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ABSTRACT 
We present an interactive modelling technique, which 
reconstructs three-dimensional objects from user-drawn two-
dimensional strokes. We first extract a skeleton from the 2D 
contour, and the skeleton is used to define an implicit surface 
that fits the 2D contour. The reconstructed 3D shape has a 
natural aspect, it is very smooth and can easily be edited and 
modified using strokes or performing operations on the 
skeleton. This method is very accessible for non-specialist users 
and it allows fast and easy shape prototyping. 

 
Categories and subject Descriptors: 
I.3.5 [Computer Graphics] Computational Geometry and 
Object Modelling. 
 

General Terms 
Algorithms, Design. 
 

Keywords 
Geometric Modelling, Sketches, Implicit surfaces. 
 

1. INTRODUCTION 
When designing a three-dimensional object, one starts from a 
mental representation. By mental representation we understand 
a very high level description of the object, i.e. when the user 
wants to model a man he knows that he has to model four limbs 
and a body, etc. This mental representation has to be 
transcribed into the computer as a three-dimensional shape 

representation using some interaction device. Generally neither 
the interaction device nor the interaction metaphor of the 
modelling software are intuitive enough for non-expert users 
and the conception of the complete object remains a fastidious 
succession of shape creation and editing operations. 

 
Figure 1. Examples of 3D objects designed with our system 

using 2D strokes, the average modelling time being 10 
minutes per object.  

 

From a general point of view the creation procedure can be 
decomposed into two distinct parts, which require different 
techniques and functionalities. 

First of all, one has to build a prototype of the object i.e. a 
coarse approximation of the final shape. Second, the prototype 
is edited in order to accurately finalize the coarse 
representation and to add details. 

Nowadays, several efficient multi-resolution techniques such as 
subdivision surfaces [52], [23] or normal meshes [17] allow the 
refinement of three-dimensional shapes once a coarse 
representation has been built. Concerning the prototyping 
procedure, actual modelling software can provide very 
advanced tools, allowing expert users to produce complicated 
and realistic prototypes, however the drawbacks are the 
following: 
- They use complex and non-intuitive theoretical 

models (parametric patches, CSG, etc.). The user has to 
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follow a long and tedious learning process before being able 
to efficiently exploit these concepts. 

- They use abstract notions that are too far from the 
real world (geometric primitives, numerical parameters, 
parametrical functions, key frames, etc). 

The complexity of WIMP-like graphical interfaces (Windows 
Icons Menus Pointer), makes them difficult to use and 
increases the complexity of the user’s task. 

Since long time, experts showed [30], [43] that more time is 
spent searching through commands and menus than 
concentrating on the modelling task itself. 

Classical modelling software still leaves unsolved some 
fundamental problems such as: how to quickly build mock-ups 
and prototypes; how to make the interaction with the user more 
intuitive and more natural; and finally, how to outpace the low 
level of abstraction. 

However, we do not intent to provide a complete modelling 
tool, as it would be very difficult to compare our software with 
classical modelling software and its infinite number of 
modelling possibilities. We rather propose a complementing 
technique, which explores gesture based modelling of free-form 
shapes and which is mainly addressed to non-expert users.  

Sketching is a simple means of expression, accessible by 
everyone (See [40] for a discussion on sketch-based 
interfaces.). It is useful for quickly materialising ideas and 
sharing them with the working team. It is also an excellent 
stimulant for creativity and innovation. For these reasons, 
several research projects have focused on the design of 3D 
shapes from 2D sketches. We will start by briefly presenting 
the related works on 3D shape reconstruction from a point set 
and then we will discuss the previous works on sketch-based 
modelling. 

Related work on the 3D surface reconstruction: The problem 
can be formulated as it follows: starting from a set of points 
approximating a 2D contour, find a 3D closed surface with a 
suitable thickness which best fits the point set. 

Related ideas on 3D shape reconstruction with implicit surfaces 
can be found in [27], [19], [8], [25], [4], [3], [31]. Other papers 
use globally supported RBF functions [41], [10], [44] or locally 
supported RBFs [28], [24], [32].  We note that all the cited 
papers are not meant to solve our problem, but the more 
general problem of 3D reconstruction from a 3D cloud of 
points. However they can be easily adapted to this particular 
case. Although RBFs seem to be the state of the art in this field, 
they require a large amount of data for an accurate smooth 
reconstruction and therefore they are not suitable for interactive 
use. Other inconvenients of this technique will be further 
discussed. 

Related work on sketch-based modelling: The first modelling 
system that used sketches was introduced by Zeleznik [50]. 
SKETCH is based on gesture recognition and a “dictionary” of 
basic 3D primitives, and is limited to isothetic objects with 
sharp angles. 

Teddy software [21] performs reconstruction using the chordal 
axis [38], from which a mesh is computed. The 2D contour is 
sampled regularly and the resulting planar set of points is 
triangulated using a constrained Delaunay triangulation [2]. A 
chordal axis [38], which connects the middles of the internal 
edges of the triangulation is then built and used as a skeleton. 
The final 3D shape is a polygonal mesh reconstructed by 
elevation of this skeleton. Teddy demonstrates the efficiency of 
2D sketching for 3D free-form shape prototyping, but it also 
exhibits some limitations such as the difficulty to edit the mesh 
and to rearrange parts of the 3D object. The quality of the 
provided mesh is also poor, and a post-processing treatment on 
the mesh is necessary [20]. By using implicit surfaces (i.e. a 
smooth representation) we overcome these inconvenients. 

Karpenko et al. [22] use variational implicit surfaces. [13] base 
their work on Karpenko’s idea but add a more complete over-
sketching utility. [51] enrich the method by the possibility to 
“paint” strokes on the surface or “in the air” to add more 
expressiveness. The surface is defined by functions that 
interpolate a set of points. In this context, the main problem is 
the extrapolation of the 3D shape thickness. The first task is to 
create a complete approximation of the 3D object by a set of 
points, which is needed by the interpolation function (the initial 
stroke is not sufficient). Hence, new points have to be created 
in both sides of the profile in order to build the 3D object 
thickness. This process is done by projection, which limits the 
form of the user-defined contours to ellipse-like shapes. The 
user creates several simple shapes, which are then blended in 
order to build the final object. The main limitation of this 
approach comes from the diminished range of the possible 2D 
contours, due to the difficult reconstruction of the 3D shape 
thickness. We note that the moving least squares techniques has 
the same drawback, so the same observations apply to it as for 
variational implicit surfaces. Also, in [22] the user is forced to 
explicitly blend the different parts of the object, whereas 
ideally this process would be automatic and transparent. Both 
of these drawbacks are avoided by our approach. 

A more recent approach reconstructs a cylindrical convolution 
surface from the user’s stroke [45]. Convolution cylindrical 
implicit surfaces are a smooth structure and they are very close 
to our approach. As we show in section 3.2.3, convolution 
cylinders are not adapted to reconstruct surfaces that fold onto 
themselves, as near the folding a visible unwanted blending 
appears that cannot be entirely removed by the optimisation 
process. Also, the authors report unwanted oscillations of the 
resulting surface, which are produced by the optimisation 
process, as it can be seen in their figures.  

Owada et al. [33] use a volumetric voxel based structure, which 
allows them to model the intern object cavities. As done in 
[45], the same functionality can be realized with our approach, 
using negative implicit functions, and it will be developed as a 
future extension. 

We point out that in the different methods presented so far, the 
user cannot control the local 3D shape thickness (except in 
[45]). Since the shape’s thickness is computed automatically 
and may not correspond to the user’s intention, this is an 
important issue. 



Our approach and contributions: We prefer to keep the 
double representation skeleton/3D-shape and hence allow the 
3D shape to be defined and modified using 2D strokes, but also 
edited using very simple operations on the skeleton, such as 
deleting, copy/cut-paste, etc. Our structure is similar to the one 
used in [36] to recover animation movements from video 
sequences. In our case there is a single image, which is the 
user’s stroke, and we construct what would correspond to a 
“natural” shape from this image. The user has the possibility to 
modify it by various strokes and skeleton operators. Skeleton 
manipulations are of interest because they allow simple and 
intuitive rearrangements of the object’s parts such as arms, 
legs, etc. For skeleton based editing see [49] Moreover, a 
smooth shape representation is preferable to a direct polygonal 
mesh extraction. 

Therefore we use Teddy’s skeleton reconstruction procedure 
(modified with an adaptive sampling of the 2D stroke that 
allows better detail capturing than uniform rough sampling 
techniques) and once the skeleton is extracted, we reconstruct 
the 3D shape with blended implicit spheres, placed along the 
skeleton, which fit the 2D contour. We also preserve the 
skeleton structure, as a graph, the nodes being the implicit 
spheres. 

Our reconstruction technique is based on the one used by 
Muraki [27] and [8], but we make it interactive by performing 
several simplifications which will be exposed later. The 
reconstructed surface is very smooth (C7 continuous in our case; 
the reasons why this high class continuity is necessary will be 
explained in section 3.2.2), the spheres radii automatically 
extrapolate the 3D shape thickness and the user can edit it once 
the 3D shape is reconstructed, and finally simple editing 
operations can be performed on the skeleton. 

This approach is, as the previous sketch-based approaches, 
suitable for modelling simple, organic-like shapes, and it can be 
used by non-expert users, since it does not require knowledge 
of the underlying surface model. Only the skeleton and the 
stroke tool (a digital pen, a mouse, etc.) are available to the 
user. It can be applied in fast prototyping and modelling for 
story telling. The computing times are about 2-3 seconds per 
stroke, with about a few dozens blobs per stroke, which is the 
case for all the models that we show in Figure 1. Therefore, the 
reconstruction times are comparable to those obtained by our 
predecessors, but the quality of the surface is much better (i.e. 
smoother and less oscillations), as we produce high-class 
continuity surfaces, which can be compactly stored, as a set of 
blobs parameters. We propose a new spherical kernel, which is 
well suited for our reconstruction needs. We also enriched the 
modelling tools with skeleton manipulation operators. Our 
method overcomes the limitations imposed to the input contour 
in [22]. Compared to cylindrical convolution functions (as used 
in [45]), spherical implicit functions have a smaller influence 
zone, and therefore they follow more faithfully the shape of the 
stroke, and the surface remains smooth. Besides they are faster 
to evaluate than cylindrical convolution functions. We also 
propose a technique to considerably reduce the oscillations of 
the resulted surface. 

 

Paper organisation: In the next section, the adaptive 2D 
stroke sampling and the skeleton extraction procedure are 
presented. Section 3 describes the automatic reconstruction of 
the 3D implicit surface that fits the 2D contour and Section 4 
presents the different creation/editing operations available with 
our system. 

 

2. Sampling and extraction of the skeleton 
from the 2D stroke  
First the user sketches a stroke, which is automatically closed. 
Then we apply an average filter, in order to remove noise from 
the input. In previous approaches, the contour can be then 
sampled following two strategies: whether the edges have 
uniform length ([21], [22]), or the edges length is adaptively 
established, between a minimum and a maximum value, 
whenever the angle variation is smaller than a threshold value 
[45]. Another solution for adaptive sampling is the popular 
Douglas Peuker algorithm for line simplification [14]). But the 
Douglas Peucker algorithm would produce a highly non-
uniform repartition of samples along the contour, which will 
have undesirable effects on the reconstruction.  

We think that an adaptive sampling technique is recommended, 
since it helps to capture the coarse details in the strokes and to 
skip the finer ones. At the same time, we need to guarantee a 
minimum uniformity of the samples repartition, which will 
result in placing the implicit spheres close enough to form a 
stretched smooth blending. 

For these reasons, we prefer to start from a regular sampling, 
and then adapt it wherever this is necessary, in order to remove 
the oscillations in the resulting surface. 

We used a wavelet-based compression of the stroke, at several 
levels. To compress one level, we replace every two points by 
one point, its coordinates being the average of the two points 
coordinates. The process is repeated several times (4 times in 
our case, which means that every 16 pixels in the contour 
produced a point in the sampling polygon). The coordinates are 
stored in tree structures, every point memorizing the two points 
that produced it. The leafs of the trees are the pixels of the 
initial contour, and the roots are the maximum compression 
level. 

Whenever one sample is considered not sufficient, the 
corresponding tree expands, and the two “sons” replace the 
initial point. To determine if the sampling is sufficient enough, 
we have to compute a first approximation of the reconstructed 
surface, and to evaluate it. The process is described in section 
3.2.2. For our computations, we start with the maximum level 
of compression. 

The next step is the construction of a constrained Delaunay 
triangulation [2] (Figure 3 (b)) of the polygon points (Figure 2 
(a)). This is followed by the computation of the polygon 
skeleton, using the chordal axis [38] (Figure 2 (c)). This is a 
close relative of the medial axis [11] but it is locally defined 
and it allows pruning of insignificant branches. We recall that 
the chordal axis links the middles of the internal edges of the 
Delaunay triangulation. A special treatment is applied to 



branching points. Our skeleton extraction algorithm and 
pruning are based on the ones described in [21].  

 

 
 

Figure 2. (a) Initial contour. (b) Delaunay triangulation.  (c) 
Skeleton computation. 

 

3.  RECONSTRUCTION OF THE 3D 
IMPLICIT SURFACE 
3.1  Theoretical background 
The implicit surface that reconstructs the 3D shape is generated 
by the blend of implicit spheres. A single implicit sphere is 
defined by its centre ci. Then by setting ri = d(p,ci), the 
distance from a point p∈R3 to the centre ci, we define a 
potential function fi(ri). Functions fi decrease smoothly 
following a Gaussian-like curve, from 1 to 0, as ri varies from 0 
to infinity (Figure 3). An influence radius Ri bounds the 
function’s contribution. When ri≥Ri: fi(ri)=0 (bounded 
primitives) or fi(ri)≈0 i.e. fi(ri)<ε,∀ ri≥Ri with ε negligible. The 
sphere’s surface is defined by the set of points p∈R3 such that 
d(p,ci)=ei and fi(ei) = C, where C is a constant within the 
interval (0,1), generally 0.5. 

 

 
 
Figure 3. Plot of a Gaussian-like potential function fi used 

for our reconstruction. 
 
The volume bounded by the sphere is the point set of R3 such 
that fi(ri)≥C. The most important property of these implicit 
spheres is their capacity to automatically blend when their 
potentials are summed (N is the number of spheres): 
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The result of the blending is a smooth surface defined by the 
potential function f. The first implicit model of this type was 
the blobby model [5], which is based on an exponential 
function. In order to reduce the computational cost of the 
exponential and to provide bounded primitives, several 
polynomial functions fi have been proposed: SoftObjects [47], 

Metaballs [29], W-shaped polynomial [37], the “pseudo 
Cauchy” function [39], Stolte’s function [42], keR model [8], 
etc. We denote these spherical potential functions fi as “blobs”. 

Other powerful modelling by blending techniques exist, such as 
the blob-tree [46]. Our structure might be regarded as a single 
n-node from a blob-tree, the operator being the summation of 
the primitives. The F-Rep [35] are more general implicit 
functions but they are very complex to evaluate and therefore 
not suitable for interactive modelling.  

 

3.2  Reconstruction and fitting procedure 
3.2.1  First surface approximation 
 Once the skeleton has been computed, blobs are placed in 
every skeleton point as illustrated in Figure 4. The edges of the 
blobs graph are automatically computed from the skeleton’s 
structure. We now have to choose the potential functions fi. For 
reasons that are discussed in detail in the next section, we 
propose the following kernel: 
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The reconstructed 3D surface is then defined by the following 
equation:  
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This equation has a set of N parameters Ri (one influence radius 
Ri per blob fi) that have to be determined. These parameters 
have to be computed so that the 3D surface best fits the drawn 
stroke. We cannot directly determine the parameter values for 
which the 3D surface is sufficiently close to the contour, but we 
can compute a first approximation and then use an adjustment 
(minimisation) procedure in order to converge to an optimal 
solution. 

The first approximation is computed by considering each blob 
as being isolated. The equation that defines a single blob with a 
radius ei is written as:  
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C being the same constant as in (3.3) and ei being a fixed value 
that represents the radius in isolation of the ith blob (i.e. the 
distance from the blob’s centre to the surface). We consider the 
radius ei as being the average of the distances between the 
blob’s centre ci and its neighbouring contour points (see Figure 
4). The radius ei set in this way in equation (3.4) allows us to 
determine the initial value of the parameter Ri. This process is 
applied on each blob and we obtain the initial potential 
function f. 

(a) (b) (c) 

C 

ei Ri 

fi 



 
 

 

 
Figure 4. Computing the initial values for the radius of 

influence Ri. 
 

With parameters Ri computed as described above, one could 
notice a slight “bloating” effect on the surface, which moves 
away from the contour, as shown in Figure 5 (a).  

 

 
 

Figure 5. (a) Initial surface. (b) Surface after adjustment. 
(c) The same object viewed from a different angle. 

 
This is natural since the influence radius of each blob is 
computed without considering the influence of the neighbouring 
blobs. When all the blobs’ contributions are summed (Eq. 
(3.3)), the potential values of functions fi are accumulated and 
as the blobs blend the surface begins to bloat. Moreover, blobs 
are often very close, and the “bloating” effect can be quite 
significant. Our experiments show that a better first 
approximation of the contour by f is obtained by multiplying the 
radius ei by a factor of 2/3. By reducing the initial radii we 
reduce this bloating effect, and we win a few steps in the 
minimisation process, hence speeding up the process. 

We notice that the distance between two neighbouring blobs 
never exceeds the sum of their radii and hence, they are 
guaranteed to blend. 

 

3.2.2 Discussion on the smoothness of the resulting 
surface 
Two main criteria have been taken into account to guide our 
kernel choice: the less oscillations of the reconstructed surface 
(Figure 6), and the low computational cost of the potential 
function.  

C1 or even C2 continuity proved not to be sufficient for 
generating a perfectly smooth surface. As the Figure 6 (b) 
demonstrates, small oscillations are visible on the fish’s tail, 
which mark the transitions between blobs. 

 
 

Figure 6. (a) Stroke reconstructed with blobby model 
[5](C∞ function). (b) Stroke reconstructed using Soft Object 
function [47] (C1 function). (c) Stroke reconstructed using 

our Stolte-like function (C7). 
 

This happens when the potential function “falls” too abruptly to 
zero. The oscillations vanish when the function’s continuity 
class increases (i.e. the potential function falls less rapidly). 
Our experiments produced very smooth surfaces when using 
computationally expensive unbounded C∞ functions (Figure 6 
(a)) and less smooth surfaces (Figure 6 (b)) when using 
computationally cheap Ca continuous bounded polynomial 
functions (a≤2). A function providing a good compromise 
would have a high-class continuity, while remaining 
computationally cheap. This has been obtained with a bounded 
function (Eq. 3.2) similar to the W-shaped or Stolte’s function, 
but with a higher degree to achieve a better smoothness (C7 
continuous) and therefore less oscillation. 

As it can be observed in Figure 6, there is no visible difference 
between a surface generated using the blobby model, and a 
surface generated with our function. This is the first solution 
that we propose for smoothing the surface. However when the 
surface has tiny cylindrical regions (Figure 7), or small details, 
this might not be enough. 

Another solution would be simply to sub-sample the stroke, in 
order to get a higher number of contour points, which would 
generate a higher number of blobs. But this solution adds more 
blobs everywhere on the stroke, when actually only some 
regions need more blobs. In this case we use a third solution. 

We consider that two blobs are too far from each other if the 
distance between their centres exceeds the minimum of the two 
blobs radii, multiplied by an adjusting factor (which is 1.2 in 
our case). In this case the sampling contour points in that zone 
are expanded, every point being replaced by the two points on 
the superior tree level that we used for compression (see 
section 2). In that way we refine all the zones were blobs are 
not close enough. This process is done before parameters 
adjustment. If the trees have been expanded, the skeleton and 
the first approximation of the implicit spheres need to be 
recomputed. This process takes less that one second, and it is 
repeated a number of times that cannot exceed the maximum 
level of compression (the average is two times). This maintains 
the modelling time interactive. 

(a) (b) (c) 

Sphere centre 
Neighbors used to 
compute the radius 
of influence 

(a) (b) (c) 



In Figure 7 (c) the surface exhibits oscillations in tiny regions, 
i.e. where the blobs are not close enough to form a stretched 
blending. In this case the minimisation process fails to remove 
the oscillations and hence we use our blobs insertion procedure. 
After the adjustment of the local blob density, 32 contour points 
have been added, in less than 2 seconds and the oscillations on 
the surface have been considerably reduced. 

 

 
 

Figure 7. Smoothening the surface: (a) Initial stroke. (b) 
Stroke adaptively sampled by expanding the sampling trees 
in the tiny zones. (c) Surface reconstructed with the regular 

sampling. (d) Surface reconstructed with the adaptive 
sampling. Note the reduction of the shape oscillations. 

 
The next step is the minimisation process, which adjusts the 
parameters Ri so that the 3D implicit surface fits the contour. 

 

3.2.3  Adjusting the function parameters 
 
As in previous approaches [27], [8], [45], the adjustment tries 
to minimise an energy function E that characterises the distance 
between the surface and the contour points. This is done by 
summing the squares of the difference between the value of the 
function f at contour points and the value C that f should return 
at these points in order to interpolate them. M is the number of 
contour samples: 
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To perform the adjustment, several non-linear least squares 
minimisation methods (Gauss-Newton, Levenberg-Marquart) 
have been tested. The best performance in both speed and 
convergence were obtained using the dogleg trust region 
method [26]. Only two seconds are necessary on an AMD 
Athlon 1,3GHz for the method to find an almost zero energy 

value (i.e. smaller than 0.1 which is sufficient in our case) 
when the number of blobs is around fifty. This number of blobs 
is largely enough for the models that we present. Every stroke 
is reconstructed individually, as the modelling process is 
incremental. The surface before and after the adjustment is 
shown in Figure 5. 

A more complete energy function would also contain a tension 
term within the energy formula [12], which would minimize the 
mean curvature over the contour points. However, this would 
considerably slow down the minimisation process (i.e. by a 
factor of 100 in our tests), and it would not be suitable for 
interactive times. As our experiments showed, it is not 
necessary to use a more complete energy formula. 

Finally the surface is polygonized for rendering and displayed 
using a classical Marching Cubes algorithm [6]. Figure 8 
compares the mesh obtained with our reconstruction algorithm 
with the one produced from the same contour using the 
algorithm from Teddy [21].  

 
Figure 8. (a) Implicit surface produced by our algorithm. 
(b) Mesh produced with the algorithm described in [21]. 

The resultant surface is much smoother when using implicit 
surfaces. 

 
One can see that our method provides a much smoother surface. 
A post processing of the mesh (for example, with subdivision 
surfaces) would also be an option, but in that case we will loose 
the compact structure of the implicit surfaces, and the mesh 
should be post processed every time the skeleton operators are 
applied, which is not convenient. 

As we stated in the introduction, the reconstruction with 
convolution cylinders is not suitable for “folding” strokes. This 
is shown in Figure 9. We use the same convolution function as 
in [45], and we compare the stroke reconstructed using their 
method with the same stroke reconstructed with blobs. In order 
to remove the unwanted blending at the interior of the fold, the 
contribution from the cylinders in this zone is diminished, but 
that causes the surface to move away from the stroke at the 
extern part of the fold. This is the reason why we preferred to 
use blobs because they have smaller regions of influence, so 
they follow faithfully the curve of the fold, as shown in Figure 9 
(b) and (d). 

(a) 

(b) 

(a) (b) 

(c) (d) 



 
 

Figure 9. (a), (c) Folding stroke reconstructed with 
convolution cylinders as described in [45]. (b), (d) The same 

folding stroke reconstructed with blobs (the Stolte-like 
function 3.2) 

 

4.  EDITING OPERATIONS 
The double shape representation (skeleton/3D-shape), gives 
some advantages to our method. Both of these structures are 
intuitive to use for shape editing. In addition to the editing 
possibilities provided by the use of 2D strokes, the user can 
perform simple operations directly on the skeleton points. 

Figure 10 synthesizes most of the operations implemented so 
far. The automatic blending property of implicit surfaces 
preserves the surface smoothness and the definition of the 
surface by blended spheres ensures that the object is and 
remains solid through editing operations. Some images of 
objects modelled with our system are shown in Figure 1. Each 
object was modelled within 10 minutes average time. 

 

4.1  Extrusion 
In order to perform an extrusion, the user must first select the 
blob to be extruded (dark point in Figure 10 (b)). The next step 
is to draw the extrusion profile by sketching a stroke that is not 
necessarily closed, as shown in Figure 10 (b). The system then 
processes the stroke as in creation mode. The skeleton of the 
stroke is extracted and implicit spheres that approximate the 
stroke are produced. Finally, the newly created skeleton is 
connected to the existing one, and the user sees the extruded 
part that he created. 

 
4.2 Changing the thickness of one or more 
blobs 
In order to modify the thickness of one or several blobs the user 
first selects the centres of the blobs to be scaled using a 
selection rectangle (dark points in Figure 10 (c)). Then he 
moves the mouse or the digital pen up or down, depending on 
the desired effect: flattening or fattening. Inserting a factor in 
the squared Euclidean distance computation does scaling.  

 
Figure 10. Operations implemented by our system: (a) 
Creation of a shape from its profile. (b) Creating the 

plane’s tail by extrusion. (c) Flattening the wings and the 
tail by scaling the blobs. (d) Cut-paste of a skeleton part. (e) 

Suppression of a skeleton part. (f) Rotation around an 
articulation point. 

 

For example, in order to perform scaling on the z axis (when 
the contour is defined in the (x,y) plane), the squared distance 
r2=x2+y2+z2 is replaced by r2=x2+y2+γz2, where γ is the 
scaling factor. In order to flatten, γ is chosen to be less than one 
and for fattening, γ is chosen to be greater than one. When γ≠1 
the spherical blob becomes an ellipsoid, hence providing the 
thickness control. Examples are shown in Figure 10 (c). As 
done in [45] we can think of using anisotropic distance 
functions [47], [34], [7], [10]. However, this obliges the user to 
draw the thickness for a set of blobs and we are not sure that 
this is an efficient tool to provide. Since we want our modelling 
metaphor to remain as simple and as intuitive as possible, the 
control of the shape’s thickness in a more appropriate manner 
will be the topic of our future research. 

 

4.3  Rotation around an articulation 
The user selects first the point on the skeleton, which will be 
the rotation pivot (white point in Figure 10 (f)). Since the 
skeleton is a connex graph, there are at least two possibilities 
for the selection of the part of the skeleton to be rotated. The 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(a) (b) 

(c) (d) 



second selected point identifies the part to be rotated around 
the pivot (dark point in Figure 10 (f)). The selected branch can 
now be interactively oriented in the desired direction. All the 
blobs located in this area (grey points Figure 10 (f)) go through 
the same rotation transform. The property of automatic 
blending of the implicit surface guarantees that the smooth 
surface aspect will be preserved through this transform. In 
order to avoid the unwanted blending (for example, an arm 
brought too close to the body will blend with the body) we use 
the technique described in [18], i.e. we start by computing the 
contribution from the closest blob, then we progressively add 
the contribution of this neighbours, and the process is repeated 
recursively until the contribution becomes negligible This does 
not work for the folding surfaces in Figure 9 (so it would still 
not solve the unwanted blending that appears when using the 
technique from [45]). 

 

4.4  Copy-paste  
First the user has to select the skeleton branch to be copied, 
doing the same procedure as for rotation. In order to paste the 
blobs at another location, the user clicks on the blob in which 
he wishes to paste the branch, as shown in Figure 10 (d) (white 
point). The copied branch will be pasted in that position, i.e. all 
the blobs on the branch will be copied, and then translated with 
a vector, equal to the difference between the old branching 
point and its new paste location. In the example shown, the 
user performed a cut-paste operation. The skeleton graph is 
then updated with the new connection. Then the new branch 
can be reoriented in a new direction (for instance, symmetrical 
with the old branch, to form symmetrical arms, legs, ears, etc.). 

 

4.5  Suppression of a skeleton part 
For this operation, the selection is done in the same way as for 
rotation: first the pivot is selected, then the user clicks any 
point on the branch that he wants to select (see Figure 10 (e)). 
This identifies all the blobs to be deleted. Pressing the 
« delete » key suppresses all the selected blobs, except the 
pivot. The skeleton graph is updated. 

 

5.  CONCLUSION AND PERSPECTIVES 
We presented a system for modelling 3D shapes from 2D user-
sketched strokes. Using the Igarashi et al. skeleton extraction 
procedure [21] we propose reconstructing the 3D surface in a 
different manner. Instead of directly extracting a 3D mesh, we 
use the skeleton to place implicit spheres, which are 
automatically blended in order to reconstruct a smooth surface. 
This surface can then be polygonized for interactive rendering. 
Our method takes advantage of its double representation: the 
3D shape and the skeleton. It provides the same functionalities 
that previous approaches have and in addition it provides a 
smoother, compact structure surface and it offers new editing 
tools such as thickness control of the 3D shape, (copy/cut)-paste 
operation on the skeleton, etc. It becomes possible to rearrange 
parts of the object without re-sketching them, and our 

modelling tool remains very simple and accessible to anyone 
while providing an efficient shape prototyping method. 

The shape can be compactly stored using the spheres’ centres 
and radii, and it can be polygonized with the desired resolution, 
in order to be visualized or to be exported to other modelling 
software where small details can be added. 

Our model is compatible with the general mesh format 
provided by classical modelling software and it could be 
integrated into a classical modelling frame using for example 
the HybridTree approach [1].  

The main drawback of our approach is the difficulty in 
representing sharp edges (i.e. they are smoothed by the implicit 
function reconstruction).  

Perspectives include the implementation of an adaptive and 
incremental polygonization algorithm, in order to repolygonize 
only the parts that have been modified [16], [15]. Now that we 
have demonstrated the efficiency of our reconstruction 
approach, we will develop more editing operators in order to 
provide a full panel of simple and intuitive tools that can be 
supported by our shape representation. 
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