Three simulators for growing artificial creatures

Sylvain Cussat-Blanc, Jonathan Pascalie, Hervé Luga, Yves Duthen

Abstract— Artificial embryogeny aims to develop a complete
organism starting from a unique cell. For years, plenty of
developmental models have been introduced. The main interests
are reported on morphogen positioning, differentiation mecha-
nisms and cellular interactions. In this paper, we show how the
developmental model Cell20rgan has been extended to become a
multi-level simulator able to work both on morphogen position-
ing thanks to an hydrodynamic layer and on cellular interaction
with a physical layer. Through different experiments, we show
the capacities of such a model with a “muscular joint” able
to move in a physical world and a small organism able to
create substrate vortices thanks to the hydrodynamic engine.
The inspiration of such a set of simulators is provided the
gastrulation stage of vertebrate embryos. During this stage, the
embryo reorganizes its environment to continue its growth.

I. INTRODUCTION

Nowadays, many developmental models can produce dif-
ferent kinds of creatures starting from a single cell. With
the aim to produce a complete ecosystem composed of
various adapted creatures, many questions are still pending.
One of them can be formulate as follow: how to simulate
a complete creature composed of thousands of cells that
can interact together and with a physical realism, which
allows the creature to develop a high-level behaviour? In
other words, we want to simulate the cellular interaction of
a creature bearing in mind the physical laws that can be
applied in the whole creature. To provide the first ideas to
answer to this difficult question, we propose in this paper
a set of simulators composed of our developmental model
Cell20rgan, a physics engine and a hydrodynamic simulator.
They will allow simulating a creature in different worlds,
with different laws and with different levels of details.

Our previous works proposed a developmental model,
named Cell20rgan [1], based on a strong simplification
of the natural model. Using this model, we are able to
develop different kinds of artificial creatures: assemblies of
organs able to perform a user-defined action or user-defined
shaped organisms. The developmental model is a chemical
simulator where organisms can develop a metabolism, have
self-repairing capacities and user-defined functions. In this
paper, we have linked our developmental model to two new
simulators: a physics engine and a hydrodynamic simulator.
The aim of these simulators is to increase creatures’ possibil-
ities by simulating its behaviour in different virtual worlds.
Creature’s fitness function can be computed in these worlds
separately in the purpose to give different objectives in the
different worlds to creatures.

Sylvain Cussat-Blanc, Jonathan Pascalie, Hervé Luga and Yves Duthen
are with the VORTEX team, University of Toulouse and Computer Sciences
Institute of Toulouse — UMR 5505 ; 2 rue du Doyen Gabriel Marty, 31042
Toulouse Cedex 9 ; email: {cussat, pascalie, luga, duthen} @irit.fr

Whereas the physics engine can simulate high-level crea-
ture movements, the hydrodynamic simulator can solve some
limitations of the developmental model, especially concern-
ing the morphogen positioning (morphogens are information
substrates that allow the embryo to position itself in its en-
vironment). In comparison to a classical diffusion algorithm
widely used in developmental models of literature, a hydro-
dynamic engine allows more possibilities. Organisms will
have the possibility to create fluid flows to move substrates
or structures to organize the environment to its convenience.
It could, for example, simulate the gastrulation stage of
vertebrate embryos in which morphogens are positioned
in the environment thanks to a physical invagination that
induce many flows in the environment, as explain by some
physicist’s theories as [2].

This paper is organised as follows. Section 2 gives the
related works on artificial development and artificial creature
production. Section 3 summarizes the model, first introduced
in [1]. Section 4 details the physics layer. We explain
the choice of physics engine and we show the parallel
development of an artificial muscular joint in both chemical
and physical worlds. Section 5 presents the hydrodynamic
simulator and some experiments we have done using this
simulator. Finally, the integration of three simulators con-
cludes this paper by giving an idea of the potential of such
a simulator set and outlining possible future work on these
simulators.

II. RELATED WORKS

Over the past few years, more and more models concern-
ing artificial development have been produced. A common
method for developing digital organisms is to use artificial
regulatory networks. Banzhaf [3] was one of the first to
design such a model. In his work, the beginning of each gene,
before the coding itself, is marked by a starting pattern named
“promoter”. This promoter is composed of enhancer and
inhibitor sites that allow the gene activations and inhibitions
regulation. Another different approach is based on Random
Boolean Networks (RBN) first presented by Kauffman [4]
and re-used by Dellaert [5]. A RBN is a network in which
each node has a boolean state: activate or inactivate. The
nodes are interconnected by boolean functions, represented
by edges in the net. Cell function is determined during
genome interpretation.

Several models dealing with shape generation have re-
cently been designed such as [6], [7], [8], [9], [10], [11].
Many of them use gene regulation and morphogens to drive
the development. A few produce their own morphogens
whereas others use “built-in” environment morphogens. Dif-
ferent shapes are produced, with or without cell special-

Fig. 1. The cell plan in its environment. It contains substrates (hexagons)
and corresponding sensors (circles)

isation. The well-known French flag problem was solved
by Chavoya and Duthen [9] and Knabe [10]. This problem
shows model specialisation capacity by the mean of multiple
colour shifts.

In their models, produced organisms have only one func-
tion: to fill up a shape. Other models, most often based on
cellular automata or artificial morphogenesis (creatures built
with blocks), are able to give functions to their organisms
[12], [13], [14]. Here, creatures can walk, swim, reproduce,
count, display... Their goals are either led by user-defined
fitness objectives that evaluate the creatures responses in
comparison to those expected, or only led by their capacity
to reproduce and to survive in the environment.

In order to bridge the gap between these two kinds
of model, we propose a multi-level simulation based on
Cell20rgan. Few models presented in literature use different
scales of simulation during the creature’s development. We
can cite Eggenberger Hotz who was one of the first to use
a physics engine to develop his creatures and give them
behaviours [15]. Some others models use the same kind of
physics engine to simulate cell adhesion forces but not to
give them a high-level behaviour [7], [8], [11]. The next
section presents our developmental model. It is based on gene
regulatory networks and an action selection system inspired
by classifier rule sets. It has been presented in details in [1].

III. SUMMARY OF Cell20rgan
A. The environment

To reduce simulation computation time, we implement
the environment as a 2-D toric grid. This choice allows a
significant decrease in the simulation’s complexity keeping
a sufficient degree of freedom.

The environment contains different substrates. They spread
within the grid, minimizing the variation of substrate quan-
tities between two neighbouring points. These substrates
have different properties such as spreading speed or colour,
and can interact with other substrates. Interactions between
substrates can be viewed as a great simplification of a chem-
ical reaction: using different substrates, the transformation
will create new substrates, emitting or consuming energy.

Sensor ouputs $:|enstity values)

.. precondition1 = action1 (priority
® precondition2 = action2 (priority
(0] o q -

= precondition3 = action3 (priority’
b= precondition4 = action4 (priority

)
)
)
)

Selection of admissible actions
(precondition and cell energy)

Best action choice
(maximum priority)

Execution of the action by the cell

Fig. 2. Action selector functioning: sensors and cell energy are used to
select admissible actions. The best action is chosen according to the rule
priority.

Formally, this chemical reaction can be written as follow:
/A !/ / / 6
a181+a2sa+...+ans, — a1s1+asso+...4a,, s, (Oenergy)

where s; represents substrates, a; € N and a;» e N @ e
1..n, j € 1..m are stoichiometric coefficients of the reaction
and 0 € R the quantity of energy produced (if positive) or
consumed (if negative) during the reaction. For example, the
reaction 2A+B — C (450) produces one unit of C substrate
from two units of A substrate and one of B. The reaction also
produces 50 units of energy.

To reduce the complexity, the environment contains a list
of available substrate transformations. Only cells can trigger
substrate transformations.

B. Cells

Cells evolve in the environment, more precisely on the
environment’s spreading grid. Each cell contains sensors and
has different abilities (or actions). An action selection system
allows the cell to select the best action to perform at any
moment of the simulation. Finally, a representation of a GRN
is available inside the cell to allow specialization during
division. Figure 1 is a global representation of our artificial
cells.

Each cell contains different density sensors positioned
at each cell corner. Sensors allow the cell to measure the
amounts of substrates available in the cell’s Von Neumann
neighbourhood. The list of available sensors and their posi-
tion in the cell are described in the genetic code.

To interact with the environment, cells can perform dif-
ferent actions: perform a substrate transformation, absorb or
reject substrates in the environment, divide (see later), wait,
die, etc. This list is not exhaustive. The addition of an action
is simplified by model implementation. As with sensors, not
all actions are available for the cell: the genetic code will
give the available action list.

Cells contain an action selection system. This system is in-
spired by the rule set of classifier systems. It uses data given
by sensors to select the best action to perform. Each rule
is composed of three parts: (1) The precondition describes
when the action can be triggered. A list of substrate density

intervals describes the neighbourhood in which action must
be triggered. (2) The action gives the action that must be
performed if the corresponding precondition is respected. (3)
The priority allows the selection of only one action if more
than one can be performed. The higher the coefficient, the
more probable the rule selection. Its functioning is presented
in figure 2.

Division is a particular action performable if the next three
conditions are respected. First, the cell must have at least one
free neighbour cross to create the new cell. Secondly, the cell
must have enough vital energy to perform the division. The
vital energy level needed is defined during the environment
specification. Finally, during the environment modelling, a
condition list can be added.

C. Action optimisation

The new cell created after division is totally independent
and interacts with the environment. During the division,
the cell can optimize a group of actions. In nature, this
specialisation seems to be mainly carried out by the GRN.
In our model, we imagine a mechanism that plays the role of
an artificial GRN. Each action has an efficiency coefficient
that corresponds to the action optimisation level: higher the
coefficient, lower the vital energy cost. Moreover, if the
coefficient is null, the action is not yet available for the
cell. Finally, the sum of efficiency coefficients must remain
constant during the simulation. In other words, during the
division, if an efficiency coefficient is increased to optimise
an action, another (or a group) efficiency coefficient has to
be decreased.

The cell is specialised by varying the efficiency coeffi-
cients during the division. A network represents the transfer
rule. In this network, nodes represent cell actions with
their efficiency coefficients and weighted edges representing
efficiency coefficient quantities that will be transferred during
the division.

D. Creature’s genome

To find the best-adapted creature to a specific problem,
we use a genetic algorithm. Each creature is tested in its
environment. This latter returns the score at the end of the
simulation. Each creature is coded with a genome composed
of three different chromosomes:

o the list of available actions,
« an encoding of the action selection system and
« an encoding of the gene regulation network.

Because of the complexity of developed creatures, the genetic
algorithm had to be improved. First, we have decided to
parallelise it on a computation grid. We used a middleware,
named ProActive, which allows a total abstraction of grid
infrastructure. We applied a Master/Worker algorithm to
parallelise our genetic algorithm. This algorithm is well
adapted to artificial life because creature genome is small and
the fitness computing cost is very important. Because of the
small size of the genome, the network restriction forced by a
Master/Worker architecture deployed on a computational grid

will not heavily increase the computation time. Moreover,
because a Master/Worker algorithm preserves the properties
of a classical genetic algorithm, the number of generations
needed by the algorithm to converge and the final solution
quality are exactly the same with or without parallelisation.

A second optimisation of our genetic algorithm consists in
leading the algorithm in its search. In our experimentation,
it is often possible to break up the fitness function with sub-
objectives that describe the different evolution stages of the
creature. This approach, commonly named incremental evo-
lution, has been used in different domains such as behaviour
simulation [16], [17] or genetic programming [18]. Authors
generally conclude that global computation time is the same
in comparison to a classical fitness but this algorithm give
more adapted solutions. In our problem, we generally break
the fitness up in the three following stages:

o metabolism that is the lowest level function needed by
the creature,

o cell birth quantity during the simulation shows the
capacity of the organism to develop itself in the en-
vironment,

o global fitness that gives the efficiency of the organism
to solve the problem (can be broken up into sub-
objectives).

E. Example of generated creatures

Different creatures have been generated using this model.
For example:

e A harvester: a creature able to collect a maximum
of a substrate scattered all over the environment and
to transform it into division material and waste. The
creature has to reject the waste because of a limited
substrate capacity.

e A transfer system: presented in [1], this creature is
able to move substrate from one point to another. This
creature is interesting because it has to alternate its be-
haviour between performing its function and developing
its metabolism to survive (figure 3(a)).

« Different morphologies: also presented in [1], such as
a starfish, a jellyfish (figure 3(b) or any user-designed
shape (like the space invader presented on figure 3(c)).
Once again, the organism must develop its metabolism
to be able to perform its function.

All creatures have a common property: they are able to
repair themselves in case of injury [19]. This feature is
an inherent property of the model. It shows the phenotype
plasticity of produced creatures.

The last interesting feature of this model is its capacity to
make different organs cooperating in the same environment
in order to create bigger structures (figure 3(d)). We have de-
veloped organs separately and build an organism, composed
of these organs, with a high-level purpose. We create for
example a self-feeding structure composed of four different
organs: two transfer systems and two producer-consumers.
This organism is detailed in [20].

(b)

Fig. 3.

(© ()

Different creatures obtained with the model: (a) an organ able to transfer substrate from a point of the environment to another ; (b) and (c) any

kind of user-defined morphologies ; (d) an organism composed of different types of organs.

After the development of such creatures, we desire to
extend our model by adding different simulators. To increase
our creatures’ degree of freedom, we plug a physics engine
and a hydrodynamic simulator. Different experimentations
have been done to show the capacities of such extensions.
The next section presents the physics engine and a muscular
joint developed in the chemical world (the developmental
model Cell20rgan) and in the physics simulator in the same
time.

IV. PHYSIC LAYER
A. Existing physics engine

Many simulators exist with their strengths and weaknesses.
Adrian Boeing and Thomas Braunl present in [21] a good
comparative review of different physics engines, all free to
use. They study their different aspects like their realism,
their precision and their main algorithms efficiency (collision
detection, links, material properties, etc.). In their paper, they
experiment seven engines: AGEIA PhysX (formerly named
Novodex), Bullet, JigLib, Newton, Open Dynamics Engine
(ODE), Tokamak and True Axis.

The authors concluded that each engine has its favourite
domain of application in which it outperforms the others.
However, Bullet seems to be the only one that gives good
results in most cases and outperforms some commercial
engines. Moreover, Bullet’s physics engine does not consume
much processor resources: the constraint resolution duration
is proportional to the quantity of constraints. A PhysX?™
component! is in development today. It will allow an im-
portant performance enhancement when it will be totally
operational. Finally, the last quality of this engine is the
parallel development of open-source version implemented in
C++ and Java.

A physics engine integration in our development model
implies many constraints. The number of objects present in
the physical world must be one of the hardest. Indeed, an
object will represent each cell where all collision forces and
joint constraints will have to be computed. Moreover, the
time needed to compute physical laws must stay reasonable
to allow a parallel simulation with the chemical worlds.

'NVidia Techonology that allows a hardware acceleration of physics
computation on current graphic card.

Thanks to the review previously presented, Bullet seems to
be the best engine to simulate the growth of our cells in a
physical world.

The 3-D graphic rendering is done with the classical
OpenGL engine. It allows a direct display of objects managed
by Bullet. Indeed, Bullet provides a mechanism that allows
a direct display of objects. Their shapes are user-defined and
used by Bullet to compute physics laws applied to them and
given to a graphic engine for the rendering.

B. Integration

The use of listeners for our developmental model program-
ming allows a simple communication between the different
parts of the application. Indeed, the addition of a physics
engine to our model does not modify the developmental
model at all. It just consists in plugging the physics engine to
the developmental simulator by registering it to the cells and
the environment. Thus, cells will inform the physics engine
of any division or death and the environment will inform it
of any substrate modification.

In the physical world, cells are represented as 3-D shapes,
pressed together using physical links. Physical constraints
can then be applied to cells and cellular links. If their
constraints are too hard for a cell, the physics engine can
kill this cell by asking the environment to destroy it. The
physics engine is then informed by the cell of its death and
can be destroyed in the physical world. If a cell is created in
the environment, the physical engine just creates a new cell
and links it to its neighbours.

C. Experimentation: a muscular joint

This first experimentation consists in evaluating the ca-
pacities of the association of the chemical world (the de-
velopmental model that manage the artificial chemistry and
creature growth) and the physical simulator. In this experi-
mentation, a shape generation genome, presented in [1], is
used to develop an organism with a user-defined morphology.
This organism has a “kneecap” in the centre (one cell), two
“bones” linked to the kneecap (about 400 cells for each) and
different “muscular fibres” that link the two bones (about
100 cells for all of them). Here, the cell specialisation into a
kneecap, a bone or a muscular cell is given by the user: the
cell coordinate gives its type.

Chemical simulator

| Physical simulator |

(a) (b)

Time >

() (d)

Fig. 4. Creature growth in a chemical world (top) and in a physical world (bottom) in the same time: (a) creature’s shape growth in both worlds ; (b) and
(c) lower muscular fibre contraction, upper fibre extension and global structure twisting ; (d) structural modification and twisting inversion in the physical

world.

The type of a cell gives its shape and its function in the
physical world:

o a kneecap cell is ball-shaped and allows a rotation of

its neighbour cells,

« a bone cell is represented as a cube and is strongly

linked to its neighbour cells,

o a muscular cell is capsular and is able to modify its

shape by getting longer or smaller.

Even if this simulation is not biologically acceptable, the
shape variation of muscular cells allows a global extension
or shrink of the complete structure of the muscular fibre. We
have thus obtained a rotation of the two bones around the
axis provided by the kneecap as presented in figure 4. The
physics engine computes the constraints applied on each cell
and the movement given by the muscular fibres is spread
gradually across the whole structure.

If a too strong constraint is applied to a cell, the physics
engine will destroy this cell. Because of the property of
self-repairing of our model, the organism will be able to
rebuild this cell with the aim to maintain the integrity of
the structure. The property has been demonstrated in the
paper [19]. Figure 5 shows an example of this phenomenon
applied to our artificial joint.

The physics engine adds new interesting functions. It also
simulates a new scale of organisms, which are able to interact
with a virtual world constituted of other artificial creatures
or avatars controlled by humans. Yet this model is difficult to
configure: it is still necessary to define all interaction forces
between cells to obtain realistic results.

V. HYDRODYNAMIC LAYER

This section shows hydrodynamic substrate interactions
of our model. Its main aim is to propose a method in-

spired by the gastrulation of some living beings to position
morphogens. This early stage of the organism development
allows the positioning of the embryo morphogens in its
environment. It then allows the development of its organs.
By using a hydrodynamic simulator in our model, we can
observe the apparition of flows in the environment that
correspond to flows created by the organism when it performs
its actions (division, substrate absorption or rejection in
particular). Thus, cells can for example expulse a substrate
in a specific direction and with a specific strength to be
positioned in the environment.

A. History of hydrodynamic
Hydrodynamic has formally been described in 1750. In

1822, Navier gave a general equation that allows a precise
description of a fluid movement. Some years later, Stokes

Chemical simulator

' Physical simulator |

Time

\

() (b) (©

Fig. 5. Creature rebuilt in the chemical world (top) and in the physical
world (bottom) in the same time. (a) User cell destruction by structure
elongation. (b) Creature rebuilt in the chemical world and consequences in
the physical world. (c) Total regeneration of initial creature’s shape.

improved this equation that gave birth to the famous Navier
and Stokes equations. However, these equations are too
complicated to be solved and can only be applied to simple
cases. Indeed, the equation resolution must be analytical
and requires still too large computation resources. Hardy et
al. presented one of the first computational hydrodynamic
models in [22]. Named HPP, this simple model consists
in a discretization of experimental condition by slicing the
environment in a rectangular mesh. The fluid is represented
with particles and the application of collision rules on the
edges of each mesh simulates their movements. This model,
in opposition to Navier and Stokes equations, does not allow
realistic simulations of hydrodynamic phenomenon. In 1986,
Frish et al. improved this model by using triangle-shaped
meshes [23]. In this model named FHP, fluid’s particles
thus have six directions of scattering against four with the
previous collision method.

The fluid flow study is possible with the two last presented
techniques but the evolution of matter quantities cannot be
studied. With the aim to solve this problem, Boltzmann’s
method consists in the resolution of Boltzmann’s equation on
each mesh of the grid. This equation describes the perfect gas
dynamics. It especially allows a study of fluid flows around
complex shapes.

B. Selected model

Because of the computation cost induced by hydrodynamic
simulator complexity, we have decided to use a method that
reduces the resource usage of the hydrodynamic layer on our
simulation but keeps enough realism and degree of freedom.
We have thus decided to implement Jos Stam’s solver [24],
[25]. This model is mainly used for image processing.
It is interesting because its capacity to solve Navier and
Strokes’ equations has been proved. Again the integration in
our cellular simulation is simple: the hydrodynamic engine
totally replaces the diffusion algorithm previously used to
spread substrates.

In this model, a grid represents the environment. Fluid
particles, which constitute substrates, are moving following
speed vectors on this grid. The cells of the environment are
represented as impassable obstacles. When a particle hits
a cell membrane, the speed vector that corresponds to the
collision point is modified in order to redirect the particle
along the cell edge. In a first step, to simplify the simulation,
different substrates will be spread separately, that is to say
independently of one another.

The material quantity non-conservation is one of the main
limitations of this model. Indeed, during the simulation, the
hydrodynamic engine can generate a small lost of material.
Our developmental model would not support such a problem.
The main aim of the hydrodynamic engine is to spread
morphogens in the environment in order to develop a shaped
creature. Such a lost of material could generate a non-desired
growth of the organism. However, different methods exist to
fix the problem. The first one consists in the implementation
of energy conservation laws to equilibrate the substrate losses
due to equation simplications. We have preferred to apply

a proportional distribution of lost material on the entire
grid because the energy conservation method is expensive
in computation resources and will be difficult to apply to
our simulator.

To ripen border conditions, we have doubled the size of the
hydrodynamic simulator grid in comparison with the chemi-
cal simulator grid. Indeed, smaller the grid subdivision, more
precise the border condition computation. In other words,
fluid flows will be more precisely described. Because the grid
subdivisions strongly increase the computation cost, we have
subdivided by two the hydrodynamic grid in comparison to
the chemical grid. We have also adapt the algorithm to take in
consideration the inter-cell spreading allowed by our previous
spreading algorithm. Because obstacles represented by cells
are sticked together, no fluid flow is possible between cells.
In our model, organism’s external speed vectors are able to
modify organism’s internal speed vector in order to create
internal flows.

Finally, cells interact with the environment, particularly by
absorbing or rejecting substrates. Without a hydrodynamic
layer, their actions could not create the fluid flows created
by molecules’ movement. The hydrodynamic engine can now
simulate this kind of phenomenon. An expulsion strength
with a particular direction can be given to the cell. It
can allow it to position a substrate wherever it wants in
the environment. Cells can also produce flows to produce
global movement in the environment. Substrate absorption
can create suctions in the same ways. Lastly, cell divisions
modify the environment by created complex flows (vortex in
particular) to create an empty position for future cells.

C. Experiments: creation of hydrodynamic flows

In a first stage, in order to validate our hydrodynamic sim-
ulator and more particularly its coherence, no evolutionary
computational methods were used in this experimentation.
Cell’s genomes were obtained by hand because they are
broadly simple. Emergence of behaviour through this sim-
ulator is still under study.

The first experiment consisted in testing the evacuation
of environmental substrate during the growth phase of an

Chemical simulator

S
<
>
£
7]
@
.2
£
<
c
>
Bl
<)
=l
>
T

Time

(@) (b) ()

\/

Fig. 6. Hydrodynamic flows created by cell divisions.

Fig. 7.

organism. For this, we used our genome of shape devel-
opment already used in the previous experiment that was
immersed in an environment saturated in metabolic substrate.
Morphogens were placed by the user, letting him the choice
of the organism’s morphology, and were not subjected to the
flows created by cellular division (this first step guarantees
that the user-defined shape will be filled in by the organism
without any kind of evolutionary computation).

Figure 6 shows flows induced by divisions. We can notice
the creation of multiple vortices due to high dynamics
flows and particle collision. Moreover the link between both
simulators (chemical and hydrodynamic) is observable: when
a cell dies in the chemical level it is also destroyed in the
hydrodynamic level. The same mechanisms can be observed
around the birth of a new cell. The hydrodynamic simulator
well manages the density of substrate along the simulation
during this kind of organism’s modification.

The second experience consisted in moving a kind of
morphogen along the environment. This positioning step is
a paramount stage to develop the creature shape. The cells
able to proliferate will follow growth lines formed by the
morphogens.

The organism is composed of two kinds of cell:

« A set of inactive cells which role is to guide morphogens
in the environment. Keeping in mind that the goal of the
experiment is to validate the simulator, cells are placed
by hand using the developmental genome and thanks
to a user positioning of morphogens. These cells will
allow us to analyze the realism of edge conditions of
the hydrodynamic simulator.

o 3 cells able to absorb a red substrate from one side and
to reject it on another side. Their role is to make directed
flows into the organism.

In figure 7, green spots are the cells of the Cell20rgan
model. Blue lines seen in the first line of the figure are
velocity vectors of substrate flows. We observe that flows are

A morphogen diffusion in the environment with speed vectors (top) and morphogen densities (bottom).

powerful near their source and that they are attenuated with
the distance from the source. Another important point is that
these flows follow correctly the organism shape. The second
line shows the concentration of red substrate during the
simulation. Morphogen transport is put to the fore according
to the observation of the simulation. These latter are moved
along the organism, creating vortices when they collide with
cells.

Both experiments gave us means of validation for our
hydrodynamic simulator and more particularly the cell edge
conditions. The hydrodynamic layer seems to be usable to
produce creature morphogolies with an automatic morphogen
positioning. Indeed, we can imagine that a cell can expulse
a set of morphogens in various directions and with different
forces in order to create multiple flows in the environment.
Morphogens will thus be positioned in the environment. A
shape development genome like presented in section III-E
could be then used to develop the corresponding morphology.

VI. CONCLUSION

In this paper, we have presented the last feature added to
our developmental model. We have plugged two simulators
to increase our organism’s possibilities. A physics engine
simulates newtonian laws in order to produce high-level be-
haviour as a creature movement. A hydrodynamic simulator
allows fluid flows computation in the environment. It could
solve our problem of morphogen positioning in the envi-
ronment: a preliminary organism could place morphogens in
the environment by giving a particular strength to substrates
during its evacuation.

The integration of all these three simulators together
remains to be done. As shown in figure 8, they can already
work together but there is no interaction between physics and
hydrodynamic layers. The physico-hydrodynamic link could
be very interesting to add with the purpose to create fluid
flows during the structure twisting. The physical structure
would then be disturbed by substrate flows. It could simulate

Hydrodynamical simulator chemical simulator [Physical simulator |

Time

Fig. 8. Integration of the three simulation levels. From left to right: the
hydrodynamic simulator, the chemical world (developmental model) and
physics engine. From top to bottom: evolution of the creature during the
simulation time.

the gastrulation stage of many vertebrate embryos where,
according to some theories, an invagination of 50000 cells
creates different flows in the environment that allows a
perfect morphogen positioning, whose are used to develop
embryo’s member (arms and legs), tail and head.

However, this integration may consume huge processor
resources because of the number of forces to be calculated
by both simulators. It is necessary to simplify the organism
structure in physical and hydrodynamic worlds. Making an
abstraction of the cellular units by constructing a global
shape could strongly reduce the computation needs of both
simulators. For example, applied to our muscular joint, it
consists in bringing together bone cells into two bones; and
muscular cells into different muscular fibres. The chemi-
cal world represented by the developmental simulator will
continue to simulate each cell separately. In case of a cell
birth or death, the abstracted shape must be recomputed to
correspond to the real structure shape. With this kind of
mechanism, collision forces will be much easier to compute.

Finally, cell specialisation into bone, muscular or kneecap
cells is not coded in the genetic code. The chemical engine
is able to manage the cell differentiation by modifying the
cell properties but no genetic algorithm was used to obtain
the final specialised shape. Indeed, the current specialisation
mecanism (coded as an optimisation network) does not allow
a full cell differentiation. We have to find a mechanism to
simplify cell differentiation in order to let an evolutionary
algorithm discover a structure to produce a user-defined
movement. An artificial regulatory network, often used in ar-
tificial embryogeny for cell colour modification in the French
flag problem in particular [9], [10], [11], could be interesting

to used to solve our problem, the colour modification could
represent a cell differentiation.

REFERENCES

[11 S. Cussat-Blanc, H. Luga, and Y. Duthen, “From single cell to simple
creature morphology and metabolism,” in Artificial Life XI. MIT
Press, Cambridge, MA, 2008, pp. 134-141.

[2] V. Fleury, “Clarifying tetrapod embryogenesis, a physicist’s point of
view,” The European Physical Journal Applied Physics, vol. 45, no. 3,
pp. 30101-30101, 2009.

[3] W. Banzhaf, “Artificial regulatory networks and genetic programming,”
Genetic Programming Theory and Practice, pp. 43-62, 2003.

[4] S. Kauffman, “Metabolic stability and epigenesis in randomly con-

structed genetic nets,” Journal of Theorical Biology, vol. 22, pp. 437—

467, 1969.

F. Dellaert and R. Beer, “Toward an evolvable model of development

for autonomous agent synthesis,” in Artificial Life IV. Cambridge,

MA: MIT press, 1994.

[6] H. de Garis, “Artificial embryology and cellular differentiation,” in
Evolutionary Design by Computers, e. Peter J. Bentley, Ed., 1999, pp.
281-295.

[7]1 S. Kumar and P. Bentley, “Biologically inspired evolutionary develop-
ment,” Lecture notes in computer science, pp. 57-68, 2003.

[8] F. Stewart, T. Taylor, and G. Konidaris, “Metamorph: Experiment-
ing with genetic regulatory networks for artificial development,” in
ECAL’05, 2005, pp. 108-117.

[9] A. Chavoya and Y. Duthen, “A cell pattern generation model based
on an extended artificial regulatory network.” Biosystems, 2008.

[10] J. Knabe, M. Schilstra, and C. Nehaniv, “Evolution and morphogene-
sis of differentiated multicellular organisms: autonomously generated
diffusion gradients for positional information.” Artificial Life XI, 2008.

[11] M. Joachimczak and B. Wrébel, “Evolution of the morphology and
patterning of artificial embryos: scaling the tricolour problem to the
third dimension,” in 10th European Conference on Artificial Life
(ECAL09). Springer Verlag, 2009.

[12] K. Sims, “Evolving 3d morphology and behavior by competition,”
Artificial Life 1V, pp. 28-39, 1994.

[13] S. Garcia Carbajal, M. B. Moran, and F. G. Martinez, “Evolgl: Life
in a pond,” Artificial Life XI, pp. 75-80, 2004.

[14] L. Epiney and M. Nowostawski, “A Self-organising, Self-adaptable
Cellular System,” Lecture notes in computer science, vol. 3630, p.
128, 2005.

[15] P. Eggenberger Hotz, “Asymmetric cell division and its integration
with other developmental processes for artificial evolutionary systems,”
in Artificial Life IX, 2004, pp. 387-392.

[16] J. Kodjabachian and J. Meyer, “Evolution and development of neural
controllers for locomotion, gradient-following, and obstacle-avoidance
in artificial insects,” IEEE Transactions on Neural Networks, vol. 9,
no. 5, pp. 796-812, 1998.

[17] J. Mouret and S. Doncieux, “Incremental Evolution of Animats’ Be-
haviors as a Multi-objective Optimization,” Lecture Notes in Computer
Science, vol. 5040, pp. 210-219, 2008.

[18] M. Walker, “Comparing the performance of incremental evolution to
direct evolution,” in Second International Conference on Autonomous
Robots and Agents, 2004, pp. 119-124.

[19] S. Cussat-Blanc, H. Luga, and Y. Duthen, “Cell2organ: Self-repairing
artificial creatures thanks to a healthy metabolism,” in Proceedings of
the IEEE Congress on Evolutionary Computation (IEEE CEC), 2009.

[20] S. Cussat-Blanc, H. Luga, and Y. Duthen, “Making a self-feeding
structure by assembly of digital organs,” in Proceedings of the Aus-
tralian Conference on Artificial Life (ACAL’09), 2009.

[21] A. Boeing and T. Briunl, “Evaluation of real-time physics simulation
systems,” in Proceedings of the 5th international conference on
Computer graphics and interactive techniques (Graphite 2007), 2007.

[22] J. Hardy, O. De Pazzis, and Y. Pomeau, “Molecular dynamics of a clas-
sical lattice gas: Transport properties and time correlation functions,”
Physical Review A, vol. 13, no. 5, pp. 1949-1961, 1976.

[23] U. Frisch, B. Hasslacher, and Y. Pomeau, “Lattice-gas automata for
the Navier-Stokes equation,” Physical Review Letters, vol. 56, no. 14,
pp. 1505-1508, 1986.

[24] J. Stam, “A general animation framework for gaseous phenomena,”
ERCIM Research Report, vol. 47, p. 369376, 1997.

[25] J. Stam, “Real-time fluid dynamics for games,” in Proceedings of the
Game Developer Conference, vol. 18, 2003.

[5

—

