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Abstract

This paper presents an implicit function fields based approach for the extrusion of 2-dimensional
profiles. According to the fields used, the extrusion follows an implicit object shape or performs the
transition between combined primitives. The 1-dimensional polynomial spline properties allow the
point-by-point control of the profile. Used on the transition of combined primitives, free form
functions allow us to introduce the notion of free form blending. The result is a powerful and precise
tool to model and blend implicit surfaces.

Keywords:  Implicit modeling, free form blending,
CSG trees.

1.  Introduction

The wide variety of implicit models developed
in different fundamental research topics (like 3D
reconstruction, animation of highly deformable
materials, morphing, smooth and round shape
modeling) make implicit surfaces a useful and
powerful tool. These applications are based on a
property of implicit surfaces: automatic
continuous blending. This blending notion is
usually seen and computed as a smooth and
regular curved or inflated transition.

After blobs1, soft object2 and metaballs3,
numerous models have proposed new implicit
primitives. But improvement of blend control
through the use of surface combination
models4,5,6 has been an important area of
investigation. 3D approximation data7,8 requires
manipulation of many basic primitives joined by
regular and automatic blending. Interactive
modeling requires manipulation of a small
number but a large variety of primitives and
precise control at the transition level. Skeletons9,

convolution surfaces10,11,12, algebraic
surfaces13,14,15 and sweep objects16,17 are different
implicit models which produce a large panel of
shapes. Implicit models are usually presented in
their basic form with the blend operator. This
operator is equivalent to the Boolean union
operator with soft transitions. To increase the
panel of forms, models like R-functions18 or
‘The blob tree’19 integrate CSG trees20. The
blend operation is then available with
intersection and difference.

An implicit function Fi transforms the
Euclidean 3D space into a potential field. A
fixed value of potential C defines the surface Si:
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To handle this field intuitively, a few graphic
parameters control the definition of the implicit
primitives. The composition of functions
F1,…,Fn in a specific equation g generates the
blended function F:
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Parameters allowing the control of blend
smoothness are not directly linked to graphic
data and transition creation is an iterative
succession of ‘adapting the value of the
parameters and visualization’. The final object is
obtained after an expensive task due to
visualization process time and the difficulty to
adjust the blend.

To get round this visualization problem,
discrete representation of implicit fields is used.
Combined with local operators21, it allows us to
add or remove matter in a small region of space
and then to interactively model the implicit
object.
   Our goal is to increase the interactivity, to
allow precise shape control and to extend
processing of regular smooth shapes to that of
free form shapes at the transition level of
combined implicit primitives in CSG trees.

This paper presents a generic vision of field
manipulation. Two implicit primitives generate a
2D extrusion field. Objects and transitions are
the extrusion result of a 2D profile in this field.
The properties of the extrusion field and of the
point-by-point defined 2D curve allow precise
control of the shape outline in a 2D visualization
interface. 3D visualization with an octree is used
to validate the resulting object shape if
necessary. General field extrusion definition and
properties are developed in Section 2. Precise
and easy profile creation in a 2D interface gives
flexibility and interactivity to our model. Such
profiles are presented in Section 3. Depending
on the implicit functions instantiating the model,
different extrusion fields with different
properties are produced. Two examples are
presented in Section 4 to illustrate the
possibilities offered by this approach to control
transitions in CSG trees and model primitives.
The first is an adaptation of the model developed
by Dekkers22. The second extrudes the profile
around an implicit function.

2. Implicit extrusion fields

   Implicit functions F split the space into two
half spaces. One where F(P)>0 and one where
F(P)<0. If F defines a closed object, the

convention of inside/outside is chosen as
follows:

•  If F(x,y,z) > 0, the point P (x,y,z) is outside
the volume defined by the surface.
•  If F(x,y,z) < 0, the point P (x,y,z) is inside the

volume defined by the surface.

Surfaces are 0 iso-surfaces:
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In common models of implicit primitive
combination with soft blending, primitive
equations fi are composed with blending
functions gi. The final object is the result of the
gi(fi) summation. These approaches are efficient
but it remains difficult to control the blending
shape accurately. We propose to develop the
model presented in Equation 1 (based on a very
simple formulation) which allows the points of
3D Euclidean space to be linked to the implicit
surface shape.
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Equation 1: f1 and f2 are two 0 iso-
surface implicit functions and g is the
matter adding function.

An interesting way to understand how this link
is performed is to compare this equation to that
of a function in a 2D space. It can easily be
written under its implicit form (Equation 2). The
comparison allows us to see function f1 as the X
axis and function f2 as the Y axis. Indeed, f1 and
f2 are functions of R3→R, g remains a function
of R→R. The new space defined by f1 and f2 is
called the implicit extrusion field.
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Equation 2: F is written as a function
of R → R. The 3D surface is the result
of the extrusion of g in the implicit field
generated by X and Y (respectively f1

and f2).



A fixed value of the abscissa  X=X0 is then the
set of points p’(x,y,z) of the Euclidean space
such that f1(p’) = X0. This set of points is the X0

iso-surface of the implicit field defined by f1. In
the same way, the ordinate is the Y0 iso-surface
of the implicit field defined by f2. A point
(X0,Y0) of the implicit space is then the set of
points p’(x,y,z) such that f1(p’) = X0 and f2(p’) =
Y0. This set of  points is the resulting curve P0 of
the intersection of the X0 iso-surface and the Y0

iso-surface.
In choosing a point p(x,y,z) in Euclidean

space, a P0 curve of the implicit extrusion field
is defined with the coordinates: P0(X0=f1(p),
Y0=f2(p)). The curve is then considered to be the
extrusion of point p in the implicit extrusion
field. The curve follows the form of the
intersection between the two implicit surfaces.

Function g is a continuous set of points P’(X,
Y=g(X)). A surface is then generated in
Euclidean space which is the result of the
extrusion of curve g in implicit space.

Equation 1 allows the shape defined by f2 to be
partially or completely conserved in the final
object. Indeed, the surface is defined when
implicit function F equals 0 and it generates the
following properties:

• When g(f1(x,y,z))=0: F(x,y,z)=f2(x,y,z). The
field defined by F is that defined by f2. If
f2=0 then F=0: the points of the resulting
surface are the ones of the primitive defined
by f2.

• At point P2(X2,0), X2 is the smallest abscissa
where g(X)=0 (see Figure 1 and 2), a null
value of the tangency (g’(X)=0) ensures C1

continuity between the primitive defined by
f2 and the blend defined by g. 

Figure 2: Example of a g profile
function.

Figure 1: Illustration of the g profile shown in Figure 2 extruded in a field
instantiated with two spheres.
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One solution to interactively create this
surface with a graphic interface, is to visualize
this 2D section of the implicit field and to select
control points pi using the mouse. Then the point
coordinates are computed from the 2D selection
space to the 3D Euclidean working space
(pi(xi,yi,zi)). Their coordinates are computed in
the implicit extrusion field (Pi(Xi,Yi) with Xi =
f1(xi,yi,zi), Yi = f2(xi,yi,zi)). The g function is
defined by interpolation of the control points Pi.
A 2D interactive visualization of the final
implicit object outline is proposed (using
interval arithmetic). The user can act on the
shape outline by moving, adding or removing
control points or by acting on other control
parameters (tangent, curvature, etc), depending
on the interpolation function used. The implicit
field visualization and g interpolation functions
are presented in the following section.

Used as shown in Figure 1 (sphere
instantiation), the model is not efficient enough.
Indeed, the only primitive which can be a part of
the final object is the one defined by f2.
Improved instantiations of abscissa and ordinate
implicit functions are presented in Section 4.

3.  2D surface outline manipulation

3.1.  2D implicit field visualization

The 2D space visualized is a plane section of
the 3D working space. It is important to choose
a plane which intersects the implicit fields
correctly. The plane is set where the outline of
the final shape is to be controlled. A bad choice
of the plane will considerably decrease the
intuitive link between the 2D outline and the 3D
shape. This condition obliges the user to have a
working knowledge of implicit functions and the
fields generated by implicit primitives.

The g functions are called “master profiles”.
These master profiles are functions of R→R. To
respect the function properties, the X axis must
be visualized. The f1 implicit field is visualized
as a background picture using gray graduations
(black when f1 = 0 and white when |f1 | is max).
To complete the field reference, outlines of f1

and f2 0 iso-surfaces can be visualized. We will
see that the f1 field background picture can be
sufficient (Figure 3).

Figure 3: The X axis is instantiated with
the minimum of two spheres.

3.2.  1D cubic polynomial splines

Control points have been presented as points
of the master profile. They can also be control
points like the ones used in Bézier curves for
example.

The interpolation function proposed has been
chosen for its good smoothness and oscillation
properties. If we consider a single interval
Xi≤X≤Xi+1 with both Y and g’(x) specified at
each end, we can construct a cubic interpolating
polynomial over that interval. If this is done over
every interval, the resulting piecewise cubic
function has continuity of slope at all data points
and interpolates data smoothly. Low degree
polynomials reduce problems of oscillation.
These functions are called 1D polynomial
splines23 and were used to define our master
profiles.

The first derivative can be computed
interactively as well. This is done by choosing
the beginning point (one of the control points of
the 2D space) and selecting another point (with
the mouse) giving the tangent direction (Figure
4).

   

Figure 4: The line moves with the
mouse pointer until the user clicks to
select the desired tangent.



It is then computed in the implicit space. The
first derivative value can also be directly given
(to allow the user to input an exact value).

4.  Examples of extrusion field
instantiations

4.1.  Union Boolean operator

D. Dekkers, K. van Overveld, and R.
Golsteijn22 propose a method to combine CSG
modeling with soft blending using implicit
surfaces. Their model is optimised for Lipschitz-
based implicit surfaces and allows soft
transitions for primitives having homogeneous
fields (a plane combined with a sphere generates
C1 discontinuities in the transition). The union
Boolean operator is computed using the
following equation:
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where O1 and O2 are the primitive objects
respectively defined by the f1 and f2 implicit
functions. Function fb is the blending function
and n its softness control parameter. The
transposition of this equation to our model gives:

• The extrusion field is instantiated with |f1-f2| as
the abscissa and min(f1,f2) as the ordinate.

• The blending function fb is replaced by a
master profile g.

We then obtain:

( ) ( )212121 ,min: ffgffFOO −−=∪ .

When g(|f1-f2|) = 0, F = min(f1,f2). Outside the
master profile boundaries, F defines the classical
union operator (without blending) and inside the
boundaries, the object is defined by the
extrusion of the master profile in the fields. The
profile is joined to the surface in fi = 0. A null
first derivative at this point ensures C1 continuity
between the surface and the profile (performing
the blend).

When |f1-f2|=0, the min function creates a
discontinuity in the ordinate field (f1 is selected
on one side of the frontier and f2 on the other).

For each side, a master profile has to be defined.
The junction points are in |f1-f2| = 0 (f1 = f2).
These points are located between the two
blended objects. Functions f1 and f2 generally
produce different fields. This is why we need to
control the first derivatives on each side of the
frontier to avoid C1 discontinuities. Our
computation method provides the same tangent
on each side if desired. The first derivative value
is then computed independently for each profile
in its own field. Figure 5 illustrates the different
sections composing the final object.

Figure 5: Union of two spheres.

All the classic continuous blending shapes are
easily built by applying these constraints to the
master profiles. But, the interactive manipulation
of the control points and the first end derivatives
allow free form blending (Figure 6).

  

Figure 6: Union of a parallelepiped and a
sphere. On the left, a common blend and on the
right, a free form blend.

4.2.  Intersection and difference operators

In the same way, master profiles allow the
introduction of soft transitions into the
intersection and difference Boolean operators.
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From the Dekkers form, we obtain the following
equations:
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All the binary CSG operators are now
available with all the advantages and extensions
seen in the union operator. Moreover, owing to
the precision of the transition control, many
complex implicit objects created with their own
implicit model, can be used as a basic primitive.
This extends the versatility of our model.

4.3.  Extrusion of the master profile
around an implicit object

Simple instantiation for the f1 implicit function
is a plane surface. The iso-value field is a set of
parallel plane surfaces. The extrusion profile is
then given by the intersection between an iso-
value plane surface and an iso-value surface
defined in f2 field. According to these
considerations, the final object is the master
profile extrusion ‘around’ the implicit object
defined by function f2 (Figure 7).

   

Figure 7: Extrusion of the profile in an
octagonal field.

The chimney in Figure 8 is the result of an
extrusion around a parallelepiped. The main part
of the roof is the result of an extrusion around a
cylinder.

The iso-surface abscissa can be modified.
Simple functions like the intersection of inclined
planes (with or without soft transition) produce
interesting effects.

Figure 8: Octree (256 × 256 × 256) of
Smurf’s house visualized with OpenGL.

5.  Conclusion

Extruding 1D cubic polynomial splines in
implicit fields allow us to introduce precise
control and free form blending. Through the
instantiation fields, we propose a new class of
implicit functions, extruding profiles ‘around’ an
implicit object. The use of a 2D selection profile
interface decreases the number of 3D
visualizations. This adds interactivity to our
model. At high levels of the CSG tree, the 2D
visualization process time of object outlines
increases (a few seconds) due to surface
equation complexity.

The visualization of implicit fields has to be
improved to precisely and interactively select
the 2D selection profile plane. Splines create
bounded modifications on the primitives.
Algorithms computing only these modifications
in the 2D/3D visualization structure can increase
interactivity.

Extruding 2D profiles in implicit fields is an
interesting topic of investigation. Interactive and
accurate tools for implicit modeling can be
developed and integrated in other models.

6.  Acknowledgments

We specially thank Pr. Van Overveld and his
group for easy access to their works, even papers
waiting to be published. Without this, the
present research would certainly not have
reached its current state.



References

[1] J.F. Blinn. A Generalization of algebraic
surface drawing. ACM Transaction on
Graphics, 1(3):235-256, July 1982.

[2] H. Nishimura, M. Hirai, T. Kawai, T.
Kawata, I. Shirakara, and K. Omura. Object
modeling by distribution functions.
Electronics Communications, 68D(4):718-
725, 1985 in Japanese.

[3] G. Wyvill, C. McPheeters and B. Wyvill.
Data structure for soft objects. The Visual
Computer, 2(4):227-234, February 1986.

[4] J. Warren. Blending algebraic surfaces.
ACM Transaction on Graphics, 8(4):263-
278, 1989.

[5] Z. Kacic-Alesic and B. Wyvill. Controlled
blending of procedural implicit surfaces.
Proc. Graphics Interface 1991, pp. 236-245,
1991.

[6] M.P. Gascuel. An implicit formulation for
precise contact modeling between flexible
solids. Computer Graphics (proc. of
SIGGRAPH ’93), pp. 313-320, August
1993.

[7] S. Muraki. Volumetric shape description of
range data using “Blobby Model”.
Computer Graphics (proc. of SIGGRAPH
’91), 25(4):227-235,1991.

[8] R. Whitaker and D. Breen. Level-Set
models for the deformation of solid objects.
Proc. of Implicit Surfaces ’98, pp 18-34,
1998.

[9] J. Bloomenthal and B. Wyvill. Interactive
techniques for implicit modeling. Computer
Graphics (proc. of SIGGRAPH ’90),
24(2):109-116, 1990.

[10] J. Bloomenthal and K. Shoemake.
Convolution surfaces. Computer Graphics
(proc. of SIGGRAPH ’91), 25(4):251-256,
1991.

[11] G. Sealy and G. Wyvill. Smoothing of
three dimensional models by convolution.
In Computer Graphics International’96, pp
184-190, June 1996.

[12] A. Sherstyuck. Interactive shape design
with convolution surfaces. Shape Modeling
International ’99. March 1999.

[13] P. Hanrahan. Ray tracing algebraic
surfaces. Computer Graphics, 17(3), July
1983.

[14] T. Sedeberg. Techniques for cubic
algebraic surfaces. Computer Graphics &
Applications, 1989.

[15] C. Blanc and C. Schlick. Ratioquadrics: an
alternative model for superquadrics. The
Visual Computer, 12:420-428, 1996.

[16] B. Crespin, C. Blanc, and C. Schlick.
Implicit sweep objects. Eurographics ’96,
15(3):165-174, 1996.

[17] C. Grimm. Implicit generalized cylinders
using profile curves. Proc. of Implicit
Surfaces ’99, September 1999.

[18] A. Pasko, V. Adzhiev, A. Sourin, and V.
Savchenko. Function representation in
geometric modeling: concepts,
implementation and applications. The
Visual Computer, 8(2):429-446, 1995.

[19] B.Wyvill, A. Guy and E. Galin. Extending
the CSG tree – warping, blending and
Boolean operations in an implicit surface
modeling system. Proc. Of Implicit
Surfaces ‘98, pp. 128-136, 1998.

[20] L. Barthe, V. Gaildrat and R. Caubet.
Combining implicit surfaces with soft
blending in a CSG tree. CSG ’98
Proceedings, pp. 17-31, 1998.

[21] E. Ferley, M-P. Cani and J-D. Gascuel.
Practical Volumetric Sculpting. Proc. of
Implicit Surfaces ’99, September 1999.

[22] D. Dekkers, K. van Overveld, and R.
Golsteijn. Combining CSG modeling with
soft blending using Lipschitz-based
implicit surfaces. Technical Report,
Eindhoven University of Technology,
Computer Graphic Group, 1997.

[23] C. de Boor. A practical guide to spline.
Applied Mathematical Sciences, 27:156-
162, 1978.


