
 

 

 

 

 

 

Dissecting Execution Traces 

to Understand 

Long Timing Effects 

 

 

Christine Rochange and Pascal Sainrat 

 

 

February 2005 

 

Rapport IRIT-2005-6-R 

 





 

-3- 

 

 

Contents 

 

 

1. Introduction ...................................................................................... 5 

2. Long timing effects ............................................................................ 5 

3. Methodology ...................................................................................... 6 

3.1 Example code to be dissected ........................................................................6 
3.2 Simulation framework..................................................................................10 
3.3 Processor model ..........................................................................................10 
3.4 Determining the real WCET and estimating it by the IPET method...............11 

3.4.1 Determining the real WCET................................................................ 11 
3.4.2 Estimating the WCET by the IPET method ............................................ 12 

3.5 Flow analysis ...............................................................................................12 

4. General results ................................................................................ 12 

4.1 Real and estimated WCETs...........................................................................12 
4.1.1 Real WCET ...................................................................................... 12 
4.1.2 Estimated WCET............................................................................... 13 
4.1.3 Comparing the real and the estimated WCETs ...................................... 14 

4.2 Long timing effects ......................................................................................15 

5. Analysing execution traces .............................................................. 16 

5.1 First example ...............................................................................................16 
5.2 Second example...........................................................................................19 

6. Concluding remarks ......................................................................... 21 





 

-5- 

1. Introduction 

Designing real-time systems requires being able to evaluate the worst-case execution time 

(WCET) of applications. This time is used to schedule the different tasks with the aim to 

guarantee that the deadlines will be met.  

 

Determining the WCET by measurement would require exploring every possible execution path. 

This involves two kinds of difficulties. First, input data sets that insure a total coverage of all the 

possible paths must be available. Building these data sets is complex in the general case. Second, 

the number of paths to be explored often makes the measurement time prohibitive. For these 

reasons, methods to evaluate the WCET, which are based on static analysis of the code and limit 

measurements to small parts of code (basic blocks) are generally preferred. 

 

The Implicit Path Enumeration Technique (IPET) [LiMa95] expresses the search of the WCET as 

an optimization problem. The objective function represents the execution time of the program, 

which is the sum of the individual execution times of the basic blocks weighted by their number of 

executions. This function is to be maximized under a set of constraints that link the numbers of 

executions of the basic blocks (as we will see later, the numbers of transitions from one block to 

another one are also taken account, and are weighted by the gain due to the overlapping of the 

two blocks in the pipeline). Most of these constraints are built from the Control Flow Graph (CFG) 

of the program, but some other ones are produced by a preliminary flow analysis and specify loop 

bounds and infeasible paths. An example of the problem specification using the IPET method will 

be given in section 4.1.2.  

Unfortunately, it has been shown that static WCET analysis can under-estimate the execution 

time when a high-performance processor is considered. This is due to timing effects between 

distant blocks (long timing effects, or LTEs). This phenomenon will be described in section 2. 

 

In this report, our goal is to examine the execution of some sequences of blocks in a pipeline to 

gain a better understanding of LTEs. 

2. Long timing effects 

When considering a pipelined processor, one generally thinks to the natural speedup achieved 

when two basic blocks executed in sequence overlap in the pipeline. Now, Engblom showed 

[Engb02] that some interactions between distant blocks can also exist. He proposed a general 

temporal model that relates the execution times of blocks and those of sequences of blocks. This 

model is expressed by the equations and diagram given in Figure 1. 



 

-6- 

k

2n n n nB ...B ,n B ...B B ...B B ...B B ...Bt t t t
− −>δ = − − +

 
t A

 

= ≤ < ≤
= + δ∑ ∑1

1 1
n j i

n

B ...B B B ...B
j i k n

t t  

1 1 2 1 1 2 1n
 

 

AB 

ABC 

ABCD 

ABCDE 

BCDE 

BCD CDE 

BC CD DE 

t B t C t D t E 

tA-B 

tA-B-C 

tA-B-C-D 

 

 

Figure 1. Engblom’s timing model. 

 

A  component of the execution time of the sequence of blocks B1 … Bn relates to the impact on 

the execution of the sequence Bi+1 … Bk of the preceding execution of the block Bi  and is called a 

long timing effect (LTE). Engblom has shown that such an effect can only occur if Bi stalls the 

execution of a later instruction belonging to the sequence Bi+1 … Bk or if Bi is finally parallel to 

Bi+1 … Bk, that is if Bi terminates after the sequence. Since we assume in our processor model 

that instructions complete in the program order (which is true in most of current processors), we 

will not consider the second possibility and we will only retain instruction stalling as a source of 

long timing effects.  

Engblom has analysed many examples and has found that long timing effects can be unbounded, 

i.e. that they can occur for block sequences of any length (potentially full execution paths). This 

means that identifying all the possible long timing effects would require examining all the possible 

complete execution paths, which obviously goes against the basic principle of static WCET 

analysis.  

Unfortunately, Engblom has found that long timing effects can either be positive, negative or null.  

Ignoring the negative effects can make the estimated WCET longer than the real WCET. WCET 

over-estimation is generally undesirable, first because it can lead to budget components far too 

much powerful compared to the real requirements (and then these components will be under-

used) and second because it can lead to the wrong conclusion that the system cannot be 

scheduled to meet the deadlines. However, positive long timing effects are far more dangerous 

because ignoring them during the WCET analysis can engender WCET under-estimation which is 

not acceptable in a hard real-time context.  

In the rest of this report, we will illustrate long timing effects with concrete examples. 

3. Methodology 

3.1 Example code to be dissected 

To illustrate long timing effects, we will consider the very simple example code that implements 

the bubble-sort algorithm, shown in Figure 2. We have compiled this code with gcc targeted for 



-7- 

the PowerPC instruction set architecture. All optimisations were disabled, as it is usually the case 

for real-time systems. The assembly code extracted by objdump from the executable code is 

given in Figure 3, and the corresponding Control Flow Graph is shown in Figure 4. 

The source code includes two nested loops with the same worst-case number of iterations: N-1, 

where N is the size of the array to be sorted. The external loop is controlled by two conditions 

and is implemented, at compile time, by two successive conditional branches. The internal loop 

body includes a conditional statement (if … then …), and thus two possible paths (the condition 

depends on the input data). 

 

int array[20];  
#define N 2 
int main() 
{ 
 int i, tmp, nb; 
 char done; 
 
 done = 0; 
 nb = 0; 
 while ( !done && (nb < N-1)) 

 { 
  done = 1; 
  for (i=0 ; i<N-1 ; i++) 
   if (array[i] < array[i+1]) 
   { 
    done = 0; 
    tmp = array[i]; 
    array[i] = array[i+1]; 
    array[i+1] = tmp; 
   } 
  nb++; 
 } 
} 

Figure 2. Example source code 

 

int main() 
{ 
10000180: stwu r1,-48(r1) 
10000184: stw r31,44(r1) 
10000188: mr r31,r1 
  done = 0; 
1000018c: li r0,0 
10000190: 
  nb = 0; 

stb r0,36(r31) 

10000194: li r0,0 
10000198: stw r0,32(
  while ( !done && (nb < N-1)) 

r31) 

1000019c: lbz r9,36(r31) 
100001a0: clrlwi r0,r9,24 
100001a4: cmpwi r0,0 
100001a8: bne 100001bc <main+0x3c> 
100001ac: lwz r0,32(r31) 
100001b0: cmpwi r0,0 
100001b4: ble 100001c0 <main+0x40> 
100001b8: b 100001bc <main+0x3c> 
100001
    { 

bc: b 100002b4 <main+0x134> 

      done = 1; 
100001c0: li r0,1 
100001c4: stb r0,36(r31) 
      for (i=0 ; i<N-1 ; i++) 
100001c8: li r0,0 
100001cc: stw r0,8(r31) 
100001d0: lwz r0,8(r31) 



 

-8- 

100001d4: cmpwi r0,0 
100001d8: ble 100001e0 <main+0x60> 
100001dc: b 100002a4 <main+0x124> 
 if (array[i] < array[i+1]) 
100001e0: lis r9,4101 
100001e4: lwz r0,8(r31) 
100001e8: mr r11,r0 
100001ec: rlwinm r0,r11,2,0,29 
100001f0: addi r9,r9,-22688 
100001f4: lis r11,4101 
100001f8: lwz r8,8(r31) 
100001fc: addi r10,r8,1 
10000200: mr r8,r10 
10000204: rlwinm r10,r8,2,0,29 
10000208: addi r11,r11,-22688 
1000020c: lwzx r0,r9,r0 
10000210: lwzx r9,r11,r10 
10000214: cmpw r0,r9 
10000218: bge 10000294 <main+0x114> 
   { 
     done = 0; 
1000021c: li r0,0 
10000220: stb r0,36(r31) 
     tmp = array[i]; 
10000224: lis r9,4101 
10000228: lwz r0,8(r31) 
1000022c: mr r11,r0 
10000230: rlwinm r0,r11,2,0,29 
10000234: addi r9,r9,-22688 
10000238: lwzx r0,r9,r0 
1000023c: stw r0,20(r
     array[i] = array[i+1]; 

31) 

10000240: lis r9,4101 
10000244: lwz r0,8(r31) 
10000248: mr r11,r0 
1000024c: rlwinm r0,r11,2,0,29 
10000250: addi r9,r9,-22688 
10000254: lis r11,4101 
10000258: lwz r8,8(r31) 
1000025c: addi r10,r8,1 
10000260: mr r8,r10 
10000264: rlwinm r10,r8,2,0,29 
10000268: addi r11,r11,-22688 
1000026c: lwzx r10,r11,r10 
10000270: stwx r10,r9,r0 
     array[i+1] = tmp; 
10000274: lis r9,4101 
10000278: lwz r11,8(r31) 
1000027c: addi r0,r11,1 
10000280: mr r11,r0 
10000284: rlwinm r0,r11,2,0,29 
10000288: addi r9,r9,-22688 
1000028c: lwz r11,20(r31) 
10000290: stwx r11,r9,r0 
10000294: lwz r9,8(r31) 
10000298: addi r0,r9,1 
1000029c: stw r0,8(r31) 
1 2a0:
   } 
0000  b 100001d0 <main+0x50> 

      nb++; 
100002a4: lwz r9,32(r31) 
100002a8: addi r0,r9,1 
100002
    } 

ac: stw r0,32(r31) 

100002b0: b 1000019c <main+0x1c> 
} 
100002b4: lwz r11,0(r1) 
100002b8: lwz r31,-4(r11) 
100002bc: mr r1,r11 
100002c0: blr 

Figure 3. Example assembly code. 



-9- 

 

Figure 4. Example Control Flow Graph 

 

B0 stwu r1,-48(r1) 
stw r31,44(r1) 
mr r31,r1 
li r0,0 
stb r0,36(r31) 
li r0,0 
stw r0,32(r31) 

B1 lbz r9,36(r31) 
clrlwi r0,r9,24 
cmpwi r0,0 
bne B4 

B2 lwz r0,32(r31) 
cmpwi r0,0 
ble B5 

B3 B5 b B4 li r0,1 
stb r0,36(r31) 
li r0,0 

lwz r11,0(r1) 
lwz r31,-4(r11) 
mr r1,r11 
blr 

stw r0,8(r31) B4 b B12 

B6 lwz r0,8(r31) B12 
cmpwi r0,0 
ble B8 

B8 B7 ble B11 lis r9,4101 
lwz r0,8(r31) 
mr r11,r0 
rlwinm r0,r11,2,0,29 
addi r9,r9,-22688 
lis r11,4101 
lwz r8,8(r31) 
addi r10,r8,1 
mr r8,r10 
rlwinm r10,r8,2,0,29 
addi r11,r11,-22688 
lwzx r0,r9,r0 
lwzx r9,r11,r10 
cmpw r0,r9 
bge B10 

li r0,0 
stb r0,36(r31) 
lis r9,4101 
lwz r0,8(r31) 
mr r11,r0 
rlwinm r0,r11,2,0,29 
addi r9,r9,-22688 
lwzx r0,r9,r0 
stw r0,20(r31) 
lis r9,4101 
lwz r0,8(r31) 
 mr r11,r0 
rlwinm r0,r11,2,0,29 
addi r9,r9,-22688 
lis r11,4101 
lwz r8,8(r31) 
addi r10,r8,1 
mr r8,r10 
rlwinm r10,r8,2,0,29 
addi r11,r11,-
22688 
lwzx r10,r11,r10 
stwx r10,r9,r0 
lis r9,4101 
lwz r11,8(r31) 
addi r0,r11,1 
mr r11,r0 
rlwinm r0,r11,2,0,29 
addi r9,r9,-22688 
lwz r11,20(r31) 
stwx r11,r9,r0 

lwz r9,8(r31) 
addi r0,r9,1 
stw r0,8(r31) 
b B6 

B9 
lwz r9,32(r31) 
addi r0,r9,1 
stw r0,32(r31) 
b B1  

B10 

B11 



 

-10- 

3.2 Simulation framework 

The measurements presented in this paper were done using a simulation framework that we 

developed and that consists of three modules: 

 an instruction-set simulator able to fetch an executable code into the simulated memory, 

and to decode and execute instructions 

(www.irit.fr/recherches/ARCHI/MARCH/ → tools → GLISS) 

 a timing simulator that models the processor architecture and was developed on top of 

SystemC (www.systemc.org). The simulated architecture will be described in section 3.3. 

 a simulation controller that controls the execution path and enables three simulation 

modes: 

- full-path simulation: the program is executed from the beginning to the end, with a 

given input data set. 

- graph simulation: the controller extracts the Control Flow Graph from the program 

binary code and builds the list of all the possible sequences of blocks shorter than a fixed 

limit. Then, it guides the simulation along all these sequences to measure their individual 

execution times, reinitializing the processor between two sequences. These times can 

then be analysed to compute inter-block timing effects. 

- symbolic simulation: this mode implements a technique proposed by Lundqvist and 

Stenström [LuSta99] that consists in assuming that the input data is unknown and in 

propagating this “unknown” value through the computations. Whenever a conditional 

branch with an “unknown” condition is encountered, the simulation controller first 

enforces the exploration of one of the possible paths and later guides the execution onto 

the second possible path. This mode allows simulating all the possible paths in a 

program without having to determine input data sets that guarantee a total coverage of 

these paths. 

3.3 Processor model 

We have carried out a series of experiments to highlight the existence of long timing effects and 

to collect execution traces that can help in understanding their origin. These experiments involved 

the use of a cycle-level processor simulator that we developed on top of the SystemC 

environment. 

The simulated architecture is a 2-way superscalar processor, with dynamic instruction scheduling. 

The 6-stage pipeline is shown in Figure 5. Memory accesses are processed in order, and both the 

instruction cache and the data cache are considered perfect (i.e. the memory latency is constant). 

Branch prediction is also perfect, i.e. every branch is well predicted. Size information on the 

simulated processor is given in Table 1. 

 

http://www.irit.fr/recherches/ARCHI/MARCH/


-11- 

 

Figure 5. Pipeline of the simulated processor. 

 

pipeline width 2-way 
fetch queue size 16 
instruction cache perfect (100% hit rate) 
branch predictor perfect (no mispredictions) 
max. number of pending branches 3 
re-order buffer size 16 
number of functional units (latency) 
 integer add (1 cycle) 
 integer mul/div (6 cycles) 
 floating-point add (3 cycles) 
 floating point mul/div (6/15 cycles) 
 load/store (2 cycles) 

 
2 
1 
1 
1 
1 

data cache  perfect (100% hit rate) 

Table 1. Simulated processor 

3.4 Determining the real WCET and estimating it by the IPET 
method 

3.4.1 Determining the real WCET 

Determining the real worst-case execution times requires simulating every possible execution 

path. While it is generally too costly in time for applications that come from the real world, we 

can afford it for the very simple code that we intend to dissect. 

For our example code, it seems obvious that the longest path is followed whenever the input 

array is sorted in the reverse order. Then, it would be easy to initialize the array that way and 

then to simulate the program once with this input data. However, due to possible timing 

anomalies [LuSt99b], it is difficult to guarantee that the path that seems to be the longest one at 

first sight is actually the worst-case path. For this reason, we decided to measure all the possible 

paths.  

We got round the problem of determining the corresponding input data sets by using the 

symbolic execution mode of our simulator. This mode consists in initialising every input data with 

the « unknown » value, in propagating « unknown » values through the computations and, each 

time a branch with an « unknown » condition is encountered, in exploring both possible paths. At 

the end, when all the possible paths have been measured, the WCET is the longest execution 

time. 

fetch decode issue execute writeback complete 

reorder buffer 



 

-12- 

3.4.2 Estimating the WCET by the IPET method 

We also have evaluated the WCET of the program using the IPET method [LiMa95]. This method 

consists in expressing the overall execution time of the program by the sum of the execution 

times of the basic blocks weighted by their respective numbers of instances on a given execution 

path.  Edges that link basic blocks in the Control Flow Graph can also be taken into account, with 

negative execution times, to reflect the gain due to the overlapping of successive basic blocks in 

the pipeline. The overall execution time is then maximised under some constraints that express 

the possible control flow,(we used the lp_solve tool that implements integer linear programming 

algorithms). Structural constraints link the numbers of instances of blocks and edges in 

accordance with the CFG structure: they were built automatically by a simple Perl script. Other 

constraints express the results of the flow analysis (loop bounds, etc.) and were added by hand.  

The execution times of the basic blocks as well as the gains related to sequences of two blocks 

were obtained using the simulator described in sections 3.2 and 3.3. 

3.5 Flow analysis 

Note that symbolic execution might generate unfeasible paths. For example, our knowledge of 

the high-level semantics of the program under study in this report makes us conclude that not 

every pair of array elements can be unsorted at a given iteration of the external loop. The last 

pair of elements, for instance, is sorted after the first iteration. Thus, in every subsequent 

iteration of the external loop, and in the last iteration of the internal loop (the one that processes 

the last pair of array elements), only one of the two paths should be explored (since the condition 

is always false). Symbolic execution does not have this kind of considerations and explores the 

two paths. This will not distort our results since we did not include any constraint expressing the 

infeasibility of one of them when evaluating the WCET by the IPET method either. 

4. General results 

4.1  Real and estimated WCETs 

4.1.1 Real WCET 

Figure 6 shows the results generated by our simulator used in the “symbolic execution” mode. 

Since we fixed the size of the array to 2, there are only two possible paths depending on whether 

the array is already sorted at initialization or not. As expected, the longest execution path is 

observed for an initially unsorted array. Its execution time, which is the actual WCET, is 

70 cycles. 

 



-13- 

Path #1: 
  blocks: 0 - 1 - 2 - 5 - 6 - 8 - 9 - 10 - 6 - 7 - 11 - 1 - 2 - 3 - 4 - 12  
  execution time = 70 
Path #2: 
  blocks: 0 - 1 - 2 - 5 - 6 - 8 - 10 - 6 - 7 - 11 - 1 - 4 - 12 - 
  execution time = 47 
 
Worst-Case Path: 0 - 1 - 2 - 5 - 6 - 8 - 9 - 10 - 6 - 7 - 11 - 1 - 2 - 3 - 4 - 12 
(WCET=70) 

Figure 6. Results of simulation with symbolic execution 

4.1.2 Estimated WCET 

In order to evaluate the WCET by the IPET method, we first measured (by simulation) the 

individual execution times of basic blocks. Results are given in Table 1. 

 

block 0 1 2 3 4 5 6 7 8 9 10 11 12 
time 10 10 9 6 6 8 9 6 18 27 9 9 10 

Table 2. Measured individual execution times of basic blocks (in cycles) 
 

We also measured all the possible sequences of two basic blocks extracted from the Control Flow 

Graph. From the execution time ti-j of the sequence composed of blocks i and j, and from the 

individual execution times ti and tj of the two blocks, one can compute the gain due to the 

overlapping of the two blocks in the pipeline:  

gi-j = ti-j – ti – tj

The measured execution times of all the possible two-block sequences as well as the 

corresponding gains are given in Table 3. 

 

seq. 0-1 1-2 1-4 2-3 2-5 3-4 5-6 6-7 6-8 7-11 8-10 9-10 10-6 11-1 8-9 4-12 

time 14 11 10 9 11 7 11 9 19 10 20 30 12 13 35 11 

gain -6 -8 -6 -6 -6 -5 -6 -6 -8 -5 -7 -6 -6 -6 -10 -5 

Table 3. Execution times of two-block sequences 
and corresponding gains due to pipelined execution 

 

The lp_solve input file corresponding to our example is given in Figure 7: xi stands for the 

number of instances of block i in an execution path, and xitoj stands for the number of 

transitions from block i to block j in the path. The first line specifies the objective which is to 

maximize the overall execution time. The weights associated to the numbers of instances in the 

expression of the overall execution times are the individual execution times of basic blocks 

(e.g. block 0 lasts 10 cycles) and the gains due to pipelined execution (e.g. the sequence of 

blocks 1 and 2 is executed in 11 cycles, and then the corresponding gain is 11–10–9 = -8 cycles). 

The first set of constraints describes the CFG structure. The second set adds flow information: the 

first constraint of this set specifies the maximum number of executions of the condition testing of 

the external loop; the second bounds the number of iterations of the internal loop, in relation with 

the number of iterations of the external loop (via x5to6). 



 

-14- 

 
max: 10 x0 + 10 x1 + 9 x2 + 6 x3 + 6 x4 + 8 x5 + 9 x6 + 6 x7 + 18 x8 + 27
x9 + 9 x10 + 9 x11 + 10 x12 + -6 x0to1 + -8 x1to2 + -6 x1to4 + -6 x2to3 + 
-6 x2to5 + -5 x3to4 + -6 x5to6 + -6 x6to7 + -8 x6to8 + -5 x7to11 + -7
x8to10 + -6 x9to10 + -6 x10to6 + -6 x11to1 + -10 x8to9 + -5 x4to12; 
 
x0 = 1; 
x0 = x0to1; 
x1 = x0to1 + x11to1; 
x1 = x1to2 + x1to4; 
x2 = x1to2; 
x2 = x2to3 + x2to5; 
x3 = x2to3; 
x3 = x3to4; 
x4 = x1to4 + x3to4; 
x4 = d15; 
x5 = x2to5; 
x5 = x5to6; 
x6 = x5to6 + x10to6; 
x6 = x6to7 + x6to8; 
x7 = x6to7; 
x7 = x7to11; 
x8 = x6to8; 
x8 = x8to10 + x8to9; 
x9 = x8to9; 
x9 = x9to10; 
x10 = x8to10 + x9to10; 
x10 = x10to6; 
x11 = x7to11; 
x11 = x11to1; 
x12 = x4to12; 
x12 = 1; 
 
x1 <= 2; 
x6 <= 2 x5to6; 
int x0; 

Figure 7. Specifications for WCET evaluation by the IPET method 
 

The results returned by lp_solve include the solution found for the variables to maximize the 

overall execution time while respecting the flow constraints, as well as the value of the WCET. In 

the case of our example, we obtained the values given in Figure 8. 

 

 
block 0 1 2 3 4 5 6 7 8 9 10 11 12 
xi 1 2 2 1 1 1 2 1 1 1 1 1 1  

 
seq 0-1 1-2 1-4 2-3 2-5 3-4 5-6 6-7 6-8 7-11 8-10 9-10 10-6 11-1 8-9 4-12 

xitoj 1 2 0 1 1 1 1 1 1 1 0 1 1 1 1 1  
 
WCET = 68 cycles 

Figure 8. Results of WCET evaluation by IPET 

4.1.3 Comparing the real and the estimated WCETs 

It appears that the WCET estimated using the IPET method is underestimated by 2 cycles against 

the actual WCET (e.g. by about 2.9%).  



-15- 

4.2 Long timing effects 

As many as 155 possible sequences of more than two basic blocks have been extracted from the 

Control Flow Graph (we filtered out all the sequences that could be built from the CFG but that 

did not belong to any of the two possible paths). While most of these sequences do not exhibit 

any long timing effect, other ones generate either positive or negative effects. Table 4 gives the 

distribution of long timing effects: 9 sequences of three blocks and more exhibit a positive LTE. 

 

long timing effect -2 -1 0 1 2 
# sequences 2 5 139 8 1 

Table 4. Distribution of long timing effects 
 

As we said in introduction, the length of the sequences that might generate long timing effects is 

not bounded. The distribution of the lengths of the sequences associated with a long timing effect 

(non-null) is given in Table 5, and the distribution of the lengths of the sequences associated with 

a positive long timing effect is given in Table 6. We can observe that one sequence as long as the 

longest path (16 blocks) generates a LTE (which is negative). Positive LTEs, that should not be 

ignored to estimate a safe WCET, happen for sequences as long a 6 blocks in this example. In 

[Engb02], it has been shown how positive LTEs could span over complete execution paths. 

 

sequence length 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
# sequences 18 18 18 18 17 15 13 11 9 7 5 3 2 1 

Table 5. Distribution of the length of sequences with non-nul LTEs 
 

sequence length 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
# sequences 2 5 1 1 0 0 0 0 0 0 0 0 0 0 

Table 6. Distribution of the length of sequences with positive LTEs 
 

 

Table 7 shows the sequences that belong to the longest path and have a positive LTE. 

 

sequence of basic blocks LTE # instances impact 
1 – 2 – 3 +1 1 +1 
1 – 2 – 3 - 4 +1 1 +1 
1 – 2 – 3 – 4 – 12 -2 1 -2 
2 – 3 – 4 – 12 +2 1 +2 
2 – 5 – 6 – 8 – 9 -1 1 -1 
6 - 7 - 11 -1 1 -1 
6 – 7 – 11 - 1 +1 1 +1 
6 – 8 – 9 +1 1 +1 
10 – 6 – 7 – 11 +1 1 +1 
10 – 6 – 7 – 11 – 1 -1 1 -1 
  TOTAL +2 

Table 7. Impact of long timing effects on the WCET of the example program 
 



 

-16- 

5. Analysing execution traces 

In this section, we will trace and comment the execution of some blocks sequences to highlight 

some sources of long timing effects. 

5.1 First example 

Let us see how the sequence of blocks 2-3-4-12 passes through the pipeline. Figure 9 shows the 

numbered instructions of each of the 4 basic blocks of the sequence. The way these blocks are 

processed in the pipeline, either alone or in sequences, is described in Figure 10. 

 

block 2 2a 

2b 

2c 

100001ac: lwz     r0,32(r31) 

100001b0: cmpwi   r0,0 

100001b4:  ble     100001c0 

 

→ depends on 2a (r0) 

→ depends on 2b (implicit register CR) 

block 3 3a 100001b8:  b  100001bc  

block 4 4a 100001bc:   b       100002b4  

block 12 12a 

12b 

12c 

12d 

100002b4:    lwz     r11,0(r1) 

100002b8:    lwz     r31,-4(r11) 

100002bc:    mr      r1,r11 

100002c0:    blr 

 

→ depends on 12a (r11) 

→ depends on 12a (r11) 

Figure 9. Sequence of blocks 2-3-4-12. 

 

From the traces given in Figure 10, we draw: 

t2 = 9 
t3 = 6 
t4 = 6 
t12 = 10 

t2-3 = 9 
t3-4 = 7 
t4-12 = 11 

t2-3-4 = 10 
t3-4-12 = 12 

t2-3-4-12 = 17 

 

and then : 

δ2-3 = t2-3 – t2 – t3 = -6 

δ3-4 = t3-4 – t3 – t4 = -5 

δ4-12 = t4-12 – t4 – t12 = -5 

δ2-3-4 = t2-3-4 – t2 – t3 – t4 – δ2-3 – δ3-4 = 0 

δ3-4-12 = t3-4-12 – t3 – t4 – t12 – δ3-4 – δ4-12 = 0 

δ2-3-4-12 = t2-3-4-12 – t2 - t3 – t4 – t12 – δ2-3 - δ3-4 – δ4-12 – δ2-3-4 – δ3-4-12 = +2 

 

No long timing effect is observed for the sequence of blocks 2-3-4. Block 3 is not executed the 

same way depending on whether it is preceded by block 2 or not: block 2 delays its completion 

by one cycle. However, thanks to the superscalar pipeline, both blocks complete at the same 

cycle and the gain δ2-3 reaches its maximum absolute value (-6 cycles, i.e. all the execution of 

block 3 overlaps the execution of block 2). If we examine sequence 3-4 when it is executed alone 

and when it is preceded by block 2, it appears that, in both cases, block 4 completes one cycle 



-17- 

after block 3. The distortion of block 3 after block 2 is accounted for by δ2-3 and then δ2-3-4 is nul. 

In sequence 3-4-12, block 12 passes through the pipeline exactly as when it is executed alone. 

This is why δ3-4-12 also equals zero. On the contrary, the execution of block 12 after the sequence 

2-3-4 is distorted: this is due to the limitation of the number of pending branches in the pipeline 

to three. Then the instructions of block 12 cannot be issued until the branch that ends block 2 has 

completed. This delay is responsible for the positive timing effect δ2-3-4-12. Note that, while 

block 12 is delayed by three cycles, δ2-3-4-12 only equals two cycles thanks to the gain related to 

the simultaneous completion of blocks 2 and 3. 

 

cycle fetch decode issue execute writeback complete 
1 2a 2b           
2 2c  2a 2b         
3   2c  2a 2b       
4     2c  2a      
5             
6       2b  2a    
7       2c  2b  2a  
8         2c  2b  
9           2c  

 

cycle fetch decode issue execute writeback complete 
1 3a            
2   3a          
3     3a        
4       3a      
5         3a    
6           3a  

 

cycle fetch decode issue execute writeback complete 
1 4a            
2   4a          
3     4a        
4       4a      
5         4a    
6           4a  

 

cycle fetch decode issue execute writeback complete 
1 12a 12b           
2 12c 12d 12a 12b         
3   12c 12d 12a 12b       
4     12c 12d 12a      
5       12d      
6       12b 12c 12a 12d   
7         12c  12a  
8         12b    
9           12b 12c 
10           12d  

 

cycle fetch decode issue execute writeback complete 
1 2a 2b           
2 2c  2a 2b         
3 3a  2c  2a 2b       
4   3a  2c  2a      
5     3a        
6       2b 3a 2a    
7       2c  2b 3a 2a  
8         2c  2b  
9           2c 3a 

 



 

-18- 

cycle fetch decode issue execute writeback complete 
1 3a            
2 4a  3a          
3   4a  3a        
4     4a  3a      
5       4a  3a    
6         4a  3a  
7           4a  

 
cycle fetch decode issue execute writeback complete 

1 4a            
2 12a 12b 4a          
3 12c 12d 12a 12b 4a        
4   12c 12d 12a 12b 4a      
5     12c 12d 12a  4a    
6       12d    4a  
7       12b 12c 12a 12d   
8         12c  12a  
9         12b    
10           12b 12c 
11           12d  

 
cycle fetch decode issue execute writeback complete 

1 2a 2b           
2 2c  2a 2b         
3 3a  2c  2a 2b       
4 4a  3a  2c  2a      
5   4a  3a        
6     4a  2b 3a 2a    
7       2c 4a 2b 3a 2a  
8         2c 4a 2b  
9           2c 3a 
10           4a  

 
cycle fetch decode issue execute writeback complete 

1 3a            
2 4a  3a          
3 12a 12b 4a  3a        
4 12c 12d 12a 12b 4a  3a      
5   12c 12d 12a 12b 4a  3a    
6     12c 12d 12a  4a  3a  
7       12d    4a  
8       12b 12c 12a 12d   
9         12c  12a  
10         12b    
11           12b 12c 
12           12d  

 
cycle fetch decode issue execute writeback complete 

1 2a 2b           
2 2c  2a 2b         
3 3a  2c  2a 2b       
4 4a  3a  2c  2a      
5 12a 12b 4a  3a        
6 12c 12d 12a 12b 4a  2b 3a 2a    
7   12c 12d   2c 4a 2b 3a 2a  
8         2c 4a 2b  
9           2c 3a 
10     12a 12b     4a  
11     12c 12d 12a      
12       12d      
13       12b 12c 12a 12d   
14         12c  12a  
15         12b    
16           12b 12c 
17           12d  

Figure 10. Execution traces of blocks 2, 3, 4 and 12. 



-19- 

5.2 Second example 

We will now consider the sequence of blocks 1-2-3-4. These blocks contain the instructions listed 

in Figure 11 and their execution traces through the pipeline are shown in Figure 12. 

 

block 1 1a 
1b 
1c 
1d 

1000019c: lbz     r9,36(r31) 

100001a0: clrlwi  r0,r9,24 

100001a4:  cmpwi   r0,0 

100001a8:    bne     100001bc 

 

→ depends on 1a (r9) 

→ depends on 1b (r0) 

→ depends on 1c (implicit register CR) 

block 2 2a 

2b 

2c 

100001ac: lwz     r0,32(r31) 

100001b0: cmpwi   r0,0 

100001b4:  ble     100001c0 

 

→ depends on 2a (r0) 

→ depends on 2b (implicit register CR) 

block 3 3a 100001b8:   b       100001bc  

block 4 4a 100001bc:   b       100002b4  

Figure 11. Sequence of blocks 1-2-3-4. 

From these traces, we get: 

t1 = 10 
t2 = 9 
t3 = 6 
t4 = 6 

t1-2 = 11 
t2-3 = 9 
t3-4 = 7 

t1-2-3 = 12 
t2-3-4 = 10 

t1-2-3-4 = 14 

 

and then : 

δ1-2 = t1-2 – t1 – t2 = -8 

δ2-3 = t2-3 – t2 – t3 = -6 

δ3-4 = t3-4 – t3 – t4 = -5 

δ1-2-3 = t1-2-3 – t1 – t2 – t3 – δ1-2 – δ2-3 = +1 

δ2-3-4 = t2-3-4 – t2 – t3 – t4 – δ2-3 – δ3-4 = 0 

δ1-2-3-4 = t1-2-3-4 – t1 – t2 – t3 – t4 – δ1-2 - δ2-3 – δ3-4 – δ1-2-3 – δ2-3-4 = +1 

 

The timing effects of the two-blocks sequences are due to complete (for sequence 2-3) or partial 

(for sequences 1-2 and 3-4) overlapping of the blocks in the pipeline. Since block 3 fully overlaps 

with block 2, δ2-3 equals t3: block 3 is executed “for free” in the sequence. On the other hand, the 

only partial overlapping in sequences 1-2 and 3-4 leads to δ1-2 lower than t2 and δ3-4 lower than t4 

(in absolute values). As far as sequence 1-2-3 is concerned, the positive effects δ1-2-3 comes from 

the fact that block 3 can not complete at the same cycle as block 2 when preceded by block 1. 

The case of sequence 2-3-4 is similar to those commented for the first example (see section 5.1) 

and the corresponding timing effect is nul. Finally, in sequence 1-2-3-4, the issue of block 4 is 

delayed, because of the limited number of pending branches, until the completion of block 1. This 

three-cycle delay partially overlaps the one-cycle delays of sequences 1-2 and 3-4, and this is 

why δ1-2-3-4 only equals +1.  



 

-20- 

 

cycle fetch decode issue execute writeback complete 
1 1a 1b           
2 1c 1d 1a 1b         
3   1c 1d 1a 1b       
4     1c 1d 1a      
5             
6       1b  1a    
7       1c  1b  1a  
8       1d  1c  1b  
9         1d  1c  
10           1d  

 
cycle fetch decode issue execute writeback complete 

1 2a 2b           
2 2c  2a 2b         
3   2c  2a 2b       
4     2c  2a      
5             
6       2b  2a    
7       2c  2b  2a  
8         2c  2b  
9           2c  

 

cycle fetch decode issue execute writeback complete 
1 3a            
2   3a          
3     3a        
4       3a      
5         3a    
6           3a  

 
cycle fetch decode issue execute writeback complete 

1 4a            
2   4a          
3     4a        
4       4a      
5         4a    
6           4a  

 
cycle fetch decode issue execute writeback complete 

1 1a 1b           
2 1c 1d 1a 1b         
3 2a 2b 1c 1d 1a 1b       
4 2c  2a 2b 1c 1d 1a      
5   2c  2a 2b       
6     2c  1b 2a 1a    
7       1c  1b  1a  
8       1d 2b 1c 2a 1b  
9       2c  1d 2b 1c  
10         2c  1d 2a 
11           2b 2c 

 
cycle fetch decode issue execute writeback complete 

1 2a 2b           
2 2c  2a 2b         
3 3a  2c  2a 2b       
4   3a  2c  2a      
5     3a        
6       2b 3a 2a    
7       2c  2b 3a 2a  
8         2c  2b  
9           2c 3a 

 
 
 
 
 



-21- 

cycle fetch decode issue execute writeback complete 
1 3a            
2 4a  3a          
3   4a  3a        
4     4a  3a      
5       4a  3a    
6         4a  3a  
7           4a  

 
cycle fetch decode issue execute writeback complete 

1 1a 1b           
2 1c 1d 1a 1b         
3 2a 2b 1c 1d 1a 1b       
4 2c  2a 2b 1c 1d 1a      
5 3a  2c  2a 2b       
6   3a  2c  1b 2a 1a    
7     3a  1c  1b  1a  
8       1d 2b 1c 2a 1b  
9       2c 3a 1d 2b 1c  
10         2c 3a 1d 2a 
11           2b 2c 
12           3a  

 
cycle fetch decode issue execute writeback complete 

1 2a 2b           
2 2c  2a 2b         
3 3a  2c  2a 2b       
4 4a  3a  2c  2a      
5   4a  3a        
6     4a  2b 3a 2a    
7       2c 4a 2b 3a 2a  
8         2c 4a 2b  
9           2c 3a 
10           4a  

 
cycle fetch decode issue execute writeback complete 

1 1a 1b           
2 1c 1d 1a 1b         
3 2a 2b 1c 1d 1a 1b       
4 2c  2a 2b 1c 1d 1a      
5 3a  2c  2a 2b       
6 4a  3a  2c  1b 2a 1a    
7   4a  3a  1c  1b  1a  
8       1d 2b 1c 2a 1b  
9       2c 3a 1d 2b 1c  
10         2c 3a 1d 2a 
11     4a      2b 2c 
12       4a    3a  
13         4a    
14           4a  

Figure 12. Execution traces for blocks 1, 2, 3 and 4 

6. Concluding remarks 

The examples examined in the previous section show how a basic block can have a timing impact 

on a distant subsequent block. We can identify two kinds of positive timing effects: 

 the last block of the sequence is delayed for a reason directly related to the first block. 

This is mainly due to resource contention, in the broad sense of the word:  

o conflicts for the use of pipeline slots or of functional units (especially long-latency 

non-pipelined units) 



 

-22- 

o full queues (in tests not reported here, we have observed that LTEs were generated 

by the limited capacity of the reorder buffer) 

o other specific restrictions, like the one that limits the number of pending branches 

in the pipeline 

The LTEs  δ2-3-4-12 and δ1-2-3-4 belong to this category. 

 the gains related to shorter sequences are reduced due to resource contention: this 

can be observed for sequence 1-2-3. 

We feel that inter-block data dependences are also likely to produce LTEs. However, we have 

found that they are very rare in practice. 

 

We are convinced that many other sources of long timing effects can lie in more and more 

sophisticated processor architectures. This is why we argue for solutions that would eliminate 

them.  

 

References 

[Engb02] J. Engblom. Processor Pipelines and Static Worst-Case Execution Time 
Analysis. PhD thesis, University of Uppsala, 2002. 

[LiMa95] Y.-T. Li, S. Malik. Performance Analysis of Embedded Software using 
Implicit Path Enumeration. ACM SIGPLAN Notices, vol. 30, n°11, 1995. 

[LuSt99a] T. Lundqvist, P. Stenström. An Integrated Path and Timing Analysis Method 
based on Cycle-Level Symbolic Execution. Real-Time Systems, vol. 17, n°2. 
March 1999 

[LuSt99b] T. Lundqvist, P. Stenström. Timing Anomalies in Dynamically-Scheduled 
Microprocessors. IEEE Real-Time Systems Symposium (RTSS), 1999. 

 


	Introduction
	Long timing effects
	Methodology
	Example code to be dissected
	Simulation framework
	Processor model
	Determining the real WCET and estimating it by the IPET meth
	Determining the real WCET
	Estimating the WCET by the IPET method

	Flow analysis

	General results
	Real and estimated WCETs
	Real WCET
	Estimated WCET
	Comparing the real and the estimated WCETs

	Long timing effects

	Analysing execution traces
	First example
	Second example

	Concluding remarks


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


