proves the capacity of the
regulatory network to answer as well in a discrete environment
as in a continuous one. Next section presents the diversity of
produced behavior on the discrete problem.

D. Diversity of obtained behaviors

The last experiments present one resolution of the Rad-
bot problem by a gene regulatory network in various cases
of environments and complexities. This section focuses on
only one of these cases to study the diversity of generated
behaviors. To do so, we decide to choose a discrete world
with the lower threshold value for the shield activation (i.e.
0.4) so that the convergence of the regulatory network will be
as easy as possible. Figure 9 presents 3 different behaviors
obtained. Figure 9(a) has the most expected behavior: the
Radbot activates the shields at the maximum. It always keeps
a small amount of reparation in order to compensate the
temperature accumulated during the transitory phases. The
strategy allows the Radbot to keep a relatively high speed,
that could be optimized if the shields were completely disabled

o i L L | 0
20000 20100 20200 20300 20400 20500 20000 20100

(a) (b)

o - — -
20300 20500 20000 20100 20200 20300 20400 20500

(©)

Fig. 9. 3 different behaviors generated by 3 evolved regulatory networks in a discrete world with a shield activation threshold at 0.4. (a) Both shield are well
managed that allows the Radbot to run faster than usually. (b) The Radbot mainly uses the shield S1 and cool down and run faster in an area with radiation
R2. (c) Shields are not used as expected in both cases but energies and temperature are maintained at good levels.

when there is no corresponding radiation. In figure 9(b), the
shield S1 is perfectly managed, with a total activation and
inhibition consistent with radiation S1. Unfortunately, shield
S2 is almost not used at all. In the areas with radiation R2,
the Radbot compensates by increasing its speed and cooling
more. It implies huge variations of the energy and temperature
levels. In figure 9(c), shields are not so well managed. As
always, the Radbot uses run and cool not to be destroyed by
radiations. Unlike in figure (b), here the Radbot is able to keep
the energy and temperature levels very stable, with a very low
heating. This strategy was not expected but seems to be also
efficient. According to the variety of behaviors and especially
according the obtained behavior on figure 9, we can expect
the regulatory network to be able to optimize the use of the
shields just by giving it one more objective: optimizing the
speed of the Radbot. The next experiment shows how adding
this parameter to the fitness function optimize each part of the
regulatory network.

E. Speed optimization

In this experiment, we decide to optimize the distance
covered by the Radbot and its speed. We want the Radbot
to run through the environment as fast as possible. The
previous experiments were limited to 50000 time steps so that
inefficient GRNs would not lock the optimization algorithm.
Best GRNs usually reach the end of the environment in
about 39000 simulation steps. But this amount of needed
steps to perform a successful run do not influence fitness
calculation for the fitness of the previous experiments is
essentially the distance traveled by the Radbot. To make the
Radbot swifter, we decide to penalize the Radbot with the
duration of the simulation. The fitness function is now given
by fitness = distance_traveled — simulation_duration.
Figure 10 presents the curves of Radbot behavior and levels
during the speed optimization phase, after 166, 206, 4429
generations. The graphics are zoomed after the stabilization
stage. Whereas figure (a) presents classical patterns already
presented in previous experiments, the more the optimization
goes, the more the shield activation are optimized. First, they
level of activation of the shields (see (a) and (b)), that allows a
decrease of the use of the cooling behavior and a first increase

of the speed. Then, the transition phases between two areas
are optimized (see (b) and (c)). This optimization is slower
than the previous one but allows a new increase of the speed
during the transition phases because the cooling behavior is
lesser and lesser necessary.

V. CONCLUSIONS AND PERSPECTIVES

This paper presents a new benchmark for behavior simula-
tion: the Radbot. This benchmark consists in a virtual robot,
the Radbot that evolves in an one dimensional environment.
During its journey, it has to protect itself against two differ-
ent kinds of radiation with two shields (one for each kind
of radiation). The robot can also cool down to reduce its
internal temperature that is increased by unstopped radiations.
The behavior of the robot consists in managing its different
activities: activate shields, cool or run. Each action consumes
and/or produces two different kinds of energy, that also has
to be managed by the robot. These actions are not binary: the
level of activation of each action can be adjusted by the robot
between 0% and 100% but their sum can not exceed 100%.

This paper also proposes an original method of resolution
of this benchmark. An extended version of Banzhaf’s Gene
Regulatory Network, already used to solve the pole balancing
problem [3] and to generate French flag patterns [6], has here
been used to generate the behavior of the Radbot in different
situations. The results of these experiences denote the capacity
of the regulatory network to generate an adapted behavior to
its environment. These results are very encouraging and must
be compared with other existing methods such as NEAT [11],
Artificial Neural Networks or Learning Classifier Systems.

The regulatory network has been here studied in two par-
ticular cases of the Radbot problem: a discrete environment
and a continuous environment. These environments do not
allow us to study the generalization capacity of regulatory
networks. I could be interesting to make the experiment in
a random environment. Such an environment could be based
on the discrete environment, then the radiations received by
the Radbot will be randomly computed areas after areas.

The complexity of the regulatory network is also something
we have to work on. Even if the obtained results are promising,
the computational cost is still expensive using this method.

I | L |
0
20200 20300 20500 20000 20200

(a) Generation 166

|
20300

(b) Generation 206

0
20000 20100 20200 20300 20500

(c) Generation 4429

Fig. 10. Behavior optimization to increase the speed of the Radbot. (a) At the beginning of the speed optimization, the Radbot covers the whole environment
in 31241 time steps. (b) At the half of its optimization, it takes 24294 time steps to reach the end of the environment. (c) At the end of the optimization, it

only takes 18160 time steps.

The evolution strategy has been deployed on 128 CPUs to
obtained these results. In our opinion, this complexity comes
from two factors: the encoding of the regulatory network as
a bit string and the dynamics of the regulatory network itself.
The encoding of the GRN, very close to the natural encoding,
generates a lot of junk DNA which is good in nature to defend
from mutations but not interesting in our computational case.
Moreover, only the mutation can be applied, the crossover
being too aggressive to the network. The dynamics does not
allow the production of non existing proteins. In other words,
if the concentration of a protein is null, this protein will never
be produced anymore. This is a limitation in the case of the
behavior generation because it means that an unused action
can not be used anymore. It might be interesting in future
works to elaborate a new GRN more specific to behavioral
handling problem. A GRN that does not have junk DNA and
that allows crossover to perform a better exploration of the
solution space.

REFERENCES

[1] M. Joachimczak and B. Wrébel, “Evo-devo in silico: a model of a
gene network regulating multicellular development in 3d space with
artificial physics,” in Proceedings of the 11th International Conference
on Artificial Life. MIT Press, 2008, pp. 297-304.

[2] J. Knabe, M. Schilstra, and C. Nehaniv, “Evolution and morphogenesis
of differentiated multicellular organisms: autonomously generated dif-
fusion gradients for positional information.” Artificial Life X1, vol. 11,
p. 321, 2008.

[3] M. Nicolau, M. Schoenauer, and W. Banzhaf, “Evolving genes to balance
a pole,” Genetic Programming, pp. 196-207, 2010.

[4] M. Joachimczak and B. Wrébel, “Evolving Gene Regulatory Networks
for Real Time Control of Foraging Behaviours,” in Proceedings of the
12th International Conference on Artificial Life, 2010.

[5] L. Schramm, V. Valente Martins, Y. Jin, and B. Sendhoff, “Analysis
of Gene Regulatory Network Motifs in Evolutionary Development of
Multicellular Organisms,” in Proceedings of the 12th International
Conference on Artificial Life, 2010.

[6] S. Cussat-Blanc, N. Bredeche, H. Luga, Y. Duthen, and M. Schoenauer,
“Artificial gene regulatory networks and spatial computation: A case
study,” in Proceedings of the European Conference on Artificial Life
(ECAL’11). MIT Press, Cambridge, MA, 2011.

[71 W. Banzhaf, “Artificial regulatory networks and genetic programming,”
Genetic Programming Theory and Practice, pp. 43-62, 2003.

[8] J. Muifioz, G. Gutierrez, and A. Sanchis, “A human-like TORCS con-
troller for the Simulated Car Racing Championship,” in Proceedings
2010 IEEE Conference on Computational Intelligence and Games,
August 2010, pp. 473-480.

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

S. Priesterjahn, O. Kramer, E. Weimer, and A. Goebels, “Evolution of
human-competitive agents in modern computer games,” in In Proceed-
ings of the IEEE Congress on Evolutionary Computation (CEC, 2007.
G. Robert and A. Guillot, “A motivational architecture of action selection
for non-player characters in dynamic environments,” 2005.

K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Real-time neuroevo-
lution in the nero video game,” IEEE Transactions on Evolutionary
Computation, pp. 653—668.

V. Scesa, C. Raevsky, S. Sanchez, H. Luga, and Y. Duthen, “Rule fusion
for the imitation of a human tutor.” in CIG, G. N. Yannakakis and
J. Togelius, Eds. IEEE, pp. 154-161.

E. H. Davidson, “The regulatory genome: gene regulatory networks in
development and evolution,” Academic Press, 2006.

P. Eggenberger, “Evolving morphologies of simulated 3d organisms
based on differential gene expression,” in Proceedings of the Fourth
European Conference on Artificial Life. MIT Press Cambridge, MA,
1997, pp. 205-213.

T. Reil, “Dynamics of gene expression in an artificial genome - implica-
tions for biological and artificial ontogeny,” Advances in Artificial Life,
pp. 457-466, 1999.

A. Chavoya and Y. Duthen, “A cell pattern generation model based on
an extended artificial regulatory network,” Biosystems, vol. 94, no. 1-2,
pp. 95-101, 2008.

R. Doursat, “Organically grown architectures: Creating decentralized,
autonomous systems by embryomorphic engineering,” Organic Com-
puting, pp. 167-200, 2008.

I. Rechenberg, “Evolution strategy,” Computational Intelligence: Imitat-
ing Life, pp. 147-159, 1994.

