
Technical report IRIT/RR–2011-XX–FR
–

Predictable Bus Arbitration Schemes for Heterogeneous Time-Critical
Workloads Running on Multicore Processors

Roman Bourgade, Christine Rochange, Pascal Sainrat
Institut de Recherche en Informatique de Toulouse

University of Toulouse, France
{bourgade,rochange,sainrat}@irit.fr

Abstract

Multi-core architectures are now considered as possible candidates to implement future time-critical embed-
ded systems. The challenge is to make the worst-case execution time (WCET) of each task predictable. This
requires upper-bounded memory latencies which are achievable through a WCET-aware bus arbiter. Round-
robin protocols enforce the same worst-case latency for each core. In this paper we focus on heterogeneous
workloads in which tasks exhibit distinct requirements in terms of bandwidth to the main memory. We inves-
tigate several arbitration schemes able to guarantee distinct worst-case latencies to the cores. This allows
allocating the most requiring tasks to the best served cores. The proposed schemes perform a two-level arbitra-
tion: the cores are organized into groups and all the cores in the same group benefit from the same bandwidth.
Different algorithms to share the bus slots among the groups are considered. Experimental results (WCET
estimates) show an improved global WCET compared to usual round-robin schemes. This will enhance the
schedulability of heterogeneous task sets.

1. Introduction

Embedded systems have to fulfil strong constraints in terms of power consumption or thermal dissipation.
They also must achieve high cost-efficiency in a very competitive market. For these reasons it is becoming more
and more difficult to improve their performance by the only means of increasing their clock rate or making their
internal architecture more complex.

A solution is the use of multicore processors (CMP or chip multiprocessors), that improve the utilization
of resources by running several tasks in parallel. Multicore processors are widely used in servers and desk-
top computers. With the growing demand of embedded applications including time-critical software, it is
expected that multicores will also be increasingly used in real-time embedded systems to achieve higher per-
formance/throughput and cost-effectiveness.

On typical medium-size CMPs, the cores share a bus to the highest levels of the memory hierarchy. This
contributes to increase memory latencies, due to conflicts in the interconnection (bus). When executing hard
real-time tasks, this is a major problem because memory latencies have to be bound to allow a safe estimation of
the worst-case execution times (WCETs) of tasks. In order to keep things tractable, we believe that the design
of a predictable bus arbiter should be done with the goal of keeping the worst-case bus latencies for one of the
tasks independent of the other tasks. This makes possible to determine the WCET of each task without any
knowledge of the possible co-scheduled tasks.

A conservative technique for hard real-time systems is to solve inter-core conflicts to shared resources by
using fair policy such as the round-robin protocol. It guarantees that the memory access latencies for a particular



core remain independent from the memory requests by the other cores; they can be bounded and safely included
in WCET estimates [11]. This approach perfectly fits systems running homogeneous workloads in which all the
tasks have similar memory demands and should be served fairly. However, in some cases fairness may prevent
some tasks to meet their deadlines while favoring some highly-demanding tasks to fasten their execution may
help in achieving the schedulability of the whole system. Also, when considering parallel applications with
inter-task dependencies, it may be desirable to accelerate the tasks on the critical path. This motivates our work
that aims at providing several levels of bandwidth while keeping the worst-case latencies computable.

In this paper we introduce two-level bus arbiters that provide an unbalanced service to the cores. This allows
allocating the most demanding tasks on the cores that often get bus slots and lower demanding tasks to cores that
undergo a longer latency. The objective is to improve the performance of a task set instead of the performance
of individual tasks. We consider several arbitration algorithm and we show that a two-level arbiter can reduce
the maximum WCET in the task set by 27% to 48% according to the traffic for data, and the sum of the WCETs
over a task set by 11% to 28%.

The paper is organized as follows. Section 2 gives an overview of related work and outlines the problems
that motivate our approach. We describe two-level bus arbiters in Section 3. Section 4 provides experimental
results and concluding remarks are given in Section 5.

2. Related work

To be eligible in the context of a system supporting hard real-time threads, a bus arbiter must insure that the
worst-case latency for a given core to get access the memory hierarchy can be computed. Such real-time-aware
protocols exist. As an example, the round-robin policy grants the bus to each core in turn. As a result, the
maximum delay a core can undergo when requesting the bus is a function of the number of cores that share the
bus, and of the latency of a bus access. This delay is predictable, does not depend on the tasks running on the
others cores and is the same for each core [11].

Time-Division Multiple Access (TDMA) policies are also being increasingly used in embedded hard real-
time systems. As in round-robin, all the cores are served in turn, but a core can be granted several successive bus
slots instead of a single one. Slot allocation is determined off-line, like in [2] and [14]. However, as mentioned
in [13], it generally cannot be determined during static analysis whether a bus request will occur during one
the granted slots. As a result, static WCET analysis requires considering the length of all the slots allocated to
other cores as the upper bound delay which may be overwhelmingly pessimistic.

Budget schedulers ([13, 1]) have also been designed to satisfy variable bus bandwidth requirements. How-
ever, instead of determining a static bus scheduling like TDMA schemes, they allocate a given amount of
bandwidth to each core. According to its priority level, and as far as it has not consumed its allocated bus slots
budget, a core can be granted the bus as soon as it issues a request. The prediction of worst-case latencies
within WCET computation requires considering the distance between two requests to the bus by the thread
under analysis. This might be possible for some particular applications, e.g. when considering accesses to data
for a data stream application, but is far more complex for irregular and dynamic accesses to memory like those
required to fill the instruction cache on cache misses (the instruction cache analysis generally cannot determine
the cache behavior for some of the instruction fetches).

Recently we proposed the MBBA scheme that aimed at offering distinct bus bandwidths to the cores in a
multicore architecture [5]. In this paper, we improve this scheme in a way that makes it possible to specify
it formally and to implement it in hardware, and we extend the concept of time-predictable two-level bus
arbiters so that different arbitration algorithms can be used. We also report a stronger experimental analysis
that investigates all the possible arbiter configurations and task allocations for a small set of benchmarks.

3. Two-level Bus Arbitration for Heterogeneous Workloads

3.1. Task Sensitivity to the Bus Latency
A round-robin bus arbiter serves all the tasks in a fair way. For hard real-time applications, an identical

worst-case latency (N × L where N is the number of cores and L the bus latency) should be assumed when



Figure 1. A two-level bus arbiter

analysing the worst-case execution time of any task [11]. In this paper, we consider heterogeneous workloads
that include tasks with various demands to the memory system. A task issues more bus requests than another
task either because it experiences a larger amount of cache misses or simply because it has a longer execution
time.

We define the normalized WCET sensitivity σt to the bus latency changing from λ1 to λ2 of a task τ in a task
set T , as:

∀τ ∈ T, σt =
WCET λ2τ −WCET λ1τ∑

t∈T
WCET λ1t

(1)

where WCET λt if the WCET of task t considering latency λ. The normalization of the sensitivity to the sum
of all the tasks WCETs makes this measure useful to select the tasks that should benefit of a larger bandwidth
to the bus so that the performance of the whole task set is improved. The arbitration schemes described in the
following aim at allowing an allocation of the bus slots to the cores that improves the global performance of a
task set instead of enforcing fairness.

3.2. Two-level bus arbitration
We introduce two-level bus arbiters based on groups of cores: in the first level, the arbiter allocates a slot

to one group; in the second level, one core in the group is selected and granted the bus. This is illustrated in
Figure 1, considering two groups of two cores each: solid lines show request signals and dashed lines show
grant signals. The arbitration policies at each of the two levels define the bus latency seen by each core.

In this paper, we focus on time-critical systems: only time-predictable arbitration strategies are considered.
The round-robin (RR) algorithm [11] fulfils our needs. In addition, we consider the GL (Geometric Latencies)
algorithm described in Section 3.4.1: it allocates different partitions of the bus bandwidth to the cores with
power-of-two worst-case bus latencies. Considering these two algorithms, four arbiters can be built. However,
GL does not make much sense for a small number of cores. For this reason we only consider the RR algorithm
in the second level (to arbitrate among the cores in a group) and we consider both the RR and GL schemes at
the first level (to select a group). This makes two arbiters: GRR (Group Round Robin) and GGL (Geometric
Group Latencies). Note that GGL is pretty close to the MBBA scheme we introduced recently [5] but GGL
results from a few enhancements that make a more formally specification possible.

Each scheme must be configured: each core must be assigned to one group (in this paper we consider up to
3 groups). For a given first-level algorithm, the number of cores in a group determines the worst-case latency
seen by each core in the group. Let LGi be the worst-case bus latency for group Gi, Ni be the number of cores
in Gi and N be the number of groups. If the cores in a group are arbitrated with a RR protocol, each core sees
a worst-case bus latency equal to:

∀i ∈ [0..N − 1], ∀j ∈ [0..Ni − 1],

LCj∈Gi = Ni × LGi

(2)



Figure 2. Example GRR schedule

Figure 3. Example GL schedule

3.3. Group Round Robin (GRR) protocol
Figure 2 illustrates the GRR protocol considering 6 cores partitioned into 3 groups and assuming each core

permanently issues requests to the bus. Each group gets the bus every third cycle and its cores share the granted
slots in a round-robin fashion.

Let L be the bus latency for any request. For the GRR arbiter with N groups and Ni cores in group Gi, the
worst-case bus latency seen by a group is given by:

∀i ∈ [0..N − 1], LGi = N × L (3)

From Equation 2, we get the worst-case latency seen by a core:

∀i ∈ [0..N − 1], ∀j ∈ [0..Ni − 1],

LCj∈Gi = Ni × (N × L)
(4)

3.4. Geometric Group Latencies
The GGL protocol is based on the GL algorithm used to select groups in the first level. In the following, we

first explain the GL algorithm before analysing the latencies for GGL.

3.4.1 Geometric Latencies

The main principle of the GL single-level arbiter is to enforce bus latencies that grow as a geometric series:
core C0 sees a latency of 2 (×L), core C1 a latency of 4, core C2 a latency of 8, etc. (the two last cores have
the same latency). The behavior of the GL arbiter is shown in Figure 3.

Formally, the GL arbiter can be specified as follows. The control signals involved in an hardware implemen-
tation of the protocol include ri that indicate (when set) that core Ci has at least a pending request and gi is set
for the core that is granted the bus and cleared for all the other cores. In addition, state variable pi is set when
core Ci should be given priority on the next slot left by the lower-range cores (Cj with j < i). In the following,
ri, gi and pi are considered as boolean variables.

The following equations formally specify the GL protocol:

gti = rti .p
t
i.
i−1∏
j=0

ptj (5)



Figure 4. Example GGL schedule


pt+1
i = pti

⊕ i−1∏
j=0

ptj ∀i 6= N − 1

pt+1
N−1 = pt+1

N−2

(6)

Equation 5 tells that the bus is allocated to core Ci at cycle t if this core has requested the bus, it has priority
over higher-range cores and no lower-range core has priority over it. Equation 6 indicates that core Ci will has
priority over higher-range cores at cycle t+1 if (a) it has this priority at cycle t but cannot get the bus because a
lower-range core has priority over it; or (2) core Ci has not priority over higher-range cores but no lower-range
core has priority over it. Last core, CN−1 is served alternately with core CN−2.

In addition to providing a formal specification of the protocol, these equations give insight into how it could
be implemented in hardware as a Mealy machine.

From these equations, we get the expression of the worst-case latency for a core (proof is given in Appendix):
LCi = 2i+1 × L ∀i < n− 1

LCN−1
= 2N−1 × L

(7)

3.4.2 Geometric Group Latencies

Figure 4 shows an example behavior of the GGL protocol with 6 cores partitioned into 3 groups that perma-
nently issue requests to the bus. The core in G0 gets every second bus slot. Group G2 is granted every fourth
slot and these slots are fairly shared by the three cores in this group.

Considering N groups, the worst-case latency for a group is given by Equation 7 and the worst-case latency
for a core Cj in group Gi (with Ni cores: j ∈ [0..Ni − 1]) is:

LCj∈Gi = (Ni.2
i+1)× L for i ∈ [0..N − 2]

LCj∈GN−1
= (NN−1.2

N−1)× L
(8)

4. Experimental results

4.1. Methodology
The protocol presented in this paper has been modeled within OTAWA, a framework dedicated to static

WCET analysis [4] that includes:

• a binary code loader that supports various instruction sets (PowerPC, ARM, TriCore, etc.)
• an instruction cache analyzer based on abstract interpretation techniques [7] [3]
• a timing analyzer that evaluates the worst-case execution time of basic blocks taking into account the

target architecture and the results of the instruction cache analysis [12]



Figure 5. Bus latency

Fetch stage width 4

Fetch queue size 8

Decode stage width 2

Commit stage width 2

Functional units (latency)

integer ALU (1 cycle) 1
fp ALU (3 cycles) 1

multiplier (6 cycles) 1

divider (15 cycles) 1

memory (2 cycles) 1

Table 1. Core configuration.

• a flow-fact loader that reads flow fact annotations provided by the oRange tool [6]
• a WCET computer that builds an integer linear program according to the IPET method [10]. This pro-

gram is solved using the lp solve tool1

The experiments reported in this paper were carried out considering an 8-core CMP with in-order superscalar
cores implementing the PowerPC ISA configured as shown in Table 1. Each core includes private instruction
and data caches. Since we have considered benchmarks with limited code sizes, we considered small instruc-
tion caches so that the benchmark codes do not fit in: 2 KB, 2-way associative with 16-byte lines. Our tool
does not model data caches, so we have run the experiments considering first always-hit, then always-miss data
caches with 16-byte cache lines. The bus is 32-bit wide. Its latency is one cycle and the memory worst-case
latency for a read or write operation is 5 cycles. Figure 5 shows how the latency of fetching a cache line from
the memory: considering a sequence of fetches, the latency of one such operation is 9 cycles (the address phase
overlaps the previous request). It is 10 cycles for the first request of the sequence. Then, considering a simple
round-robin arbiter for 8 cores, the worst-case latency seen by one core is 73 cycles.

The benchmarks considered in this study are listed in Table 2. The three first belong to the Mälardalen
collection [8] (some functions have been resized to get sufficiently long execution times), the other ones are
functions from the Susan benchmark in the MiBench suite [9]. Since we want to perform this analysis indepen-
dently from the task scheduling algorithm, we consider a set of 8 tasks only for our 8-core architecture so that
each task runs on one core.

Table 3 gives the WCET sensitivities of the tasks, computed from Equation 1 with the reference latency (λ1)
equal to 73 cycles which is the worst-case latency observed when the bus is scheduled by a simple round-robin
arbiter. Several latency values (λ2) are considered: they are taken from the list of all the possible values related
to the possible configurations of a two-level arbiter. For example, for a GGL-{2-2-4} configuration, each of
the 2 (resp. 2 and 4) cores in group G0 (resp. G1 and G2) see a 37-cycle (resp. 73-cycle and 145-cycle)
latency. The numbers in the table should be read as follows: guaranteeing a latency of 19 cycles instead of

1http://lpsolve.sourceforge.net/



Benchmark Function
nsichneu Simulates an extended Petri Net. Automatically generated code containing large

amounts of if-statements (more than 250).

statemate Automatically generated code. Generated by the STAtechart Real-time-Code gener-
ator STARC.

compress Data compression program. Adopted from SPEC95 for WCET-calculation. Only
compression is done on a buffer (small one) containing totally random data.

susan corners quick Corner finding algorithm from SUSAN Low Level Image Processing program.

susan edges small Edge finding algorithm from SUSAN program.

susan principle Filter application algorithm from SUSAN program.

edge draw Edge drawing algorithm from SUSAN program.

corner draw Corner drawing algorithm from SUSAN program.

Table 2. Benchmarks.

Data cache always hits always misses

Bus latencies 19 37 91 145 217 19 37 91 145 217

nsichneu -8.1% -5.4% +2.7% +10.8% +21.5% -1.7% -1.1% +0.6% +2.2% +4.5%

statemate -11.6% -7.7% +3.9% +15.4% +30.8% -2.3% -1.5% +0.8% +3.0% +6.1%

susan corners quick -26.7% -17.8% +8.9% +35.6% +71.1% -13.6% -9.1% +4.5% +18.2% +36.4%

susan edges small -16.4% -11.0% +5.5% +21.9% +43.8% -18.5% -12.4% +6.2% +24.7% +49.4%

compress -1.1% -0.8% +0.4% +1.5% +3.0% -1.9% -1.3% +0.6% +2.6% +5.2%

susan principle -0.3% -0.2% +0.1% +0.4% +0.9% -13.0% -8.7% +4.3% +17.4% +34.8%

edge draw -0.0% -0.0% +0.0% +0.0% +0.0% -10.1% -6.7% +3.4% +13.5% +27.0%

corner draw -0.0% -0.0% +0.0% +0.0% +0.0% -11.6% -7.7% +3.9% +15.5% +30.9%

Table 3. WCET sensitivities to the bus latency (reference latency is 73).

73 cycles to task nsichneu improves the sum of the WCETs by 8.1% with an always-hit data cache. From
this table, it appears that degrading the latency for some of the tasks (e.g. compress) will not impact much
the global WCET of the task set while the set will benefit from reducing the latency of some other tasks (e.g.
susan corners quick).

4.2. Results
Our objective in this section is to show how two-level arbitration schemes can help in improving the global

worst-case performance of a task set. The two-level schemes are based on up to three groups, since four groups
do not make sense for 8 cores.

Our reference is a simple round-robin algorithm that provides the same worst-case latency to each task in
the set. The two-level arbiters need to be configured to decide which task is allocated to which group. Table 4
shows the characteristics of configurations considered in the following. Columns 1-3 specify the number of
cores in each group. Note that redundant configurations have been omitted (for example, {6,1,1} is the same
as {1,1,6} for GRR and the same as {2,6} for GGL). Columns 4-6 (resp. 7-9) give the latencies seen by the
cores in each of the three groups for the GRR (resp. GGL) arbiter. Finally column 10 indicates the number of
possible allocations of the 8 tasks considering a given configuration.

Table 5 gives the results obtained when considering an always-miss data cache. Columns 1-3 show how the
cores are partitioned into groups. For each configuration and every possible allocation of the tasks (see Table 4)
we have determined the maximum WCET over the task set (if the tasks were threads of a parallel application, the
maximum WCET would impact the global WCET of the application) and the sum of all the tasks WCETs (that
gives insight into the utilization of the cores). Columns 4-5 (resp. 6-7) give the best numbers observed over the
set of possible tasks allocations for the GRR (resp. GGL) algorithm. The first line is for a simple round-robin
arbiter (a single group of 8 cores that all benefit from the same bandwidth): the results for this configuration are
our reference numbers. The numbers in bold face show the lowest and highest value of each measure. It can
be observed that the difference between results of different configurations can be huge. The best results are for



Configuration GRR latencies GGL latencies number of

N0 N1 N2 LCi∈G0
LCi∈G1

LCi∈G2
LCi∈G0

LCi∈G1
LCi∈G2

tasks allocations

8 - - 73 - - - - - 1

1 7 - - - - 19 127 - 8

2 6 - - - - 37 109 - 28

3 5 - - - - 55 91 - 56

1 1 6 28 28 163 19 37 217 56

1 2 5 28 55 136 19 73 181 168

1 3 4 28 82 109 19 109 145 280

2 1 5 55 28 136 37 37 181 168

2 2 4 55 55 109 37 73 145 420

2 3 3 55 82 82 37 109 109 560

3 1 4 82 28 109 55 37 145 280

3 2 3 82 55 82 55 73 109 560

4 1 3 109 28 82 73 37 109 280

5 1 2 136 28 55 91 37 73 168

total 3,033

Table 4. Arbiter configurations

the GGL arbiter: for the best task allocation on the GGL-{4-1-3} configuration, the maximum WCET over the
task set is improved by 26.7% compared to a simple RR scheme; and the greatest reduction of the sum of the
tasks WCETs (-11.1%) is obtained with the best allocation on the GGL-{3-2-3} configuration. A closer look
at the task allocation that exhibits the best maximum WCET shows that the task that has the highest sensitivity
to the bus latency (susan edges small – see Table 3) is in group G0 with a latency of 19 cycles and the three
tasks having the lowest sensitivity (nsichneu, statemate and compress) are in group G2 with a latency of
109 cycles.

Now, considering an always-miss data cache is pessimistic and leads to assuming a traffic on the bus that is
far denser than it would be with a real cache. As said before, our WCET analysis tool still does not perform
full data cache analysis. So, to get insight into how the two-level arbiters would behave in the case of a lower
traffic on the bus, we also have considered a perfect (always-hit) data cache. The best results are again reached
with the GGL arbiter: the maximum WCET over the task set is improved by up to 48.0% and the total WCET
is lowered by up to 27.9%.

These results show that it is possible to improve the performance of a simple round-robin scheme with only
slightly more complex schemes as those proposed in in this paper (GRR and GGL two-level arbiters) while still
offering the possibility of determining worst-case latencies that do not depend on the co-scheduled tasks. This
property is the key for keeping WCET analysis tractable. Now, in this work we have explored all the parameter
space, i.e. all the possible configurations (number of groups and number of cores for each group) and all the
possible allocations of tasks for each configuration. As future work, we will investigate joined allocation and
scheduling algorithms that will exploit the possibility of our arbitration scheme.

5. Conclusion

Multicore architectures appear to be relevant candidates to implement embedded systems: they make it
possible to improve the computing power while exhibiting essential qualities: high hardware integration, low
thermal dissipation and low energy consumption. However, some critical embedded applications are subject to
strict timing constraints. Thus, it is necessary to be able to analyze their worst-case execution time to check
that deadlines can be met.

Much work has been done these last fifteen years to set up techniques to compute safe WCETs. However,
their validity relies on the assumption that the application can run on the target architecture without being
impacted by external events that would impair determinism. In a multicore processor, such events could be



Configuration GRR arbitration GGL arbitration

N1 N2 N3 best maximum WCET best sum of WCETs best maximum WCET best sum of WCETs

8 - - 46,021,703 181,588,379 46,021,703 181,588,379

1 7 - 58,496,999 146,514,523 58,496,999 246,514,523

2 6 - 48,134,578 191,861,771 48,134,578 191,861,771

3 5 - 36,030,829 170,941,235 36,030,829 170,941,235

1 1 6 71,810,338 255,936,614 95,486,098 328,264,133

1 2 5 53,581,234 195,898,091 71,131,639 248,212,769

1 3 4 37,865,309 184,518,725 50,244,323 233,040,281

2 1 5 53,581,234 195,898,091 71,131,639 227,136,803

2 2 4 37,561,765 166,591,427 49,802,341 181,418,639

2 3 3 36,296,698 174,423,776 48,134,578 191,861,771

3 1 4 37,865,309 184,518,725 49,802,341 174,759,233

3 2 3 36,296,698 174,423,776 34,808,477 161,371,013

4 1 3 37,865,309 184,518,725 33,738,971 166,302,383

5 1 2 53,581,234 195,898,091 36,030,829 175,872,605

Table 5. Best WCET results with an always-miss data cache (# cycles)

related to conflicts on the shared bus with tasks that run on another core. As a consequence, it is necessary
to implement a bus arbitration scheme that makes it possible to upper bound the bus latencies, in such a way
that the WCET of one task can be computed without any knowledge about the tasks that may be executed
simultaneously on the multicore.

Several WCET-aware bus arbitration schemes have been proposed: for some of them, the predictability of
the latencies during the WCET computation process is questionable; for other ones, like Round-Robin [11],
the predictability is assessed but the algorithm does not fit well unbalanced workloads in which some threads
require more bus bandwidth than the other ones.

In this paper, we have introduced two-level bus arbiters that feature a certain flexibility in the way bus slots
are granted to the different cores, while keeping the predictability of the round-robin protocol. The cores are
partitioned into groups and groups are guaranteed either a fair latency (GRR scheme) or a geometric (power-of-
two) latency (GGL scheme). The cores in a group shared the group bus slots following a round-robin algorithm.
The way the arbiter is configured (number of groups and number of cores in each group) determined the range
of latencies seen by the cores. This flexibility allows offering a larger bandwidth to the tasks that have the
largest requirements so that the worst-case performance of the task set is improved. Experimental results show
that the GGL protocol achieves a maximum WCET and a sum of WCETs over our test-case task set respectively
improved by 27% and 11% with a pessimistic (always miss) data cache and by 48% and 28% with a perfect
(always hit) data cache.

Future work will focus on setting up strategies to determine optimal configurations for the GRR and GGL
protocols as well as investigating the possibilities of improving the system-level scheduling of a set of tasks
considering this kind of bus arbitration.

6. Appendix: Proof for Equation 7

Let δi be the shortest distance between two slots with
i−1∏
j=0

pj = 1.

Let us assume that gti = 1. According to Equation 5, this means pti = 1 and
i−1∏
j=0

ptj = 1. According to

Equation 6, we get pt+1
i = 0. In addition, ∀d|1 ≤ d < δi,

i−1∏
j=0

pjt+d = 0 and thus pt+d+1
i = 0.



Now,
i−1∏
j=0

pt+δij = 1. Since pt+δii = 0, we get gt+δii = 0 (Equation 5). Moreover, Equation 6 tells: ∀d|δi + 1 ≤

d < 2δi,

i−1∏
j=0

pjt+d = 0 and thus pt+d+1
i = 1. As a result, gt+2δi

i = 1. This proves that the shortest distance

between two slots with gi = 1 is 2δi.

Additionally, ∀d|2δi ≤ d < 3δi,
i−1∏
j=0

pjt+d = 0 and pt+d+1
i = 0. Then the distance with two slots with

i∏
j=0

pj = 1, i.e
i−1∏
j=0

pj = 1 and pi = 0, also referred to as δi+1, is given by 3δi − δi: δi+1 = 2δi. As a

consequence, the shortest distance between two slots with gi+1 = 1 is twice the distance between two slots
with gi = 1.
Now, Equations 5 and 6 for G0 can be simplified into: gt0 = rt0.p

t
0 and pt+1

0 = pt0. This gives: δ0 = 2. By
induction, we get: δi = 2i+1.

References

[1] B. Akesson, L. Steffens, E. Strooisma, and K. Goossens. Real-time scheduling using credit-controlled static-priority
arbitration. Proceedings of the 14th IEEE International Conference on Embedded and Real-Time Computing Sys-
tems and Applications (RTCSA ’08), pages 3–14, 2008.

[2] A. Andrei, P. Eles, Z. Peng, and J. Rosen. Predictable implementation of real-time applications on multiprocessor
system-on-chip. International Conference on VLSI Design, pages 103–110, 2008.

[3] C. Ballabriga and H. Cassé. Improving the first-miss computation in set-associative instruction caches. Euromicro
Conference on Real-Time Systmes (ECRTS ’08), 2008.

[4] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat. OTAWA: an open toolbox for adaptive wcet analysis. In IFIP
Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (SEUS), 2010.

[5] R. Bourgade, C. Rochange, M. de Michiel, and P. Sainrat. MBBA: a multi-bandwidth bus arbiter for hard real-time.
In 5th Int’l Conference on Embedded and Multimedia Computing (EMC), 2010.

[6] M. de Michiel, A. Bonenfant, H. Cassé, and P. Sainrat. Static loop bound analysis of C programs based on flow
analysis and abstract interpretation. In IEEE Int’l Conf. on Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2008.

[7] C. Ferdinand, F. Martin, and R. Wilhelm. Applying compiler techniques to cache behavior prediction. ACM
SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems, 1997.

[8] J. Gustafsson, B. Lisper, A. Betts, and A. Ermedahl. The mälardalen wcet benchmark: Past, present and future. In
10th Workshop on Worst-Case Execution Time Analysis, 2010.

[9] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown. Mibench: A free, commercially repre-
sentative embedded benchmark suite. In IEEE International Workshop on Workload Characterization, 2001.

[10] Y.-T. S. Li and S. Malik. Performance analysis of embedded software using implicit path enumeration. In Workshop
on Languages, Compilers, and Tools for Real-time Systems, 1995.

[11] M. Paolieri, E. Quinones, F. J. Cazorla, G. Bernat, and M. Valero. Hardware support for WCET analysis of hard
real-time multicore systems. Proceedings of the 36th annual international symposium on Computer architecture
(ISCA ’09), pages 57–68, 2009.

[12] C. Rochange and P. Sainrat. A context-parameterized model for static analysis of execution times. Transactions on
HiPEAC, Springer, 2(3), 2007.

[13] J. Staschulat and M. Bekooij. Dataflow models for shared memory access latency analysis. Proceedings of the
seventh ACM international conference on Embedded software (EMSOFT ’09), pages 275–284, 2009.

[14] E. Wandeler and L. Thiele. Optimal tdma time slot and cycle length allocation for hard real-time systems. Proceed-
ings of the 2006 Asia and South Pacific Design Automation Conference (ASP-DAC ’06), pages 479–484, 2006.


