
Two-Level Cooperation in Autonomic Cloud

Resource Management

Giang Son Tran
a
, Alain Tchana

b
, Laurent Broto

a
, Daniel Hagimont

a

a ENSEEIHT – University of Toulouse, Toulouse, France
Email: {giang.tran, laurent.broto, daniel.hagimont}@enseeiht.fr

b University of Joseph Fourier, Grenoble, France
Email: alain.tchana@inria.fr

Abstract— Virtualized cloud infrastructures are becoming

very popular as they allow separation of hardware and

software management. Infrastructure as a Service (IaaS) is

the model providing many advantages to both provider and

customer. Minimizing the number of resource (and power

consumption) in use is one of the main services that such an

cloud model must ensure. This objective can be done either

by the customer at the application level (by dynamically

sizing the application based on the workload) or by the

provider at the virtualization level (by consolidating virtual

machines based on the infrastructure's utilization rate).

Many research works investigate resource management

policies separately at the application level or at the

virtualized level. In this paper, we study different strategies

for cloud resource management: virtual machine

consolidation only, dynamic application sizing only, both

policy at the same time (either independent or cooperative).

We show that virtual machine consolidation and dynamic

application sizing do not fully bring benefits to the cloud

provider and customer when being implemented without

cooperation. Finally, we propose a cooperative model to

improve the efficiency of these strategies, in reducing power

consumption and keeping application's Quality of Service.

Index Terms— Cloud computing, cooperative, resource

management.

I. INTRODUCTION

Cloud computing is the current trend of separating
hardware and software management, improving the
devotion of the customers and the providers: the
customer only needs to manage their applications without
the need of hardware maintenance; while the provider is
expected to ensure Quality-of-Service to the customer
according to their Service Level Agreement. Cloud
hosting infrastructures are generally split into 3
categories: Infrastructure as a Service (IaaS), Platform as
a Service (PaaS), and Software as a Service (SaaS). In
this article, we consider a cloud as an IaaS: a virtualized
infrastructure managed by the provider. Virtual machines
are provided to the external customers to deploy and
execute their applications.

In this context, on demand resource management is
one of the main services that such an environment must
ensure: the allocation of resource as needed and the
deallocation when unused. The number of machines is
therefore optimized, and energy consumption is reduced.

On demand resource management can be handled
either at the customer level (i.e., by the administrator of

the deployed application), or at the provider level (i.e., by
the administrator of the virtualized infrastructure).

Our main contributions in this paper are:

• We describe various resource management
policies, advantages and disadvantages of each
with a hypothesized workload.

• We show that resource management at the
customer and provider levels are
complementary.

• We propose a cooperative resource management
policy for these two levels.

We experimented these management policies in
virtualized environments with a multiple-tier web
application. We implemented an autonomic management
system jTune, based on TUNe[1], as the deployment and
resource management system.

The rest of the article is organized as follows. Section
Error! Reference source not found. describes the article
context regarding virtualization and cloud computing.
Section Error! Reference source not found. motivates
our work. Section Error! Reference source not found.
details the resource management policies. Section Error!
Reference source not found. presents our cooperative
resource management policy between the two layers.
Section Error! Reference source not found. highlights
various related works. Finally, we conclude and present
our future work in section Error! Reference source not
found..

II. CONTEXT

A. Virtualization

Virtualization is a software- and/or hardware-based
solution for building and running many operating systems
simultaneously on the same bare hardware. Those
operating systems are named guest OS and their
execution environment is called Virtual Machine(VM).
The Virtual Machine Monitor (VMM) or hypervisor
represents the virtualizing software responsible of
hardware emulation and communication between guest
OS and devices. The guests OSes are guaranteed to be
isolated from each other, providing better security for the
applications than when being deployed unvirtualized on
the same physical machine.

With the help of virtual machine migration [2], the
provider can move executing virtual machines across
different physical machines easily and rapidly, allowing

separation of hardware and software, and consolidating
clustered hardware into a single coherent management
domain (virtual machines). Therefore, in cloud
computing, virtual machines are provided to the customer
instead of physical machines. Server utilization is greatly
improved with runtime dynamic allocation and
deallocation of virtual machines on the physical
machines, and thus, reduce power consumption for the
provider.

B. Cloud Computing

Cloud computing connects the needs of the customer
(the application manager) and the services of the provider
(the hardware manager). The provider shares the same
resource pool to all customers, and provides on demand
resource management on it. This strategy brings the
benefits for both actors:

• Customer's economy: only needs to focus on
application management, leaves the hardware
side to the provider, and only pays for the real
usage.

• Dynamic capacity of the customer's application:
based on the real runtime load, the customer can
resize the application (modify the number of
virtual machines executing application
instances) to handle load peaks or idle states.

• Shared resources: all customers share the same
resource pool in the provider's hosting center.
Unused machines are switched off, and therefore
this strategy provides higher hardware utilization
rate and less energy waste.

In cloud computing, the customer generally does not
have knowledge of the provider's infrastructure, and only
has access to the resource in the form of virtual machines.

III. MOTIVATION

Application sizing and server consolidation, with the
help of virtual machine migration, have proved their
effectiveness in the hosting centers [3][4][5]. However,
research works only deducted in these policies separately.
Server consolidation with virtual machine migration has
the limitation of memory amount of the host: all virtual
machines, although being idle, consume memory of the
host. Further more, VM overhead increases along with
the number of running VMs [6]. Finally, the lack

knowledge of the application tier prevents the provider
from having an optimal virtual machine placement.

On the other side, application sizing does not fully
optimize hardware resources: there is a high possibility
that many virtual machines are spread among the physical
machines, leaving them unable to free for switching off.
These disadvantages show some limitations which can be
improved with a two level management, as analyzed in
the below sections.

IV. MANAGEMENT POLICIES

This section describes the various cloud management
policies being investigated in the research community,
including: server consolidation only; dynamic application
sizing only; both policies, but working independently. We
also describe our experiments for each scenario, and
pinpoint the drawbacks of each policy when being used in
a hosting center.

We use a typical web application with the Apache –
PHP – MySQL stack as the customer application. Fig. 1
(left) shows the synthesized workload we generated to the
3 different web applications. Before time (a), all of the
applications are idle (almost no request is generated).
Start from time (a) to time (c), application 1 load is
increased. Application 2 load is increased from time (c)
to (e), followed by increase load of the application 3,
from time (e) to (g). These loads are then decreased with
the following order: application 2 (time (h)-(j)),
application 1 (time (j)-(l)), then application 3 (time (l)-
(n)). This synthesized workload is used in all experiments
throughout the paper to better compare the benefits and
the drawbacks of each policy.

Our experiments were performed in a private cluster of
7 Nodes, equipped with an Intel Core 2 Duo 2.66GHz in
single processor mode, 4GB RAM, and Debian Squeeze.
All of the Nodes are connected with a 100Mbps Ethernet.
The VM disk images are stored on a NFS server so that
VM migration can be performed between the nodes. We
use Xen 4.1.4 as the hypervisor in our experiments.

A. Server Consolidation Only

Taking into account the objective of minimizing
hardware resource of the provider, this policy is
straightforward: pack the deployed virtual machines into
as few physical machines as possible. However, the
number of VMs in one physical machine is limited by the

Figure 1: Server Consolidation Only

memory amount of the host. This policy is made possible
with the support of virtual machine migration.

In this scenario, only the provider level is implemented
with autonomic management. The customer application is
provisioned with a static tier allocation (i.e. with a fixed
number of tier instances). The management policy at the
provider level takes into consideration each virtual
machine CPU load, and makes migration decision: the
IaaS manager can either migrate the most loaded VM out
of the most loaded node (so that this node becomes less
load), or migrate other VMs (to provide more power for
the most loaded VM).

Fig. 1 (right) shows the VM allocation on each
physical machine according to the generated workload.
Each node is equipped with a monitoring probe,
periodically reporting CPU load of all VMs on it. These
results show the reaction of the IaaS manager toward
generated workload to the applications based on the
actual VM CPU load. At time (a), all 6 VMs are packed
into Node 1. The IaaS manager decides to migrate a VM
of the application 1 (red) from Node 1 to Node 2.
Gradually, when the loads of all applications increase, the
VMs are distributed among physical Nodes (time (b)-(k)).

This policy shows some merits in minimizing resource
usage (and therefore, energy waste). However, it still
produces several types of performance overhead because
of running multiple VMs of the same tier simultaneously:

• Live VM migration overhead: migrating VMs
between physical hosts is costly.

• Balancer overhead: each request to the
application must be passed through the balancer.

• Hypervisor overhead: The hypervisor has to
switch CPU resources among many VMs,
generating overheads.

These overheads can be reduced by using less VM
instances with dynamic application sizing. This method
will be described in the next section.

B. Dynamic Application Sizing Only

 This approach is based on the dynamic allocation and
deallocation of the application instances. Initially, all
applications are deployed with a minimum number of
instances. Each instance is deployed and launched in a
separated VM. During runtime, tier loads are captured by
monitoring probes in the VMs, and gathered by the

autonomic manager. It, in turns, based on current tier
load, requests to add or remove the VMs accordingly.
Dynamic application sizing is quite generic as it can be
applied to any multiple-tier applications.

Fig. 2 (right) shows the VM allocation on physical
machines. As the load increases from time (c) to time (g),
the application manager gradually deploys and launches
more application instances on Node 2 and 3. When the
load decreases, the VMs containing these instances are
also removed from the hosts.

This behavior ensures the minimal number of the
instances of the application, and therefore reduced
performance overhead over the previous policy (Server
consolidation only). However, this policy raises some
possible optimizations at time (l) and (m): two VMs of
the same tier (application 3) are running on the two
different physical machines. This placement can be
improved by migrating the VM from Node 3 to Node 2,
and free Node 3 for turning off, benefiting in energy
saving.

This drawback can be solved with the combination of
the two above policies: the IaaS manager ensures server
consolidation with virtual machine migration, and the
application manager optimizes its tier allocation. This
combined policy is described in the next section.

C. Both Levels, Independent

In this scenario, both the customer and the provider
implement their resource management policy
independently, to eliminate each other's drawback. In
other word, this complementarity attempts to improve
both real resource usage (to reduce energy waste) and
application performance (by reducing overhead) in the
hosting centers.

The dynamic application sizing policy at the customer
level ensures that all allocated VMs' usage are optimized
(the idle or unused VMs are deallocated automatically).
Thus, it isn't necessary for the IaaS manager to migrate its
VMs based on the CPU load. Instead, the migration
policy is based on the capacity of each VM.

Fig. 3 shows the generated workload and the VM
placement among the physical machines. Similar to the
scenario in IV.B, one instance of each application is
deployed initially. When the workload increases, the
application manager gradually deploys and launches

Figure 2: Dynamic Application Sizing Only

more application instances on Nodes 2 and 3 to ensure
application response time. The IaaS manager's migration
check is activated upon receiving a VM removal request
from the customer level. In this scenario, it only performs
a migration after a VM of the application 1 is removed
from Node 2 at time (k).

Comparing these results to those we obtained with
management at application level only (IV.B), and IaaS
level only (IV.A), we have significant improvements.
First, there are fewer migration (one time, at time (k),
compared to 4 in (IV.A)). Second, the number of
application instances is still minimized, same as (IV.B).
Finally, Node 3 can be freed from time (l), when the IaaS
manager optimizes its VM placement. This migration, in
turn, helps to reduce power consumption of Node 3 when
compared with (IV.B).

However, comparing this result with (IV.A), we still
have the same problem: the possibility of having multiple
VMs of the same application tier on a physical machine
(time (l), (m)). This is not optimized for performance
with VM overhead and balancer overhead, as previously
discussed in (IV.A). This problem comes from the fact
that the application manager is not aware of its VM
location, and that the IaaS manager is not aware of the
application tier. The next section describes our proposal
to overcome this problem, in order to minimize both
power consumption and performance overhead.

V. COOPERATIVE RESOURCE MANAGEMENT

The key difference in this policy, compared with the
above policies, is to gather application instances into
groups, and manage groups with quotas instead of VMs.
These quotas can be dynamically changed in runtime.

This group notion provides the application architecture to
the IaaS manager, thus simplifies the VM management.

The two layers communicate with each other through
cooperation calls. A call from application layer to the
IaaS layer is a Downcall. The call in the other direction is
an Upcall. In our experiment, these cooperation calls are
made possible thanks to Java RMI. Fig. 5 shows the
architecture of the cooperation calls between layers.

The customer's application manager monitors its tier
load, and based on the actual runtime situation, either:

• Overload: requests a group quota increase, or

• Under load: requests a group quota reduction
According to the request to modify a group quota ∆q,

either it's an addition (∆q > 0), or it's a subtraction (∆q <
0) the IaaS manager can:

• Add quota (∆q > 0) for an existing Vx: qvm = qvm
+ ∆q. This is the case when this VM has 0 < ∆q
+ qvm < 100 and its host is free enough (in terms
of remaining quota). In case of not having
enough free quota in the host, the IaaS manager
allocates a new virtual machine, VMk, and
notifies the application manager about VMk to
deploy an application instance on it.

• Reduce quota (∆q < 0) for an existing VM: qvm =
qvm - |∆q|, only possible when qvm < |∆q|. If no
VM satisfies this constrain, the IaaS manager
reduces quota of several VMs and/or stop a
running VM. The notification about this tier
reconfiguration will also be sent to the
application manager for tier reconfiguration.

After every quota change, the IaaS manager always
checks for possibility of server consolidation. In our
experiment with the synthesized workload (Fig. 4), we

Figure 3: Both Policies, Cooperative

Figure 4: Both Policies, Independent

identified several possible consolidation situations:
• Only migrations of VMs for a possibility of

freeing a physical machine.
• Merges of collocated VM from the same group:

time (l), when the IaaS manager merges two
small VMs from Node 1 and 2 into one VM with
a bigger quota on Node 2, reducing overheads.

• Splits of a VM to smaller VMs, in attempts to
free a Node: time (j).

As can be seen from Fig. 4, these two levels, when
implemented to work cooperatively, effectively optimize
hardware resources (Node 3 is only used in 5 time slots,
from time (e) to (i), similar to 5 time slots in (IV.A)), as
well as minimize the performance overhead due to live
migrations, hypervisor and balancer (similar to IV.B). In
summary, the cooperative resource management policy
combines all possible advantages, and provide a greater
benefit for the customer (less used VMs, and therefore,
less cost) as well as for the provider (less hardware
resources, and thus, less power consumption). However,
it requires both the provider and the customer to have a
common API and protocol for the communication of each
party's manager.

VI. RELATED WORKS

Many research works investigated dynamic resource
allocation in the hosting center environments. [7] presents
a dynamic allocation architecture for a hosting center
based on an autonomic computing system and a load
balancer. Similarly, [8] proposed many strategies: jobs
distribution to a pool of VMs in a cloud infrastructure,
based on dynamic VM allocation/deallocation: new VMs
are deployed/undeployed when being overloaded and
idle, respectively. Regarding our classification, these
solutions are only customer-level strategies.

Second category includes systems which implement
resource management at the IaaS level. Consolidation
systems such as GreenCloud [9] or [10] aim at saving
resource in a hosting center using solely VM migration.

Finally, only few systems addressed dynamic resource
management at both levels (application and IaaS). [11]
proposed a two-level resource management, but their
resource provisioning at the hosting center level was only
based on the allocation of additional resource to VMs.
Most two-level resource management systems did not
provide a cooperative strategy for these two levels, and
thus, did not achieve optimal energy saving and
performance.

VII. CONCLUSION AND PERSPECTIVE

This paper describes different scenarios which consist
in ensuring dynamic resource allocation for a cloud in a
hosting center. It shows that resources can be managed at
two levels: at the level of the application layer and at the
IaaS level. Moreover, it shows that resource
managements at these two levels are complementary,
especially when these two levels work cooperatively.

We are currently conducting performance evaluations
with real workload (monitored in a real hosting center),
instead of synthesized workload, to demonstrate the
effectiveness of this approach. A longer term perspective
of this work will be to consider an optimal algorithm for
VM placement and quota management based on work
load prediction.

REFERENCES

[1] L. Broto, D. Hagimont, P. Stolf, N. Depalma, S. Temate,
“Autonomic management policy specification in Tune”, in

Proceedings of the 2008 ACM symposium on Applied

computing, Brazil, 2008.

[2] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C.
Limpach, I. Pratt, A. Warfield, “Live migration of virtual

machines”, in Proceedings of the conference on

Symposium on Networked Systems Design &

Implementation - Volume 2, 2005.

[3] A. Gulati, G. Shanmuganathan, A. Holler, I. Ahmad,
“Cloud-scale resource management: challenges and

techniques”, in Proceedings of the USENIX conference on

Hot topics in cloud computing, USA, 2011.

[4] T. C. Chieu, A. Mohindra, A. A. Karve, A. Segal,

“Dynamic scaling of web applications in a virtualized

cloud computing environment”, in Proceedings of the

IEEE International Conference on e-Business Engineering,

China, 2009.

[5] Rightscale web site, in http://www.rightscale.com, visited
in December, 2012.

[6] A. Tchana, S. Temate, L. Broto, and D. Hagimont,
“Autonomic resource allocation in a J2EE cluster”, in

Utility and Cloud Computing, India, December 2010.

[7] H. S. AbdelSalam, K. Maly, R. Mukkamala, M. Zubair,

and D. Kaminsky, “Towards energy efficient change

management in a cloud computing environment.” in AIMS,

Lecture Notes in Computer Science, vol. 5637, Springer,

2009.

[8] S. Genaud and J. Gossa, “Cost-wait Trade-offs in Client-
side Resource Provisioning with Elastic Clouds,” in IEEE

CLOUD, USA Washington DC, 2011.

[9] L. Liu, H. Wang, X, Liu, X. Jin, en B. He, Q. B. Wang,

and Y. Chen, “GreenCloud: a new architecture for green

data center,” in International conference industry session

on Autonomic computing and communications industry

session (ICAC-INDST), Spain 2009.

[10] Pablo Graubner, Matthias Schmidt, and Bernd Freisleben,

“Energy-Efficient Management of Virtual Machines in

Eucalyptus,” in IEEE CLOUD, USA, 2011.

[11] Y. Song, H. Wang, Y. Li, B. Feng, and Y. Sun, “Multi-

tiered on-demand resource scheduling for vm-based data

center,” in IEEE/ACM International Symposium on Cluster

Computing and the Grid, May 2007.

Figure 5: Cooperative calls

