
oRange: A Tool For Static Loop Bound Analysis

Armelle Bonenfant, Marianne de Michiel and Pascal Sainrat

September 1, 2008

Abstract

Computing Worst Case Execution Time (WCET) is crucial in the area
of Real-Time Embedded Systems. In order to ease this computation, we
developped a tool, named oRange, able to provide loops upper bounds of C
programs. These bounds are obtained by static analysis while combining
flow analysis and abstract interpretation. oRange covers binary operators
(+,−, ∗,) as loop increment, nested loops, non-recursive function calls and
simple loop conditions (==, ! =, <, <=, >, >=, &&). We also provide a
comparison to the recent work of Ermedahl et al., based on the Mälardalen
benchmark suite.

1 Introduction

The WCET analysis is necessary when verifying real-time properties. Today,
no automatic method for loop bounds analysis can give an exact answer for all
loops. Some WCET case studies show that it is important to develop analysis
to calculate such information as automatically as possible to reduce the need
for manual annotations [13]. Feasible paths through the program have to be
studied in order to extract some flow information which is used to statically
bind the number of times loops are iterated.

This document is a summary of [17], which is an approach to calculate upper
bounds of loops using flow analysis and abstract interpretation. It is organized
as follows: section 2 presents related works. Section 3 presents our method.
Section 4 compares our results to the ones presented in [10]. Section 5 gives our
conclusions.

2 Related Work

Several researches have been done about loop bounds. They have different
criteria:

• the source language to which the method is applied (C, RTL, Fortran,. . .),

• the management of unstructured statements (exit, goto,. . .),

1

• the type of loop conditions (<, <=, >,>=, =, ! =, &&, ||),

• the type of increment used (+k,−k,×k, /k, multiple increments),

• the management of context or not (without, context function calls are not
considered, and only constant bounds are considered),

• the management of nested loops.

To get a wider description of related work, please refer to [17].
In the recent work of Ermedahl et al. [10], a component of the SWEET

WCET analysis tool is used for loop bound computation. This component is
based on abstract execution (AE), a form of symbolic execution [14, 17], which
itself is based on abstract interpretation. Their analysis uses intervals, where
an interval represents all possible values of variables (loop, increment, input,
...). For instance, i = [1..20] represents all concrete states where 1 <= i <= 20
(the variable may be an input). The user can give a variation interval if it
cannot be automatically computed. They combine their interval analysis with
an interpretation of the loop counter increment called congruence analysis in
order to take into account more counter increment possibilities.

The abstract interpretation [7] is used to consider each variable assigned in
a loop. Ammarguellat et al. [5] extend it to consider any assigned variable in
spite of function call.

Our method combines loop bound expression building as in Healy [15, 14] to
abstract interpretation as in [10] by extending the Ammarguellat approach [5].
It integrates function calls (except recursive ones). It deals with C programs
which are correct by hypothesis, and without interruptions.

Most of these restrictions are relaxed using Calipso [6], a code simplifier. Our
analysis considers loop constant increments (+,−,×, /) which are not modified
by the loop but possibly by the program, considers also nested loops, and the
following loop condition type: ==, ! =, <,<=, >,>=. In some case our method
deals with the && loop condition.

3 oRange

oRange perfoms a static analysis on C programs and provides two expressions
for each loop (nested or un-nested) in this program. These expressions total
and max are defined as follow: total represents the total number of times the
body of a loop will be executed, max represents the maximum number of times
the body of a loop will be executed among the times this loop is executed. For
instance, in the following program:

int bouc le (int n) {
. . .
for (i =0; i<n ; i++) . . . // loop named Bi

. . .
}

2

void main . . . {
bouc le (5) ;
bouc le (10) ;

}

totalBi = 15 and maxBi = 10.

3.1 Method

oRange is a tool based on Ammarguellat method of Recognizing Recurrence
Relations. It uses abstract interpretation in order to describe recurrence rela-
tions between variables and a symbolic form (expression) of its value. Our own
method is developped in three steps.

3.1.1 Identification/Normalisation of loops

First, we use Ammarguellat method to identify increments and increment vari-
ables of each loop, then we use these informations to build a normal form for
all loops. This step is context insensitive. See [16] for full description of loop
normalisation.

3.1.2 Total and Max expressions construction

Second, we build abstract stores describing total and max expressions for each
loop. These abstract stores are built context dependently. The construction
is done in depth in order to obtain total and max expressions for all loops,
including nested ones. We modify the method of recognizing recurrence relations
by introducing fixed-point operations.

For each loop from top to bottom, we build its total and max expressions by
replacing their abstract store obtained by recognizing recurrence relations from
bottom to top.

Note that when a total expression can not be built, if we have the corre-
sponding max expression and the just upper loop total expression, oRange will
perfom an approximation (overestimation) for the total expression being built.

3.1.3 Total and Max expression computation

The third step performs a computation of the formulae obtained at the previous
step and a propagation of the context from top to bottom.

Because of the nature of some expressions (sum of floor values), there are
some overestimations.

3

4 Results

We have used Calipso [6] to transform the initial C program in order to remove
unstructured statements like goto, break or continue 1 and we have implemented
our approach in OCAML using the C parser FrontC [3]. In this part, we give loop
bounds and computation times obtained with our method and compare them
to the results of [10] on the Mälardalen WCET Benchmark suite [4]. While
Ermedahl times were obtained with a 3 GHz PC running Linux, our times have
been measured on a a 2-GHz Core 2 Duo Processor running Linux.

Total P BLT Ratio Exact T (sec)

Our analysis 33 138 84%
total: 121
max: 114 45.26

Ermedahl 28 104 63% 84 499.25
Total 35 164

P is the number of programs being analysed. BLT is the total of bounded
loops. Exact is the number of expression oRange obtains without any approxi-
mation/overestimation.

oRange finds 50% of additional loops bounded in: duff, fft1, lcdnum, ns,
qurt. Ermedahl et al. obtain better results on fac, fir, ndes, ud because
either oRange does not provide results (recursivity) or oRange over-estimates
(multiple increment, break, if statements. . .). On the other hand, oRange
analyses 5 additional programs: compress, lms, minver, sqrt, st Full results
of this comparison can be found in [17].

5 Conclusions

We have presented a static loop bound analysis based on flow analysis and
abstract interpretation. It proceeds by building a context tree of the program,
by evaluating symbolic expressions of the loop bounds and then by resolving
these expressions according the running context of the loop. Our first results
improve previous works we are aware of [10, 8].

We are currently trying to generalize the if instruction evaluation. Today,
we consider loops with only a single condition containing vi expression and
<, <=, >,>=,==,! = operators. This could be extended to take into account
or conditional expressions in loop conditions.

We also consider only one induction variable, monotonically increasing or
decreasing variables. We will study an extension of the first step to increase the
number of loops considered but it may increase the last step difficulties.

It may also be useful to construct expressions which could be evaluated
directly by a mathematical solver. Another further work would be to examine
multiple increments by changing the abstract store representation to take into
account multiple possible values for the increment variable.

1Calipso, based on the OCAML parser FrontC, removes from C programs unstructured
instructions like goto, break, continue or irregular switch with a minimized overhead on the
execution time.

4

References

[1] ait tool, http://www.absint.com. 2007.

[2] Bound-t tool homepage, http://www.tidorum.fi/bound-t/, 2005.

[3] Frontc homepage, http://www.irit.fr/FrontC, 2007.

[4] Wcet project homepage, http://www.mrtc.mdh.se/projects/wcet/, 2007.

[5] Z. Ammarguellat and I. W. L. Harrison. Automatic recognition of induction
variables and recurrence relations by abstract interpretation. SIGPLAN
Not., 25(6):283–295, 1990.

[6] H. Cassé, L. Féraud, C. Rochange, and P. Sainrat. Une approche pour
réduire la complexité du flot de contrôle dans les programmes C. Technique
et Science Informatiques, 21(7):1009–1032, 2002.

[7] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In Fourth Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 238–252, Los Angeles, California,
1977.

[8] C. Cullmann and F. Martin. Data-flow based detection of loop bounds.
In 7th International Workshop on Worst-Case Execution Time Analysis,
(WCET’2007), Pisa, Italy, July 2007.

[9] Andreas Ermedahl, A Modular Tool Architecture for Worst-Case Execution
Time Analysis, PhD Thesis of Uppsala University, June 2003.

[10] A. Ermedahl, C. Sandberg, J. Gustafsson, S. Bygde, and B. Lisper. Loop
bound analysis based on a combination of program slicing, abstract inter-
pretation, and invariant analysis. In 7th International Workshop on Worst-
Case Execution Time Analysis, (WCET’2007), Pisa, Italy, July 2007.

[11] C. Ferdinand, R. Heckmann, H. Theiling, and R. Wilhelm. Convenient
user annotations for a wcet tool. In International Workshop on Worst-Case
Execution Time Analysis, (WCET’2003), pages 17–20, 2003.

[12] J. Gustafsson, B. Lisper, C. Sandberg, and L. Sjöberg. A prototype tool
for flow analysis of c programs. In International Workshop on Worst-Case
Execution Time Analysis, (WCET’2002), Vienna, June 2002.

[13] J. Gustafsson and A. Ermedahl. Experiences from applying wcet analy-
sis in industrial settings. In ISORC ’07: Proceedings of the 10th IEEE
International Symposium on Object and Component-Oriented Real-Time
Distributed Computing, pages 382–392, 2007.

5

[17] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper, Automatic deriva-
tion of loop bounds and infeasible paths for WCET analysis using abstract
execution. In Proc. 27th IEEE Real-Time Systems Symposium (RTSS’06),
Dec. 2006.

[14] C. Healy, M. Sjödin, V. Rustagi, D. Whalley, and R. V. Engelen. Supporting
timing analysis by automatic bounding of loop iterations. Real-Time Syst.,
18(2-3):129–156, 2000.

[15] M. Kirner. Automatic loop bound analysis of programs written in C. Mas-
ter’s thesis, Technische Universität Wien, Institut für Technische Infor-
matik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria, 2006.

[16] M. de Michiel, A. Bonenfant, P. Sainrat and H. Cassé. Loop normalisa-
tion to evaluate maximum number of iteration of loop in WCET context,
IRIT/RR–2008-3–EN, http://www.irit.fr, 2008.

[17] Marianne de Michiel, Armelle Bonenfant, Hugues Cassé, Pascal Sainrat.
Static loop bound analysis of C programs based on flow analysis and ab-
stract interpretation. In: IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA 2008), pages
161-166, Kaohsiung, Taiwan, 2008.

6

