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Abstract

We present here a new system that interactively
creates freeform smooth shapes from user strokes.
The shapes have a natural rounded looking ap-
pearance. Sketching is a very intuitive modeling
interface for shape creation. Smoothness is guar-
anteed by using implicit convolutions surfaces
representation. We propose an efficient algorithm
to compute the implicit convolution surface that
best fits the stroke, and we analyze several im-
plicit convolution kernels, in order to chose the
appropriate one for our solid representation.

1 Introduction

The typical role of CAD systems is to provide user
with assistance to efficient and rapid shape crea-
tion. However this is not an easy task especially
with free form shapes.

CAD users still begin their work with paper and
pencil. During the conception step they sketch the
shape that they intent to design. Then they use
CAD systems to create the complex shape by
composing standard simple primitives. This is
obviously a very tedious task. Another problem is
strictly related to classic interfaces, which are
hard to use and too complex to be efficient. Menu-
based interfaces (WIMP) add an important
amount of cognitive overhead to the user’s task
[10][13]. This means that user spends too much

time to search through commands and menus, and
generally he must have goods skills with the
modeling software.

Zeleznik introduced the concept of sketching for
intuitive scene modeling [16]. Igarashi [7] devel-
oped this concept by implementing the Teddy
modeler, in order to experiment freeform shape
design with strokes. With Teddy, the surface is
reconstructed by elevating the medial axis of the
closed stroke polygon. However the generated
mesh is sometimes unsuitable and it has bulges
and creases. Implicit surfaces can solve this prob-
lem, since they are smooth and continuous. Also,
manipulation of object parts is not possible with
Teddy. For instance, if we want a character to
raise its arm, we have to entirely redraw the arm,
instead of just manipulating the arm’s skeleton by
dragging its points. With implicit shapes, manipu-
lating the skeleton is very easy, and the changes in
the resulting surface can be automatically recom-
puted. Recently Karpenko [17] proposes sketching
with implicit variational surfaces. But in the
presented system, user can only draw implicit
ellipses, and the thickness of the produced surface
is constant. This limits the shapes to be produced.
Our algorithm automatically computes local sur-
face thickness, achieving a natural appearance for
the shape.

We were also inspired by previous studies on
reconstruction of point clouds using implicit blobs
[2] [8] [14]. Although these methods could be
adapted to approximate strokes, they are very
slow, since their original purpose is a very precise
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approximation. As a consequence they cannot
reach interactive rates. Also, the blob is a very
expensive implicit function, since it contains an
exponential factor. We have tested several spheri-
cal implicit functions to determine which one
suits best for rapid computation and satistying
stroke approximation. Another disadvantage of
previous approaches is that they focus on progres-
sive optimization of surface parameters, and
initial values are randomly chosen. Based on
simple and intuitive observations, we propose a
technique that directly computes very satistying
initial values for the surface parameters. The
surface generated using these initial values is very
close to the stroke’s shape, and only a few ad-
justments are necessary to produce a good fit, so
computing times are interactive.

In section 2 we give a general overview of our
system, while section 3 presents some theoretical
concepts about implicit surfaces and most particu-
larly implicit convolution surfaces. In section 4
the surface computation algorithm is discussed,
and section 5 describes in detail the formulas used
to compute the implicit function parameters.
Section 6 discusses the choice of a convolution
kernel, and section 7 draws conclusions and per-
spectives.

2 General overview

Our goal was to conceive a system easy to use,
allowing intuitive rapid creation of freeform
smooth shapes. A good application of this system
would be fast shape prototyping. After being
designed, the produced shape can be exported to
other modeling software that can add details, for
instance.

The user draws strokes, which are interpreted to
interactively produce implicit shapes.

The implicit surface is composed of implicit
convolution spheres. We also analyzed and com-
pared the 7 convolution kernels (as reported in
[12]), in order to determine which kernel would
be the most appropriate for surface representation.
Based on our first results, which are rather en-
couraging, we are now implementing other opera-
tions, such as directly manipulating the skeleton
points, in order to rearrange the object’s parts,
extruding, selecting, and cutting. Extruding parts
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of the objects should be done using strokes, but
all the other operations can be directly done on
the skeleton. Then the implicit surface can be
recalculated from its skeleton, still remaining
smooth and continuous. In fact we intent to make
use of the skeleton - shape duality. Skeleton is
computed from sketch, and shape can be com-
puted from skeleton. When we need to create a
shape we use the sketch, but when we need to
operate on it we use its skeleton points. Both of
these modeling approaches are intuitive. This
procedure allows us to get the best of both of
them, as each approach is used where it is most
suitable. Also the transformation between those
two representations can be easily done.

Figure 1: A few sketched implicit objects.

In order to render the shape we use a marching
cube style algorithm [5]. It operates by dividing
this space into equally sized cells. The potential
value in cell corners is used to form polygons. The
polygonization’s speed depends on two factors:
complexity of the function to be evaluated and
cubic size cell. Here the user can fix the cubic size
cell, which allows controlling the mesh’s resolu-
tion. We will discuss the other factor in Section 6.

3 Theoretical concepts

Implicit surfaces [18] are a powerful modeling
tool due to their blending properties, which allow
them to create smooth shapes, and easily be ma-
nipulated by the mean of their skeleton.
An implicit function is defined by the following
formula:

Fx,y,2)-T=0, @



where F'is called a scalar field function, or scalar
potential. /" associates a field value to every point
in space. All the points in space in which
Fx,y,z)=T form the implicit surface. 7T is called
the iso surface constant. Blinn was the first to use
implicit surfaces in computer graphics [3]. He
used an exponential function. As this function was
too slow to evaluate, several approximations were
proposed shortly after [9] [15]. A very important
step in the implicit surfaces modeling history was
the introduction of implicit distance surfaces,
which are surfaces defined by their skeleton. The
skeletons can be any elementary geometric primi-
tives such as points, line segments, curves or
polygons. However, blending two skeleton shapes
together sometimes produces unwanted bulges
and creases in the resulting surface. To solve this
problem, Bloomenthal and Shoemake proposed
convolution surfaces [5]. Convolution surfaces are
defined by the formula:

S)=gp/hp) @)

g being the skeleton’s characteristic function and
h being the convolution kernel. g characterizes the
object’s geometry and it is also called geometry
function, while h characterizes its shape.

g can be expressed as

N
&=y &(p) (3)

-1
g being the characteristic function of the i”
skeleton element. The convolution product de-
scribes the implicit surface. Bloomenthal and
Shoemake observed that the additive property of
convolution integrals makes implicit convolution
surfaces suitable for modeling complex surfaces
from simple primitives, and, the most important
thing, each primitive can be evaluated separately.
Skeleton variation produces fluid variations in the
surface, and no creases or bulges are present when
joining skeletons together. In order to obtain the
implicit surface we just need to sum the contribu-
tion of every primitive. This contribution is lim-
ited by the kernel width.

4 Overview of surface computation
algorithm
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We will first describe the general reconstruction
process, and then the next section will add more
details on how we compute the surface, and how
we tested our method on various convolution
kernels.

First the user draws a stroke, which must be not
self-intersecting. Then the stroke is closed (if the
user hasn’t already closed it). The stroke is ap-
proximated by a polygon, which preserves the
sharp angles, and has equally sized edges. The
next step is to compute the skeleton of the poly-
gon. We start by performing a Delaunay triangula-
tion [1] on polygon points. Then we eliminate all
triangles that have edges outside the polygon.
Then we compute the chordal axis [11] by an
algorithm similar to [7]. The algorithm just joins
together the intern edges middle points. If there is
an intern triangle, the skeleton branches join into
its center, as shown in Figure 2 d). Triangles with
two extern edges are the extremities of the shape.
These triangles are split in two, and only the
intern point is considered to be a skeleton point,
as in Figure 2 d). Skeleton does not touch the
polygon boundary.

>
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Figure 2: a) Original contour b) Delaunay
triangulation c) Cutting extern triangles d)
Computing the skeleton.

The next step in the reconstruction the implicit
surface is to place an implicit sphere in every
point of the skeleton. If we look back to the con-
volution definition (2) we just defined the geome-
try function g. g is the sum of the skeleton charac-
teristic functions g; defined as follows (p; are the
skeleton points):

gi(p)=1, if p=p; and “)
gi(p)=0 in all the other cases.



Figure 3: Spheres are placed in every point of the
skeleton.

Now we need to determine the convolution kernel.
The kernel must provide:

1. fast computation time;

2. the resulting surface must match the original
contour (with as few adjustments as possi-
ble).

In order to respect these requirements we have
tested the 7 convolution kernels (see [13]) with a
set of random strokes.

Each of those kernels produces an implicit sur-
face. For every sphere, there is at least one pa-
rameter to compute in order to adjust it to the
stroke. This parameter is usually the radius. De-
pending on kemel, we can have a second parame-
ter, which controls the blending.

The formulas used for computing these parame-
ters will be discussed in the next section. This
step produces an implicit surface very close to the
initial sketch.

Figure 4: Originally computed implicit surface.

The next step performs an adjustment of the
implicit sphere parameters. We progressively
select the sphere whose surface is farthest from
the original contour. We adjust the sphere to
better fit the contour, and the process is reiterated
until a minimum distance criterion is reached.
This “greedy” technique evaluates a local crite-
rion and has the advantage of being fast and easy
to implement.
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Figure 5: Adjusting the resulting surface to better
fit the contour.

The surface is then polygonized for rendering [5]
and a compression of the mesh is performed [6].

5 Computation of implicit surface pa-
rameters

Blinn has shown that any implicit primitive can
be expressed as a function of two distinct parame-
ters: radius in isolation R and blobbiness B.
Radius in isolation is the characteristic distance
between the primitive’s skeleton and the implicit
surface that it produces. Blobbiness is a parameter
that controls blending between primitives. As the
blobbiness grows, the surface becomes rounder.
These two parameters are very interesting because
they are universal. We made some simple remarks
that helped us to automatically compute satistying
values for those parameters. For instance, R repre-
sents the distance to the surface, so we can con-
clude that a good approximation for the radius in
isolation would be the average of the point’s
distances to its’ neighbors on the surface, as
shown in Figure 6. Blobbiness controls blending,
so it must depend on the distance to neighboring
spheres. We decided to approximate it by the
average distance to the centers of its neighboring
spheres, as in Figure 6.



Figure 6: Computing the radius in isolation and
the blobiness for the center point. The light gray
points participate in radius in isolation computing.
The dark gray points contribute to the blobbiness
value.

When the skeleton function g;(p) is a point set,
considering the equation (3), the convolution
formula yields:

sio-| [i:g(x)}‘@—x)dx_ 5)
R3\i1

By replacing g definition (4) we get:
=Y \o-p 1) ©
=)

where T; is a constant. The contribution from each
primitive is h(p-py)-T or, if we put p-p;=r, h(r)-T.

6 Choosing a convolution kernel

The 7 kernels are given by the following formulas:
o Cauchy function [12]:

(el
f,()=(—)gl+sl_2r2 .

s being the stiffness parameter.
e  Blinn’s blob [3]:

/i (r)=bl- exp(—aizrz). ®)

e [Inverse function [19]:

G )
o [Inverse squared function:
Ji (= (10)
r

e Meta ball function [9]:
1-3r2 0<r<t

S =130 Lar<t.
0 r>1

1)

666

o Soft Objects [15]:
1-3,6417 4 22,2 q
9
Ji ()= (12)
0 r>1

o W-shaped polynomial [20] [22]:
(l—rz)Z r<l
fi ()= 13)
r>1

In this section we analyze each of the above ker-
nels, by considering the contribution of a sphere
using the respective kernel. Then we express this
contribution as a function of radius in isolation
and blobbiness (if possible), as described in sec-
tion 5. Some functions only have one parameter,
so they will only depend on radius in isolation.
Tests are run with a set of random strokes. Then
the surface is computed, polygonized and ren-
dered. This allows us to compare the perform-
ances of the kernels, in terms of speed and ap-
proximation accuracy.
The condition that we use in every case is that the
contribution of the potential field f; is O in a point
at distance » from the sphere’s center, if the point
lies on the surface of the sphere, which means:
fi(r)-T:=0 when r=R;; (14)
where R; is the radius in isolation of the sphere.
Then we solve (14) for 7; and other kernel pa-
rameters, if they exist.
For efficiency reasons, all the following functions
are windowed, that is they are considered to be 0
outside the radius in isolation. This will increase
the computation speed.

o Cauchy function

The condition (14) yields +=Ti or
(+s2R2Y
1]_1 S S |
sf=—5| ——-1| - and by putting ,
R; \/Tz_ i B I,
we get:



fim= 1
[+
B,R,

Blinn’s blob
e calculus for this func-

Blinn has alyead done
tjon, Hg, Qb{ . As

the: e)ls a 7 factor in every sphere function, so by
putting 7;,=1 we get a very convenient formula:

/i (r):ex %rz -B, J—] )

(15)

B; Blinn noticed,

(16)

o Inverse function

With condition (14) we get T; =1 , SO

F p=t—L.
R

Inverse squared function

a7)

The condition (14) produces 7; = and

1

R
(18)

e Meta ball function

Meta ball is usually an implicit sphere with unit

radius, but a R; radius sphere will be much more
useful for us. There are 3 main situations:

1. 0<r<R7? , which produces 7; =1-3R2,
2. %<r<Ri , which gives T; =%(1—R,- )2,
>1, f; (9=0.

We prefer the easy to read version:

1-3r2-143R? O<r<%

F ()= 30-rP-30-R, 2 crst 19)
0 r>R

o Soft Objects
The same process as above, and replacing the unit

radius by R; radius gives us:
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4.6,17,4 222 4p6,17pa_22p2 )
o4ty 57 9R,+ R; 9R, rSR’.(ZO)

r>R;

Fi (=
0

W-shaped polynomial
Condition (14) and changing the radius to R; give:

(r2f--reP e

E ()= @D
0

>R,

In order to determine the most efficient kernel for
reconstruction, we considered 50 different random
strokes. The criteria were:

1. Computation time for the implicit surface:
computation time for spheres position, ra-
dius and blobbines.

Polygonization time: computation time for
the surface mesh. Since we need interactive
rates, this is a crucial factor.

Approximation error. the distance from the
computed surface to the original stroke. One
simple way to compute this error would be
to make the sum of the potential values in
every point of the original polygon (in abso-
lute value):

e=ﬂF(p,-)
=1

If we look back at the 7 functions we see that all
except the inverse function and the inverse square
function have the same characteristic: they are
bell shaped functions, with unit value in 0 point
and slowly decreasing to 0 in the same way (see
their plots in [21]). So comparing their potential
values in the same point has a meaning.

However this method is not efficient for evaluat-
ing the inverse function and the square inverse
function, as they decrease more rapidly than the
others. They start from an “infinite” value near 0
point (where they are not defined) and fall to 0 on
the same interval as the others, but the slope is
quite larger. So using (22) as an error measure has
a signification only for the 5 remaining functions.
Here are the average results obtained on a
1400MHz Intel Pentium 4 computer:

2.

3.

(22)




Table 1: Computation times.

Kernel Time (s)
Cauchy 0,02605
Blob 0,02555
Inverse 0,026
Inverse squared 0,02455
Meta ball 0,0255
Soft Object 0,02455
W shape polynomial 0,026
Table 2: Polygonization times.
Kernel Time (s)
Cauchy 2,6408
Blob 3,59705
Inverse 27746
Inverse squared 262075
Meta ball 2,8644
Soft Object 2,8427
W shape polynomial 24741
Table 3: Approximation errors.
Kemel Error
Cauchy 1,73349475
Blob 3,30165095
Inverse 31,928574
Inverse squared 267,0739279
Meta ball 6,21988875
Soft Object 5,16660585
W shape polynomial  4,86360465

One can notice that the computation time (Table
1) does not vary much. This is normal, since in
our case the number of spheres is about a few
dozens, which is a small number, and it does not
produce significant differences. It is not a crucial
factor.

For polygonization (Table 2), we chose a small
cell size, in order to make differences more obvi-
ous. We can notice that the fastest function is the
inverse square function. This was quite predict-
able, since it only contains a dividing operation,
and it avoids the expensive square root operation
(necessary for the inverse function, for instance).
Concerning approximation error (Table 3), the
values for inverse function and inverse squared
function are not relevant, as we explained before,
so we will only refer to the others. We can see
smaller errors for the two functions for which
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blobbiness can be fixed (Blob and Cauchy func-
tions). We deduce that having the function de-
pending on the two parameters is very important
for accuracy. This gives us more control on the
generated surface. This observation is also valid
for the two functions that we were not able to
compare, and it can be confirmed by directly
visualizing the shapes, although the differences
between shapes obtained with different kernels
are rather small.

Cauchy kernel function offers the best approxima-
tion, and it is among the functions that are fast to
polygonize. So we think it would be a good choice
for our representation.

For these reasons we based our implementation
on this kernel.

7 Conclusion and perspectives

We have presented a technique that allows rapid
creation of complex smooth shapes. The objects
are represented by implicit convolution surfaces.
The generated shapes are natural looking, con-
tinuous, and there are no bulges and creases on
the surface. Figure 7 compares a sketch recon-
structed with our algorithm with the same sketch
reconstructed using the algorithm described in [7].
We can see that the second surface (c) is much
smoother than the first one (b).

Figure 7: a) Stroke interpreted using the algorithm
described in [7]. b) The same stroke interpreted
with our system.

We also analyzed the 7 convolution kernels in
order to choose the appropriate one for the repre-
sentation.

Objects can be further manipulated easily, by
directly operating on the skeleton points. Editing
operations such as extruding, cutting, moving and
rearranging object parts by the mean of their
skeleton are now implemented.



The advantage of this system is to provide rapid
prototyping, which is useful in the conception
phase, and to avoid the tedious task of modeling
with base primitives only. Perspectives include
guiding the user’s stroke (with a background
image). We also think that stylized rendering and
implementation on a PHANToM device would
help achieving a better feeling of paper prototyp-
ing.

One disadvantage of present rendering method is
the necessity to repolygonize the entire surface
once it has been modified. This can affects the
interactive times, so we are also working on using
a local repolygonization algorithm.
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