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Abstract

This paper presents a new interpretation of the binary
blending operator of implicit modeling. Instead of
considering the operator as a composition of potential
functions, we propose to consider it as an implicit curve
extruded in an implicit extrusion field. An implicit
extrusion field is a 2D space for which each coordinate is
a potential field.

The study of general concepts around implicit extrusion
fields allows us to introduce the theoretical notion of free-
form blending controlled point-by-point by the user.
Through the use of functional interpolation functions, we
propose modeling tools to create, sculpt or combine
implicit primitives by extrusion of a profile in an implicit
extrusion field.

1. Introduction

One of the main constraints of interactive modeling is the
control of a wide variety of shapes which must be easy,
precise and intuitive. Parametric representation respects
this constraint and allows the creation of free-form shapes.
Parametric patches are controlled by attraction points and
the shape is the result of their assemblage. On the other
hand, implicit modeling involves volumetric object
representation, defined by a single equation, and alows
the introduction of automatic continuous blending between
combined implicit primitives. Though many easily
controlled primitives have been proposed, their blending
suffersfrom alack of precision.

Implicit interactive modeling is based on the combination
of various implicit primitives with operators integrating
the blend or not [1,2]. The blending notion is usually seen
and computed as a smooth and regular curved or inflated
transition. After blobs [3], soft objects [4] and metaballs
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[5], where spheres are blended by the sum of their
potential fields, many models have been proposed to
define new implicit primitives. Skeletons are the extension
of spheres to a wider family. A skeleton is a simple
geometric object [6,7,8] (like a point, line segment, free-
form curve or polygon) and the shape is a set of points
located at a fixed distance from the skeleton. Distance can
be Euclidean or anisotropic [9,10,11,12]. Other primitive
families have been proposed. Superquadrics [13,14] are
degree-two agebraic functions controlled by parameters
merged in their equation. Directly adapted from parametric
sweep objects, implicit sweep primitives [12,15] are
controlled by geometric parameters like trgjectory and key
profiles (interpolated along or around the trajectory). They
greatly extend the panel of shapes produced. |mprovement
of intuitive shape control through the development of new
primitives has been an important area of investigation but
only few blending models exist and transition is
approximately controlled by parameters that are merged in
the surface equation. Our goal is to increase shape control
precision at blend level. The solution proposed is based on
a different interpretation of fundamental blending theory
[16,17].

After a short overview of different blending models, a new
interpretation of binary combination operators allows us to
introduce implicit extrusion fields. An implicit extrusion
field can be seen as a 2D implicit space where the value of
each coordinate is an iso-potential surface in a potential
field. Curves defined in an implicit extrusion field are
represented by a surface in 3D user space. We indicate
how surfaces can be precisely controlled by acting on
curve properties and we deduce how free-form implicit
curves defined point-by-point can be theoretically
extruded in those fields to precisely combine, sculpt or
model implicit primitives. We then present an
implementation of implicit extrusion fields using curves
defined by functions of R-R and a 2D eementary
interface. Those functions do not exactly generate free-
form curves but they are well known and they alow usto
easily validate our theory. 3D visualization with an octree
[18] is used to validate the resulting object shape if
necessary.



2. Implicit surface

Function f is of R®~ R. Function f associates a potential
value C, (of R) at each point p (of R?) of the 3D user
space. Function f defines a potential field. The set of
points p of R®, for which f(p) associates the same potential
C,=Co, defines an iso-surface in the potentia field. This
iso-surface, called the Cy iso-surface, is an implicit surface
Sand function f is called potential function.

f:RR.R
p(x.y.2) -~ f(p)=C,
s={pOR/ f(p)=C,} where c,O0R.

The potential function f splits space into two half spaces.
One where f(p)>C, and one where f(p)<C,. If f defines a
closed object, the convention of inside/outside can be
chosen as follows:
o If f(x,y,2) > Cy, the point p(x,y,2) is outside the
volume defined by the surface.
o If f(x)y,2) < Cop, the point p(x,y,z) is inside the
volume defined by the surface.
The inverse convention (where point p isinside if f(p)>C)
can be chosen as well. Depending on the implicit model
used, one or other of the conventions is applied.

3. Blending implicit models

e In its elementary form, blending is performed as
follows:

The potential function f; defining the primitive is first
composed with a blending function g. The resulting
function g(f) is a decreasing positive function with
gi(f)) - Owhen f; - +oo (Figure 1).
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Figure 1: blending function gi representation.

o

The blend is computed by summing the functions g;(f; ):
F= z 9 (fi)

The blending function g was originally defined with an
exponential function [3]. To increase computation speed
and to localize the influence of the primitive, polynomial
functions including an influence radius R have been
proposed [4,5,11,18,19,20] (see [11,21] for an overview).
The use of a blending function g as a first step and a sum
as a second step generates a double abstraction level to
control the transition precisely. For this reason we did not

pursue our research in this direction beyond the results
presented in [22].

« Another approach consists in generalizing the blend as
an operator on R-functions'. An n-ary operator W can be
written as the composition of each combined primitive f;
[23]. One expression for the classical union binary
operator R isthen:

R(fl, fz) =f+f,+
Equation 1.

Blend operator G can be obtained by adding matter at the
transition [24]. The matter adding operator d is summed
with the R operator to give a blend operator G:

G(f, f,)=R(f, f,)+d(f, f,) with
d(fl' fz): %

21

Transition is controlled by acting on the parameters of
matter adding operator d parameters. These parameters
(a0, &, &) are merged in an equation and are not directly
liked to geometric parameters (like control points, etc).

«  Whatever the blending method used, transition creation
is then an iterative succession of ‘adapting’ the value of
parameters and visualization.

e As specified by C. Hoffmann and J. Hopcroft in a first
time [16] and later by A.P. Rockwood [17], the binary
blending operator G is created in two steps. Operator G,
called the blending function, is first defined as a function
of R?~ R that creates a smooth transition between the two
axes. The blend is then, in the second step, extended to
primitives by composing G with f;: R®- R and f,: R*~R.
The resulting surface is the 0 iso-surface of the potential
field defined by G: R®~ R. Many blending functions are
proposed, especially functions allowing the control of the
starting point of the blend on each blended surface and
functions extending the blend to n primitives. If the iso-
value is not 0, explanations and solutions are given to
adapt the blending functions.

The starting point of our approach is very close to these
works. The main difference is to consider operator G as a
2D potential field defined in space where each coordinate
(X and Y) is a 3D potential field (f; and f, respectively)
instead of considering G as a composition of functions f;
and f,. This special space is called the implicit extrusion
field. This difference seems to be insignificant but we will
see that it allows us to extend the blend to a theoretically
free-form blend and, at the same time, to propose tools for
implicit modeling.

f2+1,7).

! Implicit surfaces are defined by 0 iso-surface and the convention of
insde/outsideis: if f(p)>0, p isinside the volume, if f(p)<0, p is outside
the volume.



4. Implicit extrusion fields: introduction and
concepts

4.1. Presentation, nomenclatur e and conventions

e Implicit surfaces are 0 iso-surfaces and volumes are
defined by f(p)<O0.

 An implicit extrusion field is a 2D implicit space
called I

e Geometric entities defined in implicit extrusion fields
are noted in capitals and entities defined in 3D Euclidean
space are noted in small letters.

« 1% isaspace where each coordinate is a potential field.
To define an implicit extrusion field, each coordinate is
instantiated with a selected potential function of R*-R:
X=f; and Y =f,.

e POINT P(XpYp) of I? is defined by its two
coordinates f;=Xp and f,=Yp. The abscissa is a set of
points p(Xp,Yp,Zp) Of R® for which f;(p)=Xp. It isthe Xp iso-
surface S; of the potential field defined by f; and the
ordinate is a set of points p(XyYp.z,) Of R® for which
f2(p)=Yp. The ordinate is the Yp iso-surface S, of the
potential field defined by f,. POINT P is represented by
the intersection between its two coordinates, which means
that its representation is the intersection between the two
surfaces S; and S,. This intersection is a curve V (Figure
2) if it isnot empty (or reduced to a single paint).

P=V a f1=Xp:1 and f2=Yp:2

S at

Flagure 2: POINT P(1,2) defined in 1> and represented in
R (I is instantiated with two spherical fields).

V =S n S, where
s ={p(x . 2)OR*/ f,(p) = X, } and
s, ={p(x v, OR/ 1,(p) =Y.}

Curve V is said to be the extrusion result of POINT P in
the implicit extrusion field.

e Function G(X,Y) of 1’2 R defines a 2D potential
field. The set of POINTS P(Xp,Yp) where G(P)=0 defines
the 0 ISO-CURVE. This CURVE is caled PROFILE and
continuous PROFILE can be seen as a succession of
juxtaposed POINTS P. POINT P isrepresented by a curve
in R®, PROFILE G is represented by a succession of
curves juxtaposed in R®, which means that PROFILE G is

represented by surface S in R® (Figure 3). This implicit
surface Siis given by the set of points p(x,y,z) O R® where
G(f1(p).f2(p)) = 0.

S={p(x, y,2) OR®/G(f,(p), fz(p))zo}'

POINT : P,(4,5)
G(P1)=0

S=set of POINTS P, where G(P,)=0

Flgure 3: PROFILE G defined in 1? and represented in
R® (I is instantiated with two spherical fields).

Surface Sis said to be the extrusion result of PROFILE G
in theimplicit extrusion field.

4.2. Links between implicit extrusion field 12 and
3D modeling space R®

We have seen that PROFILE, defined in an implicit
extrusion field, is represented by an implicit surface in
user modeling space R®. But different instantiations of
implicit extrusion fields give different shapes for the same
PROFILE. This is why the form and position of the
generated surface are difficult to predict by the user. Our
goal is to propose a precise modeling tool, so an intuitive
link must be established between spaces R® and 12,

The user can easily select a point p(Xp,Yp,zp) Of R? in the
modeling space (using a suitable modeling interface).
Potential function f; associates the potential value Xp at
this point: f;(p)=Xp and potential function f, associates the
potential value Yp a the same point: fy(p)=Yp. POINT
P(Xp,Yp) selected from point p(X,,Yp.Zp) has the following
coordinates: Xp iso-surface of potential field f; as abscissa
and Y p iso-surface of potential field f, as ordinate (Figure
4).

P=Vv a f;=Xp=f1(p) and f,=Yp=f(p)

S at
f1=Xp=f1(p) ‘3<\ P(XpYp Zp) OR®
y
; u Y
X Y f=Yesh(p)
x

Figure 4: POINT P of I” selected from point p of R®.



It is important to note that point p belongs to the curve
representing POINT P in R®. So, by selecting points in the
modeling space, the user precisely and simply selects
POINTS of 1%,

By selecting two points, pi(Xpw,Yp1,Zp1) @nd Pa(Xp2,Yp2,Zpa),
the user can choose vector u(X,,yw,z,) of R>. The initial
point p, defines POINT Py(Xp,Yp) Of 12 From this
POINT P; and vector u, differential geometry equations
allow the computation of VECTOR U(Xy,Y y) coordinates
asfollows:

If A=(f,,f,) isan application from R*to I, and CJA is
Jacobean matrix of A,

U =D0A(p,)u-
BXU - afl(xplY yplY Zpl).xu + afl(xplY ypl’ Zpl). + afl(xp1’ ypl’ Zpl) Zu B
0 ox dy ! 0z O
U D = afz(xpl' ypl' Zpl) Xu + afz(xpl' ypl' Zpl) y + afz(xpl' ypl' Zpl) Zu B
g’ ox ’ ay b 0z 0

VECTOR U is represented by a family of directions in R®
(Figure 5). Vector u(Xy,YuwZzy)
PO| nt pl(Xplyyplyzpl)

Point pa(Xp2,Yp2:Zp2)
POINT P,

y 3 3 ;
X g ; \
B SO
~>VECTOR U(Xy,Y0)
Figure 5: VECTOR U of I? selected from vector u of R®.

Like points, vector u belongs to the family of directions
representing U. This property allows the user to precisely
select VECTORS of I? from vectors of the modeling
space.

4.3. Correspondence between function G
represented in 1? and the same function G in R®

We recall that the normal N(P) at a POINT P to PROFILE
G isgiven by the gradient vector OG(P):

G(X,.Ye)H

-0 0X . We can deduce the
G(X,Y;)

[96(Xe.Ye)

_ \4 .
T(P)=D an)XP,YP)D
o
The user can control the resulting surface by controlling
the POINTS and VECTORS defining the PROFILE from

tangent VECTOR:

the points and vectors selected in the modeling space. So,
POINTS and VECTORS must be control parameters of G
PROFILE. Figure 6 reports an example of G PROFILE
represented in |? and figure 7 shows the same G PROFILE
represented in a 2D section of R®. POINTS P, (i=1..3) and
TANGENTS T; (i=1,3) are control parameters of
PROFILE G.

_ X=0and Y>3 : G(X,Y)=0
Y=f,

X>3 and Y=0: G(X,Y)=0

Figure 6: Function G represented in 12,

a P, f;=1.5 and f,=1.5 : G(1.5,1.5)=0

ab;: aPs:

;=0 and f,=3 : G(0,3)=0 f;=3 and f,=0: G(3,0)=0

0G(0,3 -0 0G(3,0 -0
of2 of1

f123 and f2:0
G(f1,f)=0

y
T—»"
Euclidean
space

the X axis

Final object
defined by G

theY axis

Figure 7: Function G, defined in figure 6, represented
in a 2D section of modeling space R® (12 is instantiated
with two spherical fields).

In figures 6 and 7, specific properties are revealed for

implicit extrusion fields:
1. For the regions of the PROFILE where POINTS P
have afixed abscissa (X=Xp) asthe ordinate Y varies:
the associated points p of R® are situated on the Xp
iso-surface of the potential field defined by f. If in
addition Xp=0, these points of R® are on the surface
defined by f;.



2. For the regions of PROFILE where POINTS P
have afixed ordinate (Y=Y p) as the abscissa X varies:
the associated points p of R® are situated on the Yp
iso-surface of the potential field defined by f,. If in
addition Y =0, these points of R® are on the surface
defined by f,.

3. If OG(XP,YP)/OX =0: a null value of the

differential in X at a POINT P(Xp,Yp) of I leads to
the surface representing PROFILE G being tangential
at P to the Yp iso-surface defined by f,. If in addition
Y =0, this surface is tangential to the implicit surface
defined by f,.

4.1f GG(XP,YP)/OY =0: a null value of the

differential in Y at a POINT P(Xp,Yp) of 12 leads to
the surface representing PROFILE G being tangential
at P to the Xp iso-surface defined by f;. If in addition
Xp=0, this surface is tangential to the implicit surface
defined by f;.
We obtain a model which allows implicit surfaces defining
implicit extrusion field coordinates to be partialy or
totally conserved in the final object (if desired). Continuity
C° or C* at the junction between the surface representing
PROFILE G and the one defined by one or other of the
coordinates can be controlled by the value of partial
differentials. In general, C' continuity depends on
functions G, f; and f, continuity (the final function is given
by the composition of G: 1?1 with functions f;; R*~ R
andfy: R°~ R).
In this example, the final object is the result of the blend
operator applied on two spheres. The transition is smooth,
continuous and controlled point-by-point.

4.4, Extrusion models

Depending on the inclusion of implicit surfaces, defined
by coordinates of the implicit extrusion field, in the final
object, different tools can be theoretically created.

4.4.1. Extrusion objects If O iso-surfaces defined by
coordinates of the implicit extrusion field are not
conserved in the final object, this object is directly the
result of the extrusion of the PROFILE in the implicit
extrusion field (Figure 8).

PROFILE G(X,Y)=0

Figure 8: Extrusion of PROFILE G in an implicit
extrusion field instantiated with two spherical fields.

Extrusion trajectories are given by the intersection
between iso-surfaces of each coordinate of the implicit
extrusion field. This is an abstraction level which makes
our extrusion model less general and more complicated to
use than models of trandational or rotational extrusion
[12,15]. But if free-form PROFILES are defined (which is
not exactly done in this paper), they would be extruded
with our approach, and this should greatly extend the
variety of shapes produced.

4.4.2. Sculpture If one of the 0 iso-surfaces defined
by the coordinates of the implicit extrusion field is
conserved in the final object, PROFILE extrusion directly
sculpts the conserved surface (Figure 9). Particular
attention must be paid to the complexity of the sculpted
surface. If its potential field is too irregular, the shape
produced from the sculpting will be uncontrollable.

PROFILE
G(X,Y)=0

X=f, Sculpted sphere

Figure 9: Spherical ordinate 0 iso-surface sculpted by
PROFILE extrusion.

4.4.3. Binary blending operator If the two O iso-
surfaces defined by the coordinates of the implicit
extrusion field are conserved, PROFILE extrusion
performs the blending (as seen in figure 7). If free-form
PROFILES are proposed, the classical notion of a smooth
and regular curved transition will be extended to free-form
blending. If in addition these PROFILES are defined
point-by-point, the transition will be created smply and
precisaly.

5. Applicationsusing PROFIL ES defined by
functionsof R- R

To validate the theory presented, we propose to use
PROFILES defined by functions of R— R. Indeed, these
functions are well known whereas defining implicit curves
=represented by the G(X,Y)=0 equation and controlled
point-by-point is aresearch topic on its own.

5.1. How to definea PROFILE G(X,Y) with a
functionH of R R

A function H of R-R is defined by the following
expression: Y=H(X). This expression can be written as:



Y-H(X)=0. So, we can directly deduce a possible
definition of PROFILE G:

G=Y-H(X).

The use of afunctional definition generates a limitation in
the form of the curves generated. Indeed curves defined by
functions must be monotonous in the abscissa direction (at
a fixed X=Xy, a most one Y value must exist such that
Y=H(Xp)). This implies a direct limitation: The 0 iso-
surface of the abscissa field cannot be included in the final
object (Figure 10).

AY Y

G(X,Y)=0

X
>

Figure 10: Form restriction of function curves.

PROFILE parameters are POINTS and VECTORS. Thisis
why we propose to use interpolation functions. We have
chosen 1D cubic polynomial splines [25] for their good
smoothness and oscillation properties.

5.2. 2D elementary interface of validation

The 2D space visualized (Figure 11) is a plane section of
the 3D working space. It is important to choose a plane
which intersects the potential fields correctly. The planeis
set where the outline of the final shape is to be controlled.
A poor choice of the plane will considerably decrease the
intuitive link between the 2D outline and the 3D shape.
This condition obliges the user to have a working
knowledge of potentia functions and of the fields
generated by implicit primitives.

To alow the user to respect the function properties, the X
axis must be visualized. The f, potentia field is visualized
as a background picture using gray graduations (black
when ;=0 and white when [f,| is max). To complete the
field reference, outlines of f; and f, O iso-surfaces are
visualized. The user can act on the shape outline by
moving, adding, or removing control points or by acting
on tangency at the first or the last point of the profile.
Points and tangents are interactively selected in the
interface with the mouse.

W Implicit Modeling
rimitives  view |8 Options Obiect
Do nothing
“Move a point
“Add a point

“Remove a point
# Modity first point tangency
<~ Modity last point tangency

Control point: 1 —I |Unitary spline: 1 — |Spline: 1 —i|Deep: 5 —i

X=0 G(X,Y)=0 Y=0

Figure 11: Our interface of validation.
5.3. Control of the extrusion trajectories

To create an object, extruded PROFILE (section 5.1.) and
extrusion trajectories have to be defined. Trajectories are
defined by intersections between the iso-surfaces of the
coordinates of the implicit extrusion field (section 4.1.).
To control tragjectories, we propose to use one of the
potential fields to define the extrusion support. PROFILE
is extruded ‘around’ the iso-surfaces of this potential field.
The other potential field is used to define the direction of
extrusion. PROFILE is extruded around the support and
along the direction of extrusion (Figure 12).

=% 2
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Figure 12: Examples of support (a,b,c) and direction
(d,e,f,g) of extrusion.

For example, directions can be simply defined by
functions like:

;0 - 0O f :D3 -0
x - y=1(x) (x,y,2) - y-1(x)’
Some functions used to create our directions are:

(xy,z)=y- acos(bx)

o 4 =arccos E (x,y,2)=y-acosba),
X _Z

and surfaces shown in Figure 12 (ef,g) are given by the
following equations:

e y-cos(x)=0,f: y-cosla)=0,9: y-cos8a)=0
5.4. Modeling tools

As seen in section 5.1., due to the use of functiona
PROFILES, implicit surfaces defined in the abscissa of the
implicit extrusion field cannot be included in the final
object. Depending on the use of the abscissa or the
ordinate as support and direction of extrusion, different
modeling tools are obtained. Once the tool has been
selected and the extrusion fields instantiated, the
PROFILE can be created using a suitable interface (see
section 5.2. for an elementary validation interface).

5.4.1. Sculptureon a surface The sculpted implicit
surface is selected as the ordinate of the implicit extrusion
field (to be able to be included in the final object) and as
direction of extrusion. It is the extrusion of the PROFILE
around the support (selected as the abscissa) which sculpts
the surface (Figure 13(ab,c,d)). The abscissa field
represents the sculpture tool. With the same PROFILE, a
surface can be sculpted with different supports to generate
various extrusion trajectories (Figure 13(g)).

(d) (€)

Figure 13: (a) The sphere (ordinate and direction) is
sculpted around a cylindrical (abscissa and support)
tool, (b) representation in our 2D interface ,(c) a profile
is defined by the user, (d) resulting object, (e) the
extrusion support is now a parallelepiped.

5.4.2. Sculpturearound a surface The sculpted
surface is again selected as the ordinate and as the support
of extrusion. PROFILE is extruded around the sculpted
object and along the direction of extrusion selected as the
abscissa (Figure 14). With the same PROFILE, a surface
can be sculpted with different direction to generate various

extrusion trajectories (Figure 15).
(b) i
(t

Figure 14: (a) The capsule (ordinate and support) is
sculpted along a plane field (abscissa and direction),
(b) representation in our 2D interface, (c) a profile is
defined by the user, (d) resulting object.

(©)



Figure 15: Different forms of direction and resulting
objects.

5.4.3. Extrusion objects In this case, trajectories
are controlled by acting on the support and the direction.
An example of a extrusion object is given in figure 16. In
this example, the PROFILE is extruded around cylinders
(support) selected as the ordinate. A cylinder is an infinite
surface and to be sure that part of the cylinder is not
included in the final object, we use a cylindrical field
without a 0 iso-surface. The effects generated in changing
the direction of extrusion are illustrated in figure 17 and
the effects generated in changing the support of extrusion
are illustrated in figure 18. Precautions have to be taken
when these two parameters are combined to obtain the
desired trajectories. Indeed undesired and uncontrollable
effects can be generated in the PROFILE extrusion
trajectories (Figure 19). A good knowledge and
understanding of the creation of extrusion trajectories are
necessary to control complex field combinations nicely.

Y -
:
@ l . (b)
(o (d) |

Figure 16: (a) The abscissa is defined by iso-value
plane surfaces (direction) and the ordinate by
cylindrical field (support), (b) representation in our 2D
interface, (c) a profile is defined by the user, (d)
resulting object.

4

(€)

Figure 17: Different forms of direction (a,b,c) and
resulting objects (d,e,f).

Y I |
Figure 18: Different forms of support and resulting

objects.
X
A/INN

Figure 19: The plane used as the abscissa figure 18 is
replaced by a corrugated field. The PROFILE extrusion
become uncontrollable.

(f)

5.5. Blending oper ator

The 0 iso-surface of the abscissa field can not be included
in the final object. We are not able to create the blend
operator as expected (see section 4.4.3.). As suggested by
D. Dekkers et al. [26], it is possible to include the two
blended 0 iso-surfaces in the ordinate field; they propose
the following expression:



0,00,:F =min(f, f,)- f,(f, - £.|),

where O, and O, are the primitive objects respectively
defined by potential functions f; and f,. Matter adding
function f,, is a function of R- R. This expression can
easily be adapted to our approach:

e Function Fisour G operator.

e Ordinate Y is defined by min(fy,f,).

¢ Function f, is a function of R-R. It can be

replaced by our H function.

* Abscissa X isdefined by [f;-f,|.
The min function generates a differential discontinuity in
the ordinate field. A solution to control this discontinuity
(a G' continuity is ensured if necessary) and alow the
creation of an operator of “almost” free-form blending
controlled point-by-point by the user is presented in [27]
(Figure 19(a)). We do not obtain free-form blending
because of the limitation of functional profiles used to
perform the transition.

Figure 19: (a) Blending, (b) intersection and (c)
difference(with soft transitions) of two spheres.

The blend operator can be seen as the union Boolean
operator generated with a soft transition. Intersection and
difference operators with point-by-point controlled soft
transition are also presented in [27] (Figure 19(b,c)).

Also defined with a matter adding function, operators on
R-functions include the two blended 0 iso-surfaces into
their ~ expression  without  generated differential
discontinuity [23]. It could be very interesting to
instantiate the ordinate field by equation 1 (see section 3),
to avoid the discontinuity generated by the min function.
Studies have to be done in that way, specially to verify the
regular variations of the field produced, and to define the
new properties of the function f,.

6. Visualization

3D shapes and 2D sections are rendered using octrees. The
voxelization method is based on interval arithmetic and a
point is visualized for each vertex of voxels [18]. The
computational time grows widely with the complexity of
the potential function. This method is unsuited to
interactive modeling but it has the advantage of giving a
precise visualization of most of the implicit surfaces. This
justifies the visualization method used to validate our
model. Specific research will have to be done to propose a
probably less precise but faster rendering method. The
color variation at the blend level is the sum the colors of
the blended objects balanced with their potential values.
The weight value is 1 if the potential equals 0 and 0 if the
potential is greater than or equal to the potential at the
blend intersection with the other object. It is inversely
proportional to variation of the potential value along the
blend.

Figure 20: Octrees 256x256x256 of Smurf’s house and
the Hobbit’s pipe visualized with OpenGL.

7. Conclusion

Extruding profiles in implicit extrusion fields allow us to
introduce precise control of “almost” free-form blending.
Through the instantiation of implicit space coordinates, we
propose tools which allow sculpting on or around a simple
surface and the creation of original extrusion objects.
Nevertheless, the use of potential fields as coordinates of a
2D space represents an abstraction level for the user, and
suitable interfaces have to be studied.

Another constraint of interactive modeling is fast surface
visualization. We have not yet explored this line of
investigations. For example, splines create bounded
modifications on the primitives. Algorithms computing
only these modifications in 2D/3D visualization structures
can increase interactivity.

Using free-form curves is an exciting perspective to
increase our model efficiency. Implicitization of
parametric curves [28,29], projection of a 3D shape onto
plane [30] and combination with soft transition of 2D
implicit curves [31] are different possibilities to explore.



Further studies remain to be done to find the limits of
implicit extrusion fields. If free foom PROLILE and
interactive visualization are proposed, it will be important
to explore different modeling processes and interfaces.
Approaches like generative modeling [32] and models
such as implicit sweep objects [12,15] will contribute to
generate a valid basis for comparison and inspiration.
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