

INSTITUT DE RECHERCHE EN INFORMATIQUE DE TOULOUSE

Coding guidelines for WCET analysis

using measurement-based

and static analysis techniques

Armelle Bonenfant, Ian Broster, Clément Ballabriga,

Guillem Bernat, Hugues Cassé, Michael Houston, Nicholas Merriam,

Marianne de Michiel, Christine Rochange, Pascal Sainrat

March 2010

Technical report IRIT/RR—2010-8—FR

 5

Abstract

This document has been written in the context of the MERASA project (2007-2010)

within the Seventh Framework Programme of the European Union. In this project, a

multi-core architecture has been designed hand in hand with timing analysis

techniques and tools to guarantee its analysability and predictability regarding

timing. Both static WCET analysis tools (the OTAWA toolset, developed in the IRIT

research laboratory, Toulouse, France) as well as hybrid measurement-based tools

(RapiTime, developed by Rapita Systems Ltd., York, UK) are considered in the

project.

This report provides some recommendations for the use of the WCET tools as a set

of coding guidelines. It is aimed at software engineers developing or integrating

software for the MERASA architecture. The coding guidelines aim to allow

analysable software to be written for the MERASA architecture. They consist of

number of rules which should be followed when writing code, and present a number

of techniques which may be used to improve analysis of existing code.

If the guidelines are followed when writing software, effort needed to adapt it to

WCET analysis tools is reduced. Moreover, the need for analysis refinement to

achieve a tight WCET estimates is lower. As a result, the cost is greatly reduced.

These guidelines will also help to ensure that software has predictable timing

behaviour, which is essential to the reliability and safety of real-time embedded

systems.

 6

 7

Introduction

The MERASA project (Seventh Framework Programme of the European Union) aims

to design a multi-core microprocessor architecture and system-level software with

predictable worst-case timing behaviour.

The tools considered for Worst-Case Execution Time (WCET) analysis of programs

running on the MERASA multi-core architecture are:

‐ RapiTime, an hybrid measurement-based tool developed by Rapita Systems

Ltd., York, UK

‐ OTAWA, based on static analysis techniques, designed at the IRIT research

laboratory, Toulouse, France

Goal

This document is aimed at software engineers developing or integrating software

for the MERASA architecture. It presents a set of coding guidelines which aim to

allow analysable software to be written for the MERASA architecture. They consist

of number of rules which should be followed when writing code, and present a

number of techniques which may be used to improve analysis of existing code.

By following the guidelines, the cost of analysing software will be greatly reduced

due to the reduction of effort needed to adapt it to WCET analysis tools, and to

perform any necessary analysis refinements to achieve a tight WCET estimate.

These guidelines will also help to ensure that software has predictable timing

behaviour, which is essential to the reliability and safety of real-time embedded

systems.

Tools

The guidelines are written specifically for use with the project tools. A brief

summary of the purpose of each of these is presented in this section.

oRange

oRange is a tool for automatic calculation of loop bounds from C source code. It is

used by OTAWA to provide high-level constraints which would otherwise need to be

manually provided by the user in the form of source code annotations.

 8

OTAWA

OTAWA is a tool suite dedicated to the estimation of Worst-Case Execution Times

using static analysis techniques. It includes a number of facilities to handle binary

code and has been designed to support different architectures.

It provides an efficient framework to develop analysis modules that, when applied

in sequence to binary code, help to tightly estimate the WCET.

It supports (or will support) everything needed for the MERASA Core architecture.

OTAWA receives loop bounds produced by oRange and, if oRange cannot provide

bounds, it is possible to give loop annotations in order to tighten the analysis.

Static analysis techniques that are part of OTAWA can provide an estimate of the

WCET in most cases. Those where it cannot are described by the rules in this

document.

RapiTime

RapiTime is a hybrid measurement-based WCET and timing analysis tool. It uses a

trace of execution from the hardware itself to compute a worst-case estimate, and

also provides detailed timing and profiling information.

Platform

Further system-level requirements are present which are a consequence of the

design of the MERASA architecture and the system software.

MERASA HW

It is the hardware MERASA architecture.

MERASA OS

It is the system software which runs on MERASA HW. It provides a Posix-compatible

interface to the hardware scheduler and other system-level components.

 9

Applying the guidelines

Most of these guidelines concern C source code and some of them relate to

assembly code.

In this document, the terms 'guideline' and 'rule' are used interchangeably.

This report is not a report on general good rules of coding as, for example,

[MISRA04]. Note that several of the rules are also in [MISRA04], so if you are used

to respecting the MISRA rules then it is highly probable that your code will be

correctly analysed with oRange, OTAWA and RapiTime.

oRange

Coding rules for oRange may be neglected if annotations are used to provide flow

information to OTAWA. However, it is better to leave oRange find the loop bounds

as it is less error-prone.

All oRange coding rules concern the control flow of the program. Some rules must

be respected because oRange will otherwise fail to analyse the source code. In the

worst case, oRange will be unable to find some loop bounds and in most cases, it

will produce overestimated loop bounds. This is indicated for each rule.

OTAWA

Most OTAWA rules should be respected, except where specified when an annotation

can be used instead.

RapiTime

RapiTime rules marked as 'Recommended' are not necessary to complete an

analysis of the software, but will improve the accuracy of the WCET calculation.

Rules marked as 'Required' will prevent RapiTime analysing the software if they are

not followed. In some cases annotations can be provided for cases which RapiTime

cannot automatically handle, and these are listed in the exceptions section for each

rule.

Terms

Several terms are used throughout this document. They are described here in more

detail.

 10

Worst-Case Excecution Time (WCET)

The WCET of a function or application is the theoretical maximum time that it could

take to complete its execution. This is important for scheduling software in a real-

time system so that it meets its deadlines.

Root Function

The Root Function is the scope of analysis in RapiTime – the unit of code for which

a WCET is reported.

Root Exit

A Root Exit is a statement which is considered to be the end of the Root Function,

usually a return statement, or an annotated goto.

Annotation

An annotation is a source code comment or compiler directive which provides an

instruction to an analysis tool which provides more information about how the

source code should be analysed. For full details of the annotations available for

each tool, please see the relevant product manuals.

Template

Each rule follows the same standard template. The template is based on the one

used by MISRA.

The template begins with the rule title, which is in the form of an instruction to the

developer.

Immediately below the title is a row of boxes, one for each part of the MERASA

project. Each box indicates how the rule applies to that component. The possible

applications are:

Required – This rule must be obeyed for the correct functioning of the component

Recommended – This rule will improve the functioning of the component, but is

not required.

Caution – Caution should be taken with the situation described by the rule, but it

will not have a serious functional impact if it is ignored.

Not Recommended – Application of this rule will have a negative effect on the

component.

Blank – This rule does not apply to the component.

Below is a representation of how the template will appear:

 11

Rule x: The programmer should follow this instruction

oRange OTAWA RapiTime MERASA HW MERASA OS

Explanation

A more detailed explanation of how to follow the rule.

Rationale

The rationale describes the technical reasons why the rule should be followed, and

describes the consequences if it is not.

Exceptions

Any cases where the rule does not apply, or a work around can be used. For

example, many rules have associated annotations which can be added to the source

code to communicate additional information to the analysis tools.

Example

A concise code example should be provided for each rule, illustrating its application.

 13

Control Statement Expressions

Do not use assignment operators in expressions that yield a boolean

value

oRange OTAWA RapiTime MERASA HW MERASA OS

Recommended

Explanation

An assignment statement should not be used as part of a compound

expression which returns a boolean value.

Rationale

oRange cannot compute the correct loop bounds if this construction is used.

Exceptions

Example

Avoid Prefer

if ((x = y) != 0)

{

 foo();

}

x = y;

if (x != 0)

{

 foo();

}

Reserve expressions in for statements for loop control

oRange OTAWA RapiTime MERASA HW MERASA OS

Required

Explanation

The three expressions of a for statement should be simple expressions

concerning only the loop counter.

Rationale

oRange cannot compute the correct loop bounds if complex expressions are

used in for statements.

 14

Exceptions

oRange can sometimes produce a loop bound in the case of an && operator but

will usually produce the highest: 5 in the example below. Any other operator

is not supported.

Example

Avoid Prefer

flag = 1 ;

for (i = 0; (i < 5) && (flag == 1);

i++)

{

 ... ;

 if (...)

 {

 flag = 0;

 }

}

flag = 1 ;

for (i = 0; (i < 5); i++)

{

 ... ;

 if (...)

 {

 break;

 }

}

Do not modify the loop counter inside a conditional statement

oRange OTAWA RapiTime MERASA HW MERASA OS

Required

Explanation

Modification of the loop counter inside a condition statement should be

avoided.

Rationale

oRange cannot correctly calculate the loop bound if the loop counter is

modified inside a conditional statement.

Exceptions

This rule can be relaxed if the loop counter is only modified monotonically in

the same direction as the for statement increments it.

 15

Example

The left example should be absolutely avoided. It's better, if possible to avoid

the right example.

Avoid Prefer

for (i = 0 ; (i < 5) ; i++)

{

 ... ;

 if (...)

 {

 i-- ;

 }

}

for (i = 0 ; (i < 5) ; i++)

{

 ... ;

 if (...)

 {

 i++ ;

 }

}

Avoid input-dependent loop bounds

oRange OTAWA RapiTime MERASA HW MERASA OS

Recommended Recommended

Explanation

Do not use loops which iterate over a data structure with dynamic size.

Rationale

The worst-case will be the size of the input. In many cases, a loop depending

on an input can be replaced by a loop with a tighter bound. In some cases, for

example when going through a sorted array, it is possible to proceed by

binary search which gives a tighter upper-bound.

Exceptions

Example

In this example, the variable bound is replaced by a static bound. Also note

that the iteration order has been reversed to preserve the semantics of

finding the first match in the array, and the whole array is searched. This is

not a common way to write a search routine, but is the case that would be

reflected in the WCET.

The re-written search function assumes that any entries in the array beyond

the 'valid' entries do not match x.

 16

Avoid Prefer

int find(int x, int array_len, int*

array)

{

 int i;

 int found = -1;

 for (i = 0; i < array_len; i++)

 {

 if (array[i] == x)

 {

 found = i;

 break;

 }

 }

 return found;

}

#define MAX_ARRAY_LEN 255

int find(int x, int* array)

{

 int i;

 int found = -1;

 for (i = MAX_ARRAY_LEN - 1;

 i >= 0; i--)

 {

 if (array[i] == x)

 found = i;

 }

 return found;

}

 17

Control Flow

Do not use goto

oRange OTAWA RapiTime MERASA HW MERASA OS

Recommended Recommended

Explanation

goto statements should not be used.

Rationale

Statements which disrupt the flow of execution in arbitrary ways make the

structure of the program difficult to determine.

This rule is not mandatory for oRange but avoiding goto eases analysis.

RapiTime will successfully parse the source code if a goto is present, but

paths containing the goto will not be considered for the worst-case path. This

may result in incorrect WCET calculations.

Exceptions

Example

Do not use setjmp or longjmp

oRange OTAWA RapiTime MERASA HW MERASA OS

Recommended Required Recommended

Explanation

The setjmp and longjmp assembly instructions should not be used.

Rationale

Statements which disrupt the flow of execution in arbitrary ways make the

structure of the program difficult to determine.

setjmp and longjmp are not supported by OTAWA.

longjmp is allowed in RapiTime if it is a root exit and is annotated with

exit_function.

 18

Exceptions

Example

Do not use break, continue or return statements to exit a loop early

oRange OTAWA RapiTime MERASA HW MERASA OS

Recommended

Explanation

Loop structures should be as simple as possible, with no early exits.

Rationale

In some cases, the use of break, continue or return in the middle of a

control flow structure may prevent oRange calculating a loop bound.

Exceptions

Example

switch statements should be well-structured

oRange OTAWA RapiTime MERASA HW MERASA OS

Recommended Recommended

Explanation

Keep cases and breaks at the same nesting level.

Rationale

Placing break statements inside nested conditionals introduces mutually

exclusive paths in the code which cannot be readily analysed by the tools.

 19

Exceptions

Example

Avoid Prefer

switch (v)

{

 case 1 :

 case 2 :

 if (...)

 {

 ... ;

 break;

 }

 ...

 break ;

}

switch (v)

{

 case 1 :

 case 2 :

 if(...) {

 ... ;

 }

 else

 {

 ... ;

 }

 break ;

}

Do not use large switch statements

oRange OTAWA RapiTime MERASA HW MERASA OS

 Caution Not

Recommended

*

Explanation

Replace large switch statements with a series of if … then…else

statements.

Rationale

Large switches are not supported by OTAWA because they can be translated

by the compiler into branch tables.

Exceptions

Keeping a switch is possible but it will need manual annotations which is error

prone.

Note that some compilers provide options to configure the way the switch is

translated and to prevent the generation of indirect branch tables. OTAWA

provides for some architectures and some compilers (but not the Tricore)

switch analysis through pattern recognition.

*RapiTime analysis and the performance of the code are improved if large

switch statements are compiled to lookup tables rather than cascading if,

 20

then, else statements. The worst-case performance for cascading tests

requires that all the conditions are evaluated.

Example

Do not interleave case statements with other control structures (cf.

Duff's device)

oRange OTAWA RapiTime MERASA HW MERASA OS

Recommended Required

Explanation

The C language syntax allows some unusual constructions, including the

interleaving of a loop and switch statement. You should not use them.

Rationale

Interleaved control-flow statements are not supported by the tools, and will

prevent an analysis being made.

Exceptions

Example

Duff's device is an implementation of a serial copy (from

http://en.wikipedia.org/wiki/Duff's_device):

send(to, from, count)

register short *to, *from;

register count;

{

 register n=(count+7)/8;

 switch(count%8){

 case 0: do{ *to = *from++;

 case 7: *to = *from++;

 case 6: *to = *from++;

 case 5: *to = *from++;

 case 4: *to = *from++;

 case 3: *to = *from++;

 case 2: *to = *from++;

 case 1: *to = *from++;

 }while(--n>0);

 }

}

 21

Do not use infinite loops

oRange OTAWA RapiTime MERASA HW MERASA OS

Recommended Recommended Recommended

Explanation

You should not write code which contains loops with no termination condition.

Rationale

An infinite loop, by definition, has an infinite WCET.

Exceptions

It is possible to annotate an infinite loop with a maximum number of

iterations in OTAWA.

RapiTime will use the observed number of iterations in its calculations, but if

the main function never terminates in testing, RapiTime will not be able to

compute an estimate since it will not have seen a 'complete run' of the main

program. The tool includes an option to use an infinite loop inside the main

function as the analysis root, which treats each iteration of the loop as a

complete execution run of the program.

Example

A very simple example of an infinite loop is shown below. By rewriting the

body of the loop as a function, an estimate for the execution time of one loop

iteration can be determined by choosing the loop_body function as the

analysis root.

Avoid Prefer

void main() {

 while (1)

 {

 statements;

 }

}

void loop_body() {

 statements;

}

void main() {

 while (1)

 {

 loop_body();

 }

}

The WCET of the whole program cannot be computed since the program runs

forever. The user should provide an annotation on the while loop to indicate the

maximum possible number of iterations if it is necessary to determine the overall

execution time.

 22

Functions

Do not use variable numbers of arguments (varargs)

oRange OTAWA RapiTime MERASA HW MERASA OS

Required Recommended Recommended

Explanation

Variable arguments such as those of the libc printf() function should be

avoided.

Rationale

In general, varargs are equivalent to variable size input data.

oRange does not support the use of va_arg, va_start, va_end.

For OTAWA, the use of function with a variable number of arguments is not

advised since it requires annotations to bound the loop that retrieves the

arguments.

Similarly, RapiTime will produce a more accurate analysis if the execution

time is not dependent on the input data.

Exceptions

Example

Do not use recursion

oRange OTAWA RapiTime MERASA HW MERASA OS

Recommended Recommended Recommended

Explanation

Do not use recursion in your application – either direct (a() → a()) or indirect

(a() → b() → a())

Rationale

Generally speaking, recursion should be avoided because it carries with it the

danger of exceeding available stack space.

 23

For worst case analysis, recursive calls are difficult to model; recursion is

often used to process dynamically structured input data, and as a result

causes the same dependence of timing behaviour on input data.

Exceptions

oRange supports some simple forms of recursion (cases where the recursion

can be transformed in a for loop). It requires annotations to bound the loop.

RapiTime supports direct recursion, but it must be annotated with a bounded

recursion depth. Indirect recursion is not supported in the WCET analysis, the

recursive function group is automatically 'black-boxed', which will encapsulate

the entire scope of the recursion with a single end-to-end measurement.

Example

Use const pointers for unmodified pointer parameters

oRange OTAWA RapiTime MERASA HW MERASA OS

Recommended

Explanation

If a pointer is a parameter of a function and the pointer is not modified in the

function, it is better to use const.

Rationale

const pointers allow the analysis to assume that the target of the pointer will

not be modified. This improves the loop bound analysis.

Exceptions

Example

The following statement is acceptable if a is modified in the function, and b is

not.

foo(int *a, const int *b)

 24

Pointers

Only use pointer arithmetic for array indexing

oRange OTAWA RapiTime MERASA HW MERASA OS

Required

Explanation

Arithmetic on pointers should only be used for array indexing.

Rationale

When not used to index arrays, pointer arithmetic is usually used for memory

management. In this case, loops bounds are hard to determine since memory

operations potentially impact any word in the memory.

Exceptions

Example

Do not use multiple indirection

oRange OTAWA RapiTime MERASA HW MERASA OS

Required

Explanation

Pointers to pointers, or further levels of indirection, should not be used.

Rationale

As the level of pointer indirection increases, difficulty of analysis increases.

oRange only supports one level of indirection.

Exceptions

Example

 25

Do not use function pointers

oRange OTAWA RapiTime MERASA HW MERASA OS

Required Caution Caution

Explanation

Function pointers should not be used.

Rationale

Function pointers are not supported by oRange.

Exceptions

RapiTime can analyse function pointer calls so long as the pointer is marked

with call_to annotations. These annotations are generated automatically from

a trace of execution.

If you use function pointers, you must make sure that your tests exercise all

possible function pointer targets, otherwise the analysis will be incorrect. You

can manually add extra call_to annotations to indicate a possible code path

which is not covered by your tests.

OTAWA requires user annotations to indicate possible targets of an indirect

call.

Example

 27

Data structures

Do not use union data types

oRange OTAWA RapiTime MERASA HW MERASA OS

Required

Explanation

Do not use unions in your code.

Rationale

Unions are not supported by oRange.

Exceptions

Example

 29

System-level Requirements

Do not modify the stack pointer

oRange OTAWA RapiTime MERASA HW MERASA OS

 Required Required

Explanation

It is forbidden to have a function which modifies the stack pointer so that the

pointer is not the same after the function has been executed.

Rationale

The execution path cannot be determined if the normal call/return semantics

of C are not obeyed.

Exceptions

Example

Avoid use of blocking system calls

oRange OTAWA RapiTime MERASA HW MERASA OS

 Required Caution

Explanation

Avoid making calls to system functions which are called using a software

interrupt or other supervisor-mode operation.

Rationale

System calls are not supported as the target depends on the configuration of

the underlying OS.

Exceptions

OTAWA: The target of the system call may be provided by hand and

considered as a normal branch provided the system routine is in the binary

code.

 30

RapiTime: The system call is considered to be a 'black-box' function, and the

maximum end-to-end time is recorded. This may not be the worst-case time

for the system call, especially in the case on blocking code which is non-

deterministic.

If possible, the system software should also be instrumented if the behaviour

is likely to have large execution time variability.

Example

Avoid hardware control instructions

oRange OTAWA RapiTime MERASA HW MERASA OS

 Required

Explanation

Do not use instructions which affect the state of the hardware, such as

controlling the behaviour of cache, MMU, etc.

Rationale

Most of these instructions are not handled correctly by the WCET analysis in

OTAWA. Do not expect their effect to be correctly handled unless it is

explicitly stated in documentation. For example, if you use an instruction

which inhibits the cache, the fact that the cache is inhibited for the rest of the

program is not taken into account.

Exceptions

Example

Instrument context switches

oRange OTAWA RapiTime MERASA HW MERASA OS

 Recommended

 31

Explanation

When the operating system performs a context switch, this event should be

recorded in the RapiTime trace. The event should indicate the ID of the thread

that is now active.

Rationale

Context switches indicate that a new program is now executing. The switch

may occur in the middle of a test run, and the trace event is needed to enable

RapiTime to determine which run the execution time should be accounted to.

Exceptions

If your operating system does not support time slicing and the root is a 'one-

shot' function which runs to completion after a release, you do not need to

instrument context switches.

On the MERASA architecture, the Hard Real-Time threads (HRT) are

considered to be non-pre-emptable, however due to the Symmetric Multi-

Threaded nature of the hardware scheduler, several non-HRT threads may

also issue instructions when the HRT thread is blocked. It is important for the

purposes of tracing that it is possible to determine which thread is running

and separate out the traces accordingly. This is accomplished in the MERASA

architecture by recording the thread ID with each recorded ipoint.

Example

 33

WCET Overestimation

Do not use dynamic memory allocation

oRange OTAWA RapiTime MERASA HW MERASA OS

 Recommended Recommended

Explanation

Do not use malloc() and related memory allocation functions.

Rationale

The management of dynamic memory involves complex algorithms that make

harder the prediction of the used memory. It may even be impossible to

predict it if the program contains complex allocation patterns. This has mainly

a bad impact on the prediction of the data cache use (for example, all

accesses will be considered as misses).

Instead of using standard allocation primitives of C, a good solution is to

develop specialized allocators based on array whose memory area is well

known because it is reserved statically. This is usually known as a Slab

Allocator.

Exceptions

Example

Avoid Prefer

struct node_t {

 struct node_t *next;

 ...

} *p = NULL, *q;

for (...) {

 q = (struct node_t *)

 malloc(sizeof(struct node_t));

 q->next = p;

 p = q;

 ...

}

struct node_t {

 struct node_t *next;

 ...

} *p = NULL, *q, tab[MAX];

int next_block = 0;

for (...) {

 q = &tab[next_block];

 next_block++;

 q->next = p;

 p = q;

 ...

}

 34

Do not allocate dynamic arrays on the stack

oRange OTAWA RapiTime MERASA HW MERASA OS

 Recommended

Explanation

Some compilers allow declaring arrays with dynamic size in the local variables

of a function. Do not use this feature.

Rationale

This makes the address in the stack dependent on the flow of the data and

makes the prediction of the data cache usage harder.

In addition, this kind of allocation makes the prediction of the stack size

harder or impossible if the data flow determining the size is dependent on the

program input.

Exceptions

Example

Avoid Prefer

void f(..., int n, ...) {

int t[n];

...

}

int t[MAX_N];

void f(..., int n, ...) {

...

}

Do not use alloca()

oRange OTAWA RapiTime MERASA HW MERASA OS

 Recommended

Explanation

alloca() allocates memory on the current stack frame. It should not be

used.

Rationale

The use of this standard libc routine is not advised by the manual pages. In

WCET computation, it produces the same effect as described in the previous

rule.

 35

Exceptions

Example

Avoid conditional code in loops

oRange OTAWA RapiTime MERASA HW MERASA OS

 Caution Recommended

Explanation

The body of a loop should contain as few conditional paths as possible.

Rationale

Any overestimation of the loop's execution time will be multiplied by the

number of loop iterations.

When a condition is not simple enough to be evaluated by the WCET analyser,

the most costly part of the loop body will be considered by the WCET analysis

to execute on every iteration of the loop.

If this conditional part is executed only rarely, it will induce a large

overestimation. This is especially pronounced when the selection has an

empty 'else' part and the 'then' part is used only once in a loop as shown in

the following examples.

Exceptions

RapiTime allows the frequency of conditional blocks inside a loop to be

marked using the wfreq annotation. This only works for one level of loop

nesting however.

Examples

It is a common practice to perform some special initialisation in the first loop

iteration, which is not executed in subsequent iterations.

Avoid Prefer

for (i = 0; i < N; i++) {

 if (i == 0) {

 /* initialisation */

 }

 else {

 ...

 }

}

i = 0;

/* initialization */

for(i = 1; i < N: i++) {

 ...

}

 36

In the following example, the algorithm is looking for a unique t[i] in order to

perform processing on it. If the condition is too complex, the WCET analyser

will conclude that the work is done for each element of t in the left version of

the program and only once in the right one

The inserted boolean found does not break compatibility with oRange as it is

not used in the loop condition.

Avoid Prefer

for(i = 0; i < N; i++) {

 if(... t[i] ...) {

 /* work on t[i] */

 break;

 }

 ...

}

 int found = 0;

 for(i = 0; i < N; i++) {

 if(... t[i] ...) {

 found = 1;

(1) break;

 }

 ...

 }

 if(found) {

 /* work on t[i] */

 }

Note: the break statement at (1) conflicts with Rule 18. It is used here in

order to reduce another type of analysis problem, but caution should be

taken.

Avoid multiple execution paths

oRange OTAWA RapiTime MERASA HW MERASA OS

 Recommended Recommended

Explanation

Multiple paths through the code, such as conditional statements, should be

avoided.

Rationale

The main cause of overestimation is due to the lack of determinism in the

application. From a C source point of view, indeterminism is caused by the

number of execution paths. In the analysis, every joining of paths may cause

a loss of precision.

To reduce the number of paths, one has to avoid the use of:

conditional statements,

loops with a variable bound.

 37

Compilers' optimisations provide ways to enforce these restrictions.

Algorithms can often be designed to improve performance and exploit

parallelism in the processor by aggregating adjacent code blocks. As a side

effect, this reduces the number of paths.

The price is an increase in the size of the program due to code duplication. As

we are targeting embedded real-time applications, a trade-off between

determinism and code size should be found.

These optimisations should be performed manually on the source code

because using those of the compiler may not lead to analysable code. The

most common optimisations are:

‐ function inlining – a small function call is replaced by the function's code,

‐ loop fusion – adjacent loops with the same number of iterations are

merged,

‐ loop unrolling – the loop is unrolled to exhibit more parallelism in each

iteration,

‐ single-path code – use of guarded instructions to avoid branches.

‐ super-block – if a selection is followed by a simple block, this block may

be duplicated in each branch.

In summary, multiple execution paths make the WCET difficult to determine,

because the longest possible path must be considered, even if it is never

taken during execution of the application.

Exceptions

Example

Prefer structural conditionals over data dependency

oRange OTAWA RapiTime MERASA HW MERASA OS

 Recommended

Explanation

Code in which the control-flow is dictated by data often has mutually-

exclusive blocks which are not visible from the source code. In such cases, a

structural representation of the mutual exclusion is preferred. This has several

trade-offs, and in some cases requires duplication or refactoring of the source

code to preserve the correct behaviour.

 38

Rationale

Data dependency should be avoided, as previously described in 15.

Exceptions

You can use lwpath annotations to avoid RapiTime assuming each block

executes on every iteration of an enclosing loop.

Example

In this example common code has been cloned into both conditional blocks to

enforce the mutual exclusion of the blocks in the example on the left.

Avoid Prefer

if (a) {

 ...

}

/* common code */

/* b = !a */

if (b) {

 ...

}

if (a) {

 ...

 /* common code */

}

else {

 /* common code */

 ...

}

 39

Improving WCET analysis

In some cases, it is not possible to rewrite the code in order to avoid

overestimation caused by flow analysis. For some of them, one can provide manual

annotations in order to help OTAWA and RapiTime reduce the overestimation.

Annotate loop bounds

oRange OTAWA RapiTime MERASA HW MERASA OS

 Recommended Caution

Explanation

In order to obtain a more precise loop behaviour description, one should give

several annotations on inner nested loops:

‐ total: the maximum number of iterations over all the program

execution,

‐ minimum: minimum number of iterations,

‐ context: different maxima, total or minima according to the call chain

leading to the loop.

Rationale

Loops with complex or variable bounds (most often these are nested loops)

are a source of overestimation because, for each entry in the loop (i.e. each

time the outer loop is executed) the maximum number of iterations will

always be considered.

Exceptions

RapiTime uses observed loop bounds in its calculations. If the observed loop

bounds are not sufficient (because the tests do not exercise the full range of

possible loop conditions), annotations are required to improve the WCET

estimate.

Example

In this example, the inner loop iterates at most N times each time it is called

and as loop (1) iterates N times, the analyser may conclude that loop (2)

iterates N² in total. But, the programmer knows that the inner loop iterates N

(N + 1) / 2.

 40

Sample Annotations

(1) for(i = 0; i < N; i++)

(2) for(j = 0; j < i; j++) {

 /* body */

 }

 }

Loop (1)

 maximum = N

 total = N

Loop (2)

 minimum = 0

 maximum = N

 total = N * (N + 1) / 2

Below, one can see that the overall maximum iteration count is 105 while, in

case (1), the local maximum is 5 and in case (2), it is 100. Both local maxima

are very different and the overall maximum would induce a big

overestimation. Considering only the total is also not enough as the

computation may be free to assign 100 iterations to the first call to maximize

other features cost like cache misses. In fact, it is more precise to consider

maxima and total for each call context.

Sample Annotations

 void f(..., int n, ...) {

 int i;

 for(i = 0; i < n; i++) {

 ...

 }

 }

 int main() {

 ...

(1) f(..., 5, ...);

 ...

(2) f(..., 100, ...);

 ...

 }

Loop in f

 maximum = 100

 total = 105

Call (1) / loop

 maximum = 5

 total = 5

Call (2) / loop

 maximum = 100

 total = 100

Annotate infeasible paths

oRange OTAWA RapiTime MERASA HW MERASA OS

 Recommended Recommended

Explanation

An important source of overestimation is the inclusion in the WCET analysis of

infeasible paths, that is, paths that are not in the set of possible execution

paths due to the program semantics. Although WCET analysers can find

automatically some of these paths, it remains some constructions that remain

too hard to handle but the developer may help to avoid such a kind of

overestimation.

 41

Rationale

Exceptions

Example

In this very simple example, you can also provide an annotation on (1). Yet, it

may be hard or error prone to find by hand all infeasible paths. A better

approach is to consider only cases of a selection where the “then” and “else”

parts have very different costs for the WCET computation and to put an

annotation on the most costly branch.

Sample Annotations

 for(i = 0; i < 100; i++){

 if(i % 2 == 0) {

(1) /* light block */

 }

 else {

(2) /* heavy block */

 }

 }

Annotation on (2)

 execute at most 50 times

 43

Parallel Programming

Avoid sharing memory between threads

oRange OTAWA RapiTime MERASA HW MERASA OS

 Recommended

Explanation

Consider copying result from one thread to memory of another as

producer/consumer pattern.

Rationale

Exceptions

Example

 45

References

[MISRA04] MISRA-C:2004 - Guidelines for the use of the C language in critical

systems

[RPT09] RapiTime WCET coding guidelines, Rapita Systems Ltd., 2009.

[UPS09] Coding guidelines for static analysis, Technical Report, UPS, 2009.

