
Interactive Modelling from Sketches using
Spherical Implicit Functions

A. Alexe
IRIT – Paul Sabatier University

118 route de Narbonne
31062 Toulouse 04, France

33 (0)5 61 55 83 29

alexe@irit.fr

V. Gaildrat
IRIT – Paul Sabatier University

118 route de Narbonne
31062 Toulouse 04, France

33 (0)5 61 55 83 29

gaildrat@irit.fr

L. Barthe
IRIT – Paul Sabatier University

118 route de Narbonne
31062 Toulouse 04, France

33 (0)5 61 55 74 31

lbarthe@irit.fr

ABSTRACT
We present an interactive modelling technique, which
reconstructs three-dimensional objects from user-drawn two-
dimensional strokes. We first extract a skeleton from the 2D
contour, and the skeleton is used to define an implicit surface
that fits the 2D contour. The reconstructed 3D shape has a
natural aspect, it is very smooth and can easily be edited and
modified using strokes or performing operations on the
skeleton. This method is very accessible for non-specialist users
and it allows fast and easy shape prototyping.

Categories and subject Descriptors:
I.3.5 [Computer Graphics] Computational Geometry and
Object Modelling.

General Terms
Algorithms, Design.

Keywords
Geometric Modelling, Sketches, Implicit surfaces.

1. INTRODUCTION
When designing a three-dimensional object, one starts from a
mental representation. By mental representation we understand
a very high level description of the object, i.e. when the user
wants to model a man he knows that he has to model four limbs
and a body, etc. This mental representation has to be
transcribed into the computer as a three-dimensional shape

representation using some interaction device. Generally neither
the interaction device nor the interaction metaphor of the
modelling software are intuitive enough for non-expert users
and the conception of the complete object remains a fastidious
succession of shape creation and editing operations.

Figure 1. Examples of 3D objects designed with our system

using 2D strokes, the average modelling time being 10
minutes per object.

From a general point of view the creation procedure can be
decomposed into two distinct parts, which require different
techniques and functionalities.

First of all, one has to build a prototype of the object i.e. a
coarse approximation of the final shape. Second, the prototype
is edited in order to accurately finalize the coarse
representation and to add details.

Nowadays, several efficient multi-resolution techniques such as
subdivision surfaces [52], [23] or normal meshes [17] allow the
refinement of three-dimensional shapes once a coarse
representation has been built. Concerning the prototyping
procedure, actual modelling software can provide very
advanced tools, allowing expert users to produce complicated
and realistic prototypes, however the drawbacks are the
following:
- They use complex and non-intuitive theoretical

models (parametric patches, CSG, etc.). The user has to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

follow a long and tedious learning process before being able
to efficiently exploit these concepts.

- They use abstract notions that are too far from the
real world (geometric primitives, numerical parameters,
parametrical functions, key frames, etc).

The complexity of WIMP-like graphical interfaces (Windows
Icons Menus Pointer), makes them difficult to use and
increases the complexity of the user’s task.

Since long time, experts showed [30], [43] that more time is
spent searching through commands and menus than
concentrating on the modelling task itself.

Classical modelling software still leaves unsolved some
fundamental problems such as: how to quickly build mock-ups
and prototypes; how to make the interaction with the user more
intuitive and more natural; and finally, how to outpace the low
level of abstraction.

However, we do not intent to provide a complete modelling
tool, as it would be very difficult to compare our software with
classical modelling software and its infinite number of
modelling possibilities. We rather propose a complementing
technique, which explores gesture based modelling of free-form
shapes and which is mainly addressed to non-expert users.

Sketching is a simple means of expression, accessible by
everyone (See [40] for a discussion on sketch-based
interfaces.). It is useful for quickly materialising ideas and
sharing them with the working team. It is also an excellent
stimulant for creativity and innovation. For these reasons,
several research projects have focused on the design of 3D
shapes from 2D sketches. We will start by briefly presenting
the related works on 3D shape reconstruction from a point set
and then we will discuss the previous works on sketch-based
modelling.

Related work on the 3D surface reconstruction: The problem
can be formulated as it follows: starting from a set of points
approximating a 2D contour, find a 3D closed surface with a
suitable thickness which best fits the point set.

Related ideas on 3D shape reconstruction with implicit surfaces
can be found in [27], [19], [8], [25], [4], [3], [31]. Other papers
use globally supported RBF functions [41], [10], [44] or locally
supported RBFs [28], [24], [32]. We note that all the cited
papers are not meant to solve our problem, but the more
general problem of 3D reconstruction from a 3D cloud of
points. However they can be easily adapted to this particular
case. Although RBFs seem to be the state of the art in this field,
they require a large amount of data for an accurate smooth
reconstruction and therefore they are not suitable for interactive
use. Other inconvenients of this technique will be further
discussed.

Related work on sketch-based modelling: The first modelling
system that used sketches was introduced by Zeleznik [50].
SKETCH is based on gesture recognition and a “dictionary” of
basic 3D primitives, and is limited to isothetic objects with
sharp angles.

Teddy software [21] performs reconstruction using the chordal
axis [38], from which a mesh is computed. The 2D contour is
sampled regularly and the resulting planar set of points is
triangulated using a constrained Delaunay triangulation [2]. A
chordal axis [38], which connects the middles of the internal
edges of the triangulation is then built and used as a skeleton.
The final 3D shape is a polygonal mesh reconstructed by
elevation of this skeleton. Teddy demonstrates the efficiency of
2D sketching for 3D free-form shape prototyping, but it also
exhibits some limitations such as the difficulty to edit the mesh
and to rearrange parts of the 3D object. The quality of the
provided mesh is also poor, and a post-processing treatment on
the mesh is necessary [20]. By using implicit surfaces (i.e. a
smooth representation) we overcome these inconvenients.

Karpenko et al. [22] use variational implicit surfaces. [13] base
their work on Karpenko’s idea but add a more complete over-
sketching utility. [51] enrich the method by the possibility to
“paint” strokes on the surface or “in the air” to add more
expressiveness. The surface is defined by functions that
interpolate a set of points. In this context, the main problem is
the extrapolation of the 3D shape thickness. The first task is to
create a complete approximation of the 3D object by a set of
points, which is needed by the interpolation function (the initial
stroke is not sufficient). Hence, new points have to be created
in both sides of the profile in order to build the 3D object
thickness. This process is done by projection, which limits the
form of the user-defined contours to ellipse-like shapes. The
user creates several simple shapes, which are then blended in
order to build the final object. The main limitation of this
approach comes from the diminished range of the possible 2D
contours, due to the difficult reconstruction of the 3D shape
thickness. We note that the moving least squares techniques has
the same drawback, so the same observations apply to it as for
variational implicit surfaces. Also, in [22] the user is forced to
explicitly blend the different parts of the object, whereas
ideally this process would be automatic and transparent. Both
of these drawbacks are avoided by our approach.

A more recent approach reconstructs a cylindrical convolution
surface from the user’s stroke [45]. Convolution cylindrical
implicit surfaces are a smooth structure and they are very close
to our approach. As we show in section 3.2.3, convolution
cylinders are not adapted to reconstruct surfaces that fold onto
themselves, as near the folding a visible unwanted blending
appears that cannot be entirely removed by the optimisation
process. Also, the authors report unwanted oscillations of the
resulting surface, which are produced by the optimisation
process, as it can be seen in their figures.

Owada et al. [33] use a volumetric voxel based structure, which
allows them to model the intern object cavities. As done in
[45], the same functionality can be realized with our approach,
using negative implicit functions, and it will be developed as a
future extension.

We point out that in the different methods presented so far, the
user cannot control the local 3D shape thickness (except in
[45]). Since the shape’s thickness is computed automatically
and may not correspond to the user’s intention, this is an
important issue.

Our approach and contributions: We prefer to keep the
double representation skeleton/3D-shape and hence allow the
3D shape to be defined and modified using 2D strokes, but also
edited using very simple operations on the skeleton, such as
deleting, copy/cut-paste, etc. Our structure is similar to the one
used in [36] to recover animation movements from video
sequences. In our case there is a single image, which is the
user’s stroke, and we construct what would correspond to a
“natural” shape from this image. The user has the possibility to
modify it by various strokes and skeleton operators. Skeleton
manipulations are of interest because they allow simple and
intuitive rearrangements of the object’s parts such as arms,
legs, etc. For skeleton based editing see [49] Moreover, a
smooth shape representation is preferable to a direct polygonal
mesh extraction.

Therefore we use Teddy’s skeleton reconstruction procedure
(modified with an adaptive sampling of the 2D stroke that
allows better detail capturing than uniform rough sampling
techniques) and once the skeleton is extracted, we reconstruct
the 3D shape with blended implicit spheres, placed along the
skeleton, which fit the 2D contour. We also preserve the
skeleton structure, as a graph, the nodes being the implicit
spheres.

Our reconstruction technique is based on the one used by
Muraki [27] and [8], but we make it interactive by performing
several simplifications which will be exposed later. The
reconstructed surface is very smooth (C7 continuous in our case;
the reasons why this high class continuity is necessary will be
explained in section 3.2.2), the spheres radii automatically
extrapolate the 3D shape thickness and the user can edit it once
the 3D shape is reconstructed, and finally simple editing
operations can be performed on the skeleton.

This approach is, as the previous sketch-based approaches,
suitable for modelling simple, organic-like shapes, and it can be
used by non-expert users, since it does not require knowledge
of the underlying surface model. Only the skeleton and the
stroke tool (a digital pen, a mouse, etc.) are available to the
user. It can be applied in fast prototyping and modelling for
story telling. The computing times are about 2-3 seconds per
stroke, with about a few dozens blobs per stroke, which is the
case for all the models that we show in Figure 1. Therefore, the
reconstruction times are comparable to those obtained by our
predecessors, but the quality of the surface is much better (i.e.
smoother and less oscillations), as we produce high-class
continuity surfaces, which can be compactly stored, as a set of
blobs parameters. We propose a new spherical kernel, which is
well suited for our reconstruction needs. We also enriched the
modelling tools with skeleton manipulation operators. Our
method overcomes the limitations imposed to the input contour
in [22]. Compared to cylindrical convolution functions (as used
in [45]), spherical implicit functions have a smaller influence
zone, and therefore they follow more faithfully the shape of the
stroke, and the surface remains smooth. Besides they are faster
to evaluate than cylindrical convolution functions. We also
propose a technique to considerably reduce the oscillations of
the resulted surface.

Paper organisation: In the next section, the adaptive 2D
stroke sampling and the skeleton extraction procedure are
presented. Section 3 describes the automatic reconstruction of
the 3D implicit surface that fits the 2D contour and Section 4
presents the different creation/editing operations available with
our system.

2. Sampling and extraction of the skeleton
from the 2D stroke
First the user sketches a stroke, which is automatically closed.
Then we apply an average filter, in order to remove noise from
the input. In previous approaches, the contour can be then
sampled following two strategies: whether the edges have
uniform length ([21], [22]), or the edges length is adaptively
established, between a minimum and a maximum value,
whenever the angle variation is smaller than a threshold value
[45]. Another solution for adaptive sampling is the popular
Douglas Peuker algorithm for line simplification [14]). But the
Douglas Peucker algorithm would produce a highly non-
uniform repartition of samples along the contour, which will
have undesirable effects on the reconstruction.

We think that an adaptive sampling technique is recommended,
since it helps to capture the coarse details in the strokes and to
skip the finer ones. At the same time, we need to guarantee a
minimum uniformity of the samples repartition, which will
result in placing the implicit spheres close enough to form a
stretched smooth blending.

For these reasons, we prefer to start from a regular sampling,
and then adapt it wherever this is necessary, in order to remove
the oscillations in the resulting surface.

We used a wavelet-based compression of the stroke, at several
levels. To compress one level, we replace every two points by
one point, its coordinates being the average of the two points
coordinates. The process is repeated several times (4 times in
our case, which means that every 16 pixels in the contour
produced a point in the sampling polygon). The coordinates are
stored in tree structures, every point memorizing the two points
that produced it. The leafs of the trees are the pixels of the
initial contour, and the roots are the maximum compression
level.

Whenever one sample is considered not sufficient, the
corresponding tree expands, and the two “sons” replace the
initial point. To determine if the sampling is sufficient enough,
we have to compute a first approximation of the reconstructed
surface, and to evaluate it. The process is described in section
3.2.2. For our computations, we start with the maximum level
of compression.

The next step is the construction of a constrained Delaunay
triangulation [2] (Figure 3 (b)) of the polygon points (Figure 2
(a)). This is followed by the computation of the polygon
skeleton, using the chordal axis [38] (Figure 2 (c)). This is a
close relative of the medial axis [11] but it is locally defined
and it allows pruning of insignificant branches. We recall that
the chordal axis links the middles of the internal edges of the
Delaunay triangulation. A special treatment is applied to

branching points. Our skeleton extraction algorithm and
pruning are based on the ones described in [21].

Figure 2. (a) Initial contour. (b) Delaunay triangulation. (c)
Skeleton computation.

3. RECONSTRUCTION OF THE 3D
IMPLICIT SURFACE
3.1 Theoretical background
The implicit surface that reconstructs the 3D shape is generated
by the blend of implicit spheres. A single implicit sphere is
defined by its centre ci. Then by setting ri = d(p,ci), the
distance from a point p∈R3 to the centre ci, we define a
potential function fi(ri). Functions fi decrease smoothly
following a Gaussian-like curve, from 1 to 0, as ri varies from 0
to infinity (Figure 3). An influence radius Ri bounds the
function’s contribution. When ri≥Ri: fi(ri)=0 (bounded
primitives) or fi(ri)≈0 i.e. fi(ri)<ε,∀ ri≥Ri with ε negligible. The
sphere’s surface is defined by the set of points p∈R3 such that
d(p,ci)=ei and fi(ei) = C, where C is a constant within the
interval (0,1), generally 0.5.

Figure 3. Plot of a Gaussian-like potential function fi used

for our reconstruction.

The volume bounded by the sphere is the point set of R3 such
that fi(ri)≥C. The most important property of these implicit
spheres is their capacity to automatically blend when their
potentials are summed (N is the number of spheres):

∑
−

=

=
1

0
)()(

N

i
i pfpf (3.1)

The result of the blending is a smooth surface defined by the
potential function f. The first implicit model of this type was
the blobby model [5], which is based on an exponential
function. In order to reduce the computational cost of the
exponential and to provide bounded primitives, several
polynomial functions fi have been proposed: SoftObjects [47],

Metaballs [29], W-shaped polynomial [37], the “pseudo
Cauchy” function [39], Stolte’s function [42], keR model [8],
etc. We denote these spherical potential functions fi as “blobs”.

Other powerful modelling by blending techniques exist, such as
the blob-tree [46]. Our structure might be regarded as a single
n-node from a blob-tree, the operator being the summation of
the primitives. The F-Rep [35] are more general implicit
functions but they are very complex to evaluate and therefore
not suitable for interactive modelling.

3.2 Reconstruction and fitting procedure
3.2.1 First surface approximation
 Once the skeleton has been computed, blobs are placed in
every skeleton point as illustrated in Figure 4. The edges of the
blobs graph are automatically computed from the skeleton’s
structure. We now have to choose the potential functions fi. For
reasons that are discussed in detail in the next section, we
propose the following kernel:

()
16

822

i

ii
i R

Rr
)p(f

−
= (3.2)

The reconstructed 3D surface is then defined by the following
equation:

()

C
R

Rr
pfpf

N

i i

ii
N

i
i =

−
== ∑∑

−

=

−

=

1

0
16

8221

0
)()((3.3)

This equation has a set of N parameters Ri (one influence radius
Ri per blob fi) that have to be determined. These parameters
have to be computed so that the 3D surface best fits the drawn
stroke. We cannot directly determine the parameter values for
which the 3D surface is sufficiently close to the contour, but we
can compute a first approximation and then use an adjustment
(minimisation) procedure in order to converge to an optimal
solution.

The first approximation is computed by considering each blob
as being isolated. The equation that defines a single blob with a
radius ei is written as:

()
C

R
Re

)p(f
i

ii
i =

−
= 16

822
 (3.4)

C being the same constant as in (3.3) and ei being a fixed value
that represents the radius in isolation of the ith blob (i.e. the
distance from the blob’s centre to the surface). We consider the
radius ei as being the average of the distances between the
blob’s centre ci and its neighbouring contour points (see Figure
4). The radius ei set in this way in equation (3.4) allows us to
determine the initial value of the parameter Ri. This process is
applied on each blob and we obtain the initial potential
function f.

(a) (b) (c)

C

ei Ri

fi

Figure 4. Computing the initial values for the radius of

influence Ri.

With parameters Ri computed as described above, one could
notice a slight “bloating” effect on the surface, which moves
away from the contour, as shown in Figure 5 (a).

Figure 5. (a) Initial surface. (b) Surface after adjustment.
(c) The same object viewed from a different angle.

This is natural since the influence radius of each blob is
computed without considering the influence of the neighbouring
blobs. When all the blobs’ contributions are summed (Eq.
(3.3)), the potential values of functions fi are accumulated and
as the blobs blend the surface begins to bloat. Moreover, blobs
are often very close, and the “bloating” effect can be quite
significant. Our experiments show that a better first
approximation of the contour by f is obtained by multiplying the
radius ei by a factor of 2/3. By reducing the initial radii we
reduce this bloating effect, and we win a few steps in the
minimisation process, hence speeding up the process.

We notice that the distance between two neighbouring blobs
never exceeds the sum of their radii and hence, they are
guaranteed to blend.

3.2.2 Discussion on the smoothness of the resulting
surface
Two main criteria have been taken into account to guide our
kernel choice: the less oscillations of the reconstructed surface
(Figure 6), and the low computational cost of the potential
function.

C1 or even C2 continuity proved not to be sufficient for
generating a perfectly smooth surface. As the Figure 6 (b)
demonstrates, small oscillations are visible on the fish’s tail,
which mark the transitions between blobs.

Figure 6. (a) Stroke reconstructed with blobby model
[5](C∞ function). (b) Stroke reconstructed using Soft Object
function [47] (C1 function). (c) Stroke reconstructed using

our Stolte-like function (C7).

This happens when the potential function “falls” too abruptly to
zero. The oscillations vanish when the function’s continuity
class increases (i.e. the potential function falls less rapidly).
Our experiments produced very smooth surfaces when using
computationally expensive unbounded C∞ functions (Figure 6
(a)) and less smooth surfaces (Figure 6 (b)) when using
computationally cheap Ca continuous bounded polynomial
functions (a≤2). A function providing a good compromise
would have a high-class continuity, while remaining
computationally cheap. This has been obtained with a bounded
function (Eq. 3.2) similar to the W-shaped or Stolte’s function,
but with a higher degree to achieve a better smoothness (C7
continuous) and therefore less oscillation.

As it can be observed in Figure 6, there is no visible difference
between a surface generated using the blobby model, and a
surface generated with our function. This is the first solution
that we propose for smoothing the surface. However when the
surface has tiny cylindrical regions (Figure 7), or small details,
this might not be enough.

Another solution would be simply to sub-sample the stroke, in
order to get a higher number of contour points, which would
generate a higher number of blobs. But this solution adds more
blobs everywhere on the stroke, when actually only some
regions need more blobs. In this case we use a third solution.

We consider that two blobs are too far from each other if the
distance between their centres exceeds the minimum of the two
blobs radii, multiplied by an adjusting factor (which is 1.2 in
our case). In this case the sampling contour points in that zone
are expanded, every point being replaced by the two points on
the superior tree level that we used for compression (see
section 2). In that way we refine all the zones were blobs are
not close enough. This process is done before parameters
adjustment. If the trees have been expanded, the skeleton and
the first approximation of the implicit spheres need to be
recomputed. This process takes less that one second, and it is
repeated a number of times that cannot exceed the maximum
level of compression (the average is two times). This maintains
the modelling time interactive.

(a) (b) (c)

Sphere centre
Neighbors used to
compute the radius
of influence

(a) (b) (c)

In Figure 7 (c) the surface exhibits oscillations in tiny regions,
i.e. where the blobs are not close enough to form a stretched
blending. In this case the minimisation process fails to remove
the oscillations and hence we use our blobs insertion procedure.
After the adjustment of the local blob density, 32 contour points
have been added, in less than 2 seconds and the oscillations on
the surface have been considerably reduced.

Figure 7. Smoothening the surface: (a) Initial stroke. (b)
Stroke adaptively sampled by expanding the sampling trees
in the tiny zones. (c) Surface reconstructed with the regular

sampling. (d) Surface reconstructed with the adaptive
sampling. Note the reduction of the shape oscillations.

The next step is the minimisation process, which adjusts the
parameters Ri so that the 3D implicit surface fits the contour.

3.2.3 Adjusting the function parameters

As in previous approaches [27], [8], [45], the adjustment tries
to minimise an energy function E that characterises the distance
between the surface and the contour points. This is done by
summing the squares of the difference between the value of the
function f at contour points and the value C that f should return
at these points in order to interpolate them. M is the number of
contour samples:

()∑
−

=

−=
1

0

2M

j
j C)p(fE (3.5)

To perform the adjustment, several non-linear least squares
minimisation methods (Gauss-Newton, Levenberg-Marquart)
have been tested. The best performance in both speed and
convergence were obtained using the dogleg trust region
method [26]. Only two seconds are necessary on an AMD
Athlon 1,3GHz for the method to find an almost zero energy

value (i.e. smaller than 0.1 which is sufficient in our case)
when the number of blobs is around fifty. This number of blobs
is largely enough for the models that we present. Every stroke
is reconstructed individually, as the modelling process is
incremental. The surface before and after the adjustment is
shown in Figure 5.

A more complete energy function would also contain a tension
term within the energy formula [12], which would minimize the
mean curvature over the contour points. However, this would
considerably slow down the minimisation process (i.e. by a
factor of 100 in our tests), and it would not be suitable for
interactive times. As our experiments showed, it is not
necessary to use a more complete energy formula.

Finally the surface is polygonized for rendering and displayed
using a classical Marching Cubes algorithm [6]. Figure 8
compares the mesh obtained with our reconstruction algorithm
with the one produced from the same contour using the
algorithm from Teddy [21].

Figure 8. (a) Implicit surface produced by our algorithm.
(b) Mesh produced with the algorithm described in [21].

The resultant surface is much smoother when using implicit
surfaces.

One can see that our method provides a much smoother surface.
A post processing of the mesh (for example, with subdivision
surfaces) would also be an option, but in that case we will loose
the compact structure of the implicit surfaces, and the mesh
should be post processed every time the skeleton operators are
applied, which is not convenient.

As we stated in the introduction, the reconstruction with
convolution cylinders is not suitable for “folding” strokes. This
is shown in Figure 9. We use the same convolution function as
in [45], and we compare the stroke reconstructed using their
method with the same stroke reconstructed with blobs. In order
to remove the unwanted blending at the interior of the fold, the
contribution from the cylinders in this zone is diminished, but
that causes the surface to move away from the stroke at the
extern part of the fold. This is the reason why we preferred to
use blobs because they have smaller regions of influence, so
they follow faithfully the curve of the fold, as shown in Figure 9
(b) and (d).

(a)

(b)

(a) (b)

(c) (d)

Figure 9. (a), (c) Folding stroke reconstructed with
convolution cylinders as described in [45]. (b), (d) The same

folding stroke reconstructed with blobs (the Stolte-like
function 3.2)

4. EDITING OPERATIONS
The double shape representation (skeleton/3D-shape), gives
some advantages to our method. Both of these structures are
intuitive to use for shape editing. In addition to the editing
possibilities provided by the use of 2D strokes, the user can
perform simple operations directly on the skeleton points.

Figure 10 synthesizes most of the operations implemented so
far. The automatic blending property of implicit surfaces
preserves the surface smoothness and the definition of the
surface by blended spheres ensures that the object is and
remains solid through editing operations. Some images of
objects modelled with our system are shown in Figure 1. Each
object was modelled within 10 minutes average time.

4.1 Extrusion
In order to perform an extrusion, the user must first select the
blob to be extruded (dark point in Figure 10 (b)). The next step
is to draw the extrusion profile by sketching a stroke that is not
necessarily closed, as shown in Figure 10 (b). The system then
processes the stroke as in creation mode. The skeleton of the
stroke is extracted and implicit spheres that approximate the
stroke are produced. Finally, the newly created skeleton is
connected to the existing one, and the user sees the extruded
part that he created.

4.2 Changing the thickness of one or more
blobs
In order to modify the thickness of one or several blobs the user
first selects the centres of the blobs to be scaled using a
selection rectangle (dark points in Figure 10 (c)). Then he
moves the mouse or the digital pen up or down, depending on
the desired effect: flattening or fattening. Inserting a factor in
the squared Euclidean distance computation does scaling.

Figure 10. Operations implemented by our system: (a)
Creation of a shape from its profile. (b) Creating the

plane’s tail by extrusion. (c) Flattening the wings and the
tail by scaling the blobs. (d) Cut-paste of a skeleton part. (e)

Suppression of a skeleton part. (f) Rotation around an
articulation point.

For example, in order to perform scaling on the z axis (when
the contour is defined in the (x,y) plane), the squared distance
r2=x2+y2+z2 is replaced by r2=x2+y2+γz2, where γ is the
scaling factor. In order to flatten, γ is chosen to be less than one
and for fattening, γ is chosen to be greater than one. When γ≠1
the spherical blob becomes an ellipsoid, hence providing the
thickness control. Examples are shown in Figure 10 (c). As
done in [45] we can think of using anisotropic distance
functions [47], [34], [7], [10]. However, this obliges the user to
draw the thickness for a set of blobs and we are not sure that
this is an efficient tool to provide. Since we want our modelling
metaphor to remain as simple and as intuitive as possible, the
control of the shape’s thickness in a more appropriate manner
will be the topic of our future research.

4.3 Rotation around an articulation
The user selects first the point on the skeleton, which will be
the rotation pivot (white point in Figure 10 (f)). Since the
skeleton is a connex graph, there are at least two possibilities
for the selection of the part of the skeleton to be rotated. The

(a)

(b)

(c)

(d)

(e)

(f)

(a) (b)

(c) (d)

second selected point identifies the part to be rotated around
the pivot (dark point in Figure 10 (f)). The selected branch can
now be interactively oriented in the desired direction. All the
blobs located in this area (grey points Figure 10 (f)) go through
the same rotation transform. The property of automatic
blending of the implicit surface guarantees that the smooth
surface aspect will be preserved through this transform. In
order to avoid the unwanted blending (for example, an arm
brought too close to the body will blend with the body) we use
the technique described in [18], i.e. we start by computing the
contribution from the closest blob, then we progressively add
the contribution of this neighbours, and the process is repeated
recursively until the contribution becomes negligible This does
not work for the folding surfaces in Figure 9 (so it would still
not solve the unwanted blending that appears when using the
technique from [45]).

4.4 Copy-paste
First the user has to select the skeleton branch to be copied,
doing the same procedure as for rotation. In order to paste the
blobs at another location, the user clicks on the blob in which
he wishes to paste the branch, as shown in Figure 10 (d) (white
point). The copied branch will be pasted in that position, i.e. all
the blobs on the branch will be copied, and then translated with
a vector, equal to the difference between the old branching
point and its new paste location. In the example shown, the
user performed a cut-paste operation. The skeleton graph is
then updated with the new connection. Then the new branch
can be reoriented in a new direction (for instance, symmetrical
with the old branch, to form symmetrical arms, legs, ears, etc.).

4.5 Suppression of a skeleton part
For this operation, the selection is done in the same way as for
rotation: first the pivot is selected, then the user clicks any
point on the branch that he wants to select (see Figure 10 (e)).
This identifies all the blobs to be deleted. Pressing the
« delete » key suppresses all the selected blobs, except the
pivot. The skeleton graph is updated.

5. CONCLUSION AND PERSPECTIVES
We presented a system for modelling 3D shapes from 2D user-
sketched strokes. Using the Igarashi et al. skeleton extraction
procedure [21] we propose reconstructing the 3D surface in a
different manner. Instead of directly extracting a 3D mesh, we
use the skeleton to place implicit spheres, which are
automatically blended in order to reconstruct a smooth surface.
This surface can then be polygonized for interactive rendering.
Our method takes advantage of its double representation: the
3D shape and the skeleton. It provides the same functionalities
that previous approaches have and in addition it provides a
smoother, compact structure surface and it offers new editing
tools such as thickness control of the 3D shape, (copy/cut)-paste
operation on the skeleton, etc. It becomes possible to rearrange
parts of the object without re-sketching them, and our

modelling tool remains very simple and accessible to anyone
while providing an efficient shape prototyping method.

The shape can be compactly stored using the spheres’ centres
and radii, and it can be polygonized with the desired resolution,
in order to be visualized or to be exported to other modelling
software where small details can be added.

Our model is compatible with the general mesh format
provided by classical modelling software and it could be
integrated into a classical modelling frame using for example
the HybridTree approach [1].

The main drawback of our approach is the difficulty in
representing sharp edges (i.e. they are smoothed by the implicit
function reconstruction).

Perspectives include the implementation of an adaptive and
incremental polygonization algorithm, in order to repolygonize
only the parts that have been modified [16], [15]. Now that we
have demonstrated the efficiency of our reconstruction
approach, we will develop more editing operators in order to
provide a full panel of simple and intuitive tools that can be
supported by our shape representation.

6. REFERENCES
[1] Allègre R., Barbier A., Galin E., Akkouche S. A Hybrid

Shape Representation for Free-form Modeling. Research
Report, Liris, Lyon University, 2004, RR-2004-009.

[2] Aurenhammer F. Voronoi diagrams - A survey of a
fundamental geometric data structure. ACM Computing
Surveys, 1991, 23: pp. 345-405.

[3] Bernadini F., Bajaj C. L., Chen J., Schikore D.:
Automatic reconstruction of 3D CAD models from
digital scans. International Journal of Computational
Geometry & Applications 9, 4, pp. 327–369.

[4] Bajaj C. L., Bernadini F. Xu G. Automatic
reconstruction of surfaces and scalar fields from 3D
scans. Proceedings of ACM SIGGRAPH 95, pp.; 109–
118.

[5] Blinn J. F. A Generalisation of Algebraic Surface
Drawing. ACM Trans Graphics, Vol. 1, No. 3, July
1982, pp. 235-256.

[6] Bloomenthal J. An Implicit Surface Polygonizer.
Graphics Gems IV (P. Heckbert, ed.), Academic Press,
New York, 1994, pp. 324-349.

[7] Blanc C., Schlick C. Extended Field Functions for Soft
Objects. Proc of Implicit Surfaces’95 pp. 21-32.

[8] Bittar E., Tsingos N., Cani M.-P. Automatic
Reconstruction of Unstructured 3D Data: Combining a
Medial Axis and Implicit Surfaces. Computer Graphics
Forum, 14(3): pp. 457-468, August 1995.

[9] Carr J. C., Beatson R. K., Cherrie J. B., Mitchell T. J.,
Fright W. R., McCallum B. C. Reconstruction and
representation of 3D objects with radial basis functions.
Computer Graphics (SIGGRAPH 2001 proceedings), pp.
67-76, August 2001.

[10] Crespin B., Blanc C., Schlick C. Implicit Sweep Objects.
Eurographics’ 96, 15(3), pp.165-174.

[11] Choi H. I., Choi S. W., Moon H. P. Mathematical Theory
of Medial Axis Transform. Pacific Journal of
Mathematics, Vol. 181, No. 1, pp. 57-88, November
1997.

[12] Desbrun M., Cani M.-P. Active Implicit Surface for
Animation. Graphics Interfac, June 1998, pp. 143-150.

[13] De Araujo B., Jorge J. BlobMaker: Free-form modelling
with variational implicit surfaces. Proceedings of 12º
Encontro Português de Computação Gráfica, Porto, 2003
pp. 17-26.

[14] Douglas, D.H., Peucker, T.K. Algorithms for the
reduction of the number of points required to represent a
digitized line or its caricature. The Canadian
Cartographer 10 (2), 112 122.

[15] Ferley E., Cani M.-P., Gascuel J.-D. Practical
Volumetric Sculpting. The Visual Computer no. 8 vol. 16
pp. 469-480 , December 2000.

[16] Galin E., Akkouche S. Incremental Techniques for
Implicit Surface Modeling. Computer Graphics
International'98 312-321, June 1998.

[17] Guskov I., Vidimce K., Sweldens W., Schröder P.
Normal Meshes. Computer Graphics Proceedings
(SIGGRAPH 2000), pp. 95-102, 2000.

[18] Hornus S., Angelidis A., Cani M.-P. Implicit Modelling
Using Subdivision-curves. The Visual Computer, 2-3
(19), pp. 94-104, May, 2003.

[19] Hoppe H., DeRose T., Duchamp T., McDonald J.,
Stuetzle W. Surface reconstruction from unorganised
points. Proceedings of ACM SIGGRAPH 1992, pp. 71–
78.

[20] Igarashi T., Hughes J. F. Smooth Meshes for Sketch-
based Freeform Modeling, ACM Symposium on
Interactive 3D Graphics. ACM I3D'03, 2003, pp. 139-
142.

[21] Igarashi T., Matsuoka S., Tanaka H. Teddy: A Sketching
Interface for 3D Freeform Design. ACM SIGGRAPH
1999, pp. 409-417.

[22] Karpenko O., Hughes J. F., Raskar R. Free-form
Sketching With Varational Implicit Surfaces.
Eurographics 2002, TR2002-27, June 2002.

[23] Kobbelt L., Campagna S., Vorsatz J., Seidel H.-P.
Interactive multi-resolution modeling on arbitrary
meshes. SIGGRAPH 98.

[24] Kojekine N., Hagiwara I., Savchenko V. Software tools
using CSRBFs for processing scattered data. Computers
& Graphics 27, 2 (April 2003).

[25] Lim C., Turkyyah G. M., Ganter M. A., Storti D. W.
Implicit reconstruction of solids from cloud point sets.
Proceedings of the third ACM symposium on Solid
Modeling and Applications, ACM Press, 1995, pp. 393–
402.

[26] Mizutani E. Powell's dogleg trust-region steps with the
quasi-Newton augmented Hessian for neural nonlinear
least-squares learning. Proceedings of the IEEE
International Conference on Neural Networks,
Washington, DC, 2, pp. 1239-1244.

[27] Muraki S. Volumetric shape description of range data
using blobby model. Computer Graphics, 25(4): 227-235,
July 1991.

[28] Morse B. S., Yoo T. S., Rheiengans P., Chen D. T.,
Subramanian K. R. Interpolating implicit surfaces from
scattered surface data using compactly supported radial
basis functions. Shape Modeling International 2001, 89–
98.

[29] Nishimura H., Hirai M., Kawai T., Kawata T.,
Shirakawa I., Omura K. Object Modelling by
Distribution Function and a Method For Image
Generation. The Transaction for the Institute of
Electronics and Communication for Engineers of Japan,
1985, Vol. J68-D, Part 4, pp. 718-725.

[30] Norman D. A. User Centred System Design. Lawrence
Erlbaum Associates, Inc., 1986.

[31] Ohtake Y., Belyaev A., Alexa M., Turk G., Seidel H.-P.:
Multi-level Partition of Unity Implicits. ACM TOG
(Proc. SIGGRAPH 2003), 22(3): pp. 463-470.

[32] Ohtake Y., Belayev A. G., Seidel H.-P. A multi-scale
approach to 3D scattered data interpolation with
compactly supported basis functions. Shape Modeling
International 2003.

[33] Owada S., Nielsen F., Nakazawa K., Igarashi T. A
Sketching Interface for Modeling the Internal Structures
of 3D Shapes. Proceedings of 3rd International
Symposium on Smart Graphics, Springer, Heidelberg,
Germany, July 2-4, 2003, pp.49-57.

[34] Parent R., SINGH K. Polyhedral shapes as general
implicit surfaces primitives. OSU-CIS Technical Report,
OSU-CISRC-5/94-TR24, 1994.

[35] Pasko A., Adzhiev V., Function-based shape modeling:
mathematical framework and specialized language.
Automated Deduction in Geometry. Lecture Notes in
Artificial Intelligence 2930, Ed. F. Winkler, Springer-
Verlag, Berlin Heidelberg, 2004, pp. 132-160.

[36] Plänkers R., Fua P. Articulated Soft Objects for Video-
based Body Modeling. International Conference on
Computer Vision, Vancouver, Canada, July 2001, pp.
394-401.

[37] POV-Ray , http://www.povray.org/
[38] Prasad L. Morphological analysis of shapes. CNLS

Newsletter, 139: 1-18, July 1997.
[39] Shersyuk A. Convolution surfaces in Computer

Graphics. Ph.D. dissertation, School of Computer
Sciences and Software Engineering, Monash University,
Australia 2000.

[40] Sanchis N., Jorge J. A. Direct Modelling: from Sketches
to 3D Models. 1st Ibero-American Symposium on
Computer Graphics, July 2002.

[41] Savchenko V. V., Pasko A. A., Okunev O. G., Kunii T.
L. Function representation of solids reconstructed from
scattered surface points and contours. Computer
Graphics Forum 14, 4, pp. 181–188.

[42] Stolte N. Espaces Discrets de Haute Résolutions: Une
Nouvelle Approche pour la Modélisation et le Rendu
d'Images Réalistes. PhD thesis, University of Toulouse
III, France, April 1996.

[43] Suchman S.A. Plans and Situated Actions: The Problem
of Human-Machine Communication. Cambridge Univ.
Press. 1987.

[44] Turk G., O’Brien J. Modelling with implicit surfaces
that interpolate. ACM Transactions on Graphics 21, 4
(October 2002), pp. 855–873.

[45] Tai C.-L., Zhang H., Fong C.-K. Prototype Modeling
from Sketched Silhouettes based on Convolution
Surfaces. Computer Graphics Forum, 2004. To appear.

[46] Wyvill B., Galin E., Guy A. The Blob Tree, Warping,
Blending and Boolean Operations in an Implicit Surface
Modeling System. Implicit Surfaces’ 03, June 1998.

[47] Wyvill B., McPheeters C., Wyvill G. Data Structure for
Soft Objects. The Visual Computer, Vol.2, No. 4 August
1986a, pp. 227-234.

[48] Wyvill B., Wyvill G. Field functions for implicit
surfaces. The Visual Computer, 5:75 pp. 75-82,
December 1989.

[49] Yoshizawa S., Belyaev A., Seidel H.-P. Free-form
Skeleton-driven Mesh Deformations. Solid Modeling
2003.

[50] Zeleznik R., Herndon K., Hughes J. Sketch: An Interface
for Sketching 3D Scenes. Proceedings of SIGGRAPH'96,
1996, pp. 163-170.

[51] Zenka R., Slavik P. New Dimensions For Sketches.
Spring Conference on Computer Graphics 2003
Proceedings, Budmerice, Slovak Republic, 2003.

[52] Zorin D., Schröder P., Sweldens W. Interactive
Multiresolution Mesh Editing. Computer Graphics
(SIGGRAPH '97 Proceedings), pp. 256-268.

