
 1

KASS: The KQML Agent Security System

Bilel ELAYEB Mohamed BEN AHMED

 RIADI-GDL laboratory, The National School of Computer Sciences (ENSI)

Manouba University, 2010 Manouba, Tunisia.

{Bilel.Elayeb, Mohamed.Benahmed}@riadi.rnu.tn

Abstract

Multi-agent systems communicating using KQML gain

more and more popularity and importance. With this

evolution, these systems are increasingly likely to be the

target of various disordered states against their security,

such as congestions, malevolent accesses and attacks. Thus,

it becomes inescapable to provide these systems with tools

and mechanisms able to inhibit these disordered states.

One of anti-attacks measurements we focused on within

the framework of this work is the KQML Agent Security

System (KASS). In fact, our contribution is based, on the

one hand, on an extension of the KQML message describing

how the content of the message was made safe, and on the

other hand, on the security module and its units which try to

resolve the limits of the current systems architectures.

Indeed, thanks to our new approach, partial encryption of

the message becomes possible and independent of the

platform. Security becomes independent of the agent and

takes account of the confidential data and of the

inaccessibility of the central authority, too.

1. Introduction

Security in multi-agent systems can be implemented

either by the message encryption (security against

monitoring by undesirable side) or message signing

(assuring of message content’s integrity). In some cases it is

not necessary to secure the whole message but only its parts.

Ther’is a great number of systems and principles

allowing secured communication in multi-agent systems

(MAS). Using the existing security systems in MAS brings

a couple of disadvantages (see Section 2). The proposed

approach attempts to avoid them and suggests a set of

recommendations how to implement agent’s interaction

security regardless of a programming language and a multi-

agent platform.

A wide variety of potential attacks can be categorized

and formalized into general threat model. Under this term,

we should understand a general breakdown into passive

attacks, in which communications are merely monitored,

and active attacks, in which communications or the

underlying agents themselves are subverted via deletions,

modifications or additions of data to the communication.

The most obvious passive attack is simple monitoring of

network packets, often accomplished by malicious agent,

eavesdropper, using a packet sniffer, which records for later

analysis all the packets being transmitted via network

among arbitrary number of agents. Even if the

communication is encrypted, still there is a risk of traffic

analysis, where the eavesdropper monitors the information

exchange and agents’ relationship. Special attention should

be paid to more dangerous active attacks, involving the

disruption of the communication paths between agents or

the attack of the underlying infrastructure, such as spoofing

attack or replay attack, in which malicious agent

impersonates the legal one and/or repeats the

communication, and modification of messages, corruption

of integrity and confidentiality or brute denial of service

attacks.

The MAS security architecture design considerations

have been motivated by various mentioned security risks.

Necessary security services should be defined in order to

provide entities within a MAS required support to assure

confidence in the distributed system and to prevent it from

the identified security attacks. These security instruments

should increase trust and confidentiality within and among

agent communities/technology and provide security

mechanisms, such as encryption, authentication, message

integrity services, etc., employing cryptography algorithms.

The security mechanisms can utilize existing agent platform

mediators such as the Agent Management System (AMS),

Directory Facilitator (DF), or Agent Communication

Channel (ACC), e.g. for authentication purposes [2].

Proposed Architectures offer on different level the

security and trust services that defend MAS against

corrupted naming (mapping or matchmaking) services,

insecure communication channels, insecure agents

delegations, lack of accountability, etc. [3,4]. Essential

security services presented in this paper constitute an

important part of the overall architecture being developed.

Our approach provides principles for secure messages

transfer and defines a KQML message extension for a new

element that describes a form of the message security. The

KASS-Security solution is open to address inaccessibility of

the central authority, which issues security certificates to

particular agents (see Section 3.7).

2. Security system requirements

Security mechanisms, described in the published KQML

security specification [5] [9] [10], do not allow security of

just parts of the message. This property breaches the

requirements for openness and implements security for

agents residing on an agent platform only and not for

standalone agents. In the following we sumup the security

requirements and dissimilarities from the FIPA

specification:

 2

2.1 Partial message encryption

Possibility to secure not only the whole KQML Message

but its parts is required, e.g. possibility to send also a

delegation (passed from one agent to another), sign certain

part of text or data for storing it in database along with its

signature and guarantee its authentication for later use

(record of transactions), or encrypt only password required

for access to particular resource to allow subsequent

detection of a kind of requested data. This can be reached

using the structure (class) containing not only carried text

(signed or encrypted) but also additional information

concerning security (type of security action, created

signature, identification of used key). On the receiving side,

this structure (class) is processed and the original text

obtained.

2.2 Loose link with platform

Possibility not to bind security support tightly to the

agent platform. KQML-interoperable agents can run on

different platforms (without the implemented type of

security) or even can be standalone with no platform. For

example, agent collects data from appropriate company

database server, running on different operating system, and

provides data to MAS (in secure way). It is possible to

ensure this including the security directly into the agent (its

communication wrapper) or by library supplied with agent.

2.3 Agents’ security independence

Avoid agent’s core necessity to choose, set type or

negotiate about algorithms used in secure communication.

These actions have to be done by security module

automatically. Negotiation about security algorithms can be

time-consuming on occasional connection. If agent sends

over such connection message with security algorithm

which recipient does not understand, recipient cannot

inform the sender about it immediately. Every agent (its

security module) has to register (with certain authority)

some lists of security algorithms (and public keys) [6],

which it uses. Agent that wants to send a secured message

has to ask for a list of receiver-supported algorithms and use

one of them for secure communication.

2.4 Security data confidentiality

All private keys and other security related data have to be

available to their owner only. Data may not be accessible to

anyone else (even the agent platform). Platform can be

distributed across many computers and hence it is

impossible to ensure security within the whole platform, if

the private data are managed by platform. Every agent has

to keep its private data secured, even during its migration on

other platform.

2.5 Central Authority Inaccessibility

The security infrastructure shall enable agents operate in

the cases when the central authority becomes inaccessible,

overloaded or fails functioning. Even though a central

authority is a vital component of the community, various

‘modes’ of operation reflecting the current functionality of

the central authority need to be allowed. Running multiple

central authorities will be also possible.

3. KASS-Security Prototype

In the proposed approach the dedicated central authority

is required to administer an important part of the security

mechanisms. This authority issues appropriate licenses

certificates. Agents use issued certificates to prove their

identities and execute security related actions within the

system [7]. Function of the central authority is in the

proposed system implemented by the Security Certification

Authority (SCA).

3.1 Certificates and Their Importance

Certificate contains mandatory information requested by

SCA and may contain additional information supplied by an

agent. Information requested by SCA is agent’s

identification, public keys (and their description) and

requested validity time and security level in MAS. SCA

verifies these data and stores them into the certificate. SCA

can’t guarantee validity of optional data, but can assure their

constancy (originality) when providing other agents with the

certificate. SCA signs the whole certificate and thus allows

receiver to verify the integrity of contained data.

Security level is set up by SCA according to username

and password, which agent sent in its registration request.

If agent needs to send encrypted message to another

agent, verify signature of received message or check the

security level, it asks SCA for particular certificate. Here is

an example of certificate issued for the ‘agent’ agent:

certificate-ident SCA_CERTIFICATE_1

sca-ident

 (agent-identifier:name sca@platform.net)

agent-ident

 (agent-identifier:name agent@platform.net)

time-from Thu Jan 01 00:00:00 ENSI 2004

time-to Fri Dec 31 23:59:59 ENSI 2004

security-level VISITOR

key-description

 ident SIGN_1

 time-from Thu Jan 01 00:00:00 ENSI 2004

 time-to Fri Dec 31 23:59:59 ENSI 2004

 type public-key

 key-param SHAwithDSA/1024

 key-value 65A7ED89C2………6AC54DF423

key-description

 ident CRYPT_1

 time-from Thu Jan 01 00:00:00 ENSI 2004

 time-to Fri Dec 31 23:59:59 ENSI 2004

 type public-key

 key-param RSA/1024

 key-value 6A248DC86B………85293B67DC

 3

3.2 Integration of Security into Message

In the proposed system, the agents communicate using

KQML Messages according to the KQML standard. A

message is extended to contain a new slot called KASS-

Security. This slot specifies how the message content has

been secured. Extended message may look as follows:

 (inform

 :sender (sender@platform.net)

 :receiver (receiver@platform.net)

 :language (LPROLOG)

 :content („Text to be signed“)

 :KASS-Security (:type SIGN

 :signature 45A7………30AD

 :certificate-ident SCA_CERTIFICATE_1

 :key-ident SIGN_1))

Items of the KASS-Security slot inform that message

content was signed (signature is included) and it can be

verified by public key SIGN_1 stored in certificate

SCA_CERTIFICATE_1.

Next example presents encrypted message:

(inform

 :sender (sender@platform.net)

 :receiver (receiver@platform.net)

 :language (LPROLOG)

 :content („34AD………6BA3“)

 :KASS-Security (:type CRYPT

 :certificate-ident SCA_CERTIFICATE_1

 :key-ident CRYPT_1))

KASS-Security slot items now inform that message content

is encrypted by public key CRYPT_1 stored in certificate

SCA_CERTIFICATE_1.

Similarly, it is possible to secure only parts of the content.

To allow this, it is necessary to create new class/structure

containing both, part of the content to be secured and

description of its security:

class / struct SecurityText

{ String text; // signed or encrypted text

 String security; // security information

}

Following that an example of message containing secured

part of the content. Agent asks for registering its

computational results and confirms originality of the result

with the signature:
(inform

 :sender (sender@platform.net)

 :receiver (receiver@platform.net)

 :language (LPROLOG)

 :content

 (action

 (agent-identifier :name … :address…)

 (data-register
 :data (security-text

 :text „10,20,30,40,50“

 :security (security-description

 :type SIGN

 :signature 25A8………D6C7

:certificate-ident

SCA_CERTIFICATE_1

 :key-ident SIGN_1)))))

In the following example agent asks for data protected by

password. This password is transferred as encrypted text.

(inform

 :sender (sender@platform.net)

 :receiver (receiver@platform.net)

 :language (LPROLOG)

 :content

 (action

 (agent-identifier :name … :address …)

 (data-request

 :data-type „type_of_requested_data“

 :password (security-text

 :text „67C5………DA8B“

 :security (security-description

 :type CRYPT

 :certificate-ident SCA_CERTIFICATE_1

 :key-ident CRYPT_1)))))

3.3 Description of SCA’s activity

Common security system fails when SCA (or similar

central authority) is inaccessible. The system described here

also uses SCA and certificates but in a different way.

Registered certificates are not stored only in the SCA but

after signing they are also sent back to the registering

agents. If one agent requires certificate of another one, it

should at first ask SCA for it. In cases of SCA

inaccessibility, the agent is allowed to ask for it directly

from the target agent. Certificate is signed by SCA and

therefore its validity can be verified. Now the security can

work, even if the SCA is (temporarily) inaccessible.

The described approach also allows the use of security in

the area of mobile agents. When two agents meet, they can

exchange their certificates and prove their identities.

Certificates contain full identification of their owners and

are completed with SCA’s signature. Using the public keys

from the certificates allows the verification that the

particular agents own appropriate private keys. Thus, when

mobile agent registers its certificate with SCA, it can

migrate and still use the certificate to prove its identity.

3.4 Session Keys and Their Use

In case of encrypting a huge amount of data or of

frequent communication between two agents, the usage of

asymmetric keys is not apposite because it requires

considerable computational resources for encryption and

decryption. Instead of asymmetric keys, the symmetric

session keys can be used. When this situation occurs,

security module generates session key and sends it directly

(encrypted by asymmetric key) to the other agent.

Transferred data are encrypted using the new symmetric

temporary key now, as the symmetric key encryption

algorithms are not so time/resources consuming. As soon as

the communication is finished, the session key is

invalidated. Activities related with generating and using

session keys are completely assured by the security module.

 4

3.5 Common Agent Key Replacement

After a certain period of time or when the suspicion on

the key misusage happens, an agent is allowed to generate

new keys. Immediately after generating them, agent asks

SCA for new certificate registration and at this moment the

previous one becomes invalid. By this way it is possible to

register new certificate before the validity time of the old

one expires. Every certificate contains unique identification

(ID). If an agent signs message using the new certificate, the

KASS-Security slot will contain ID of this certificate.

Receiver agent does not have a new version of the sender’s

certificate and has to ask SCA for it. Similar situation occurs

when the agent receives message encrypted by invalidated

key. In that case, receiver informs sender that used key has

been invalidated and for the future, communication requires

messages encrypted by the new one. Security module can be

set up by agent’s core to accept messages encrypted only

according to the latest certificate or (for a certain period of

time) accept messages encrypted according to older (but still

time valid) certificates.

This approach can be used not only for key replacement

but also for immediate decreasing of cooperator’s security

level. This can happen when an agent with a high security

level asks SCA to do it.

3.6 SCA Key Replacement

Key replacement of SCA is much complicated than

replacing keys of common agent. As the first step, SCA

generates new keys and creates new corresponding

certificate. In the second step, SCA sends this certificate

signed by last valid publicly known key to all registered

agents. All of them have to accept the change of the SCA’s

keys. When SCA has received the confirmations from the

registered agents (except inaccessible ones), it sends them

their original certificate signed by the new key. Now SCA

can start to use the new certificate. Common agent’s

security module clears its certificate database and this

causes requesting for all new necessary certificates from

SCA. Other problems are caused by inaccessibility of some

agent. From this reason, ID’s certificates are changed during

the replacing of SCA’s certificates too. Thus, mobile agents

also can detect this change and ask for their new certificates

from SCA as soon as possible. It is only up to SCA how

long time after changing its certificates, SCA allows agents

to update their certificates.

3.7 SCA Inaccessibility

As was already stated, each agent has its own certificate

and these certificates are registered with SCA. During the

temporary SCA inaccessibility, the agents are allowed to

provide their certificates one other. Even though the agents

can’t register the new certificates anymore, the already

existing security links are not affected. It is true that

permanent loss of SCA causes troubles for the

communication security. This problem can be solved either

by recovering SCA from backup or by setting multiple

SCAs.

There could be another SCA operating in the agents’

community. This SCA may act as a backup and keeps

synchronizing the database with the first one. In other cases,

certain more SCAs are required. When the main SCA is

lost, the first backup becomes the main one and new backup

SCA is created to complete the number of backups.

Alternatively, there is no predefined structure in the

community of SCAs and the agents can register with any

accessible SCA.

In a special situation of the MAS malfunction, no SCA

and only some of the common agents could stay active.

Then there is no backup of SCA that could be used for its

recovery. In such a case, the agents must be able to create

new SCA by themselves. First, the agents create a new

instance of the empty SCA and give it (during the start-up)

the last known certificate of the original SCA (each of

active agents has to know it).

New SCA cannot use it for new certificate registration

because of not having the private parts of keys but can use

the public key from it to verify signatures of other agents’

certificates. New SCA generates new keys and certificate

for itself. The agents send their certificates confirmed by the

old SCA to the new SCA. SCA sends them its new

certificates and SCA’s certificate signed by its new keys.

These certificates are sent only to agents, which certificates

new SCA verified by the key of the old SCA. The new

certificates are sent encrypted because common agents do

not know the public key of the new SCA for signature

verification, but SCA has the certificates of these agents.

This way can be also used for creating new SCA by a

group of mobile agents, for example to create other secured

temporary agents. Mobile agents have to keep their older

certificates that are relevant for their home platform.

4. KASS architecture

SCA is a standalone agent that does not affect agents’

interaction. However, it needs to start first. See Figure 1 for

the placement of SCA in the community.

Security service is provided by security module that is

placed between the agent’s core and communication layer,

as could be seen on Figure 2.

Messages are withdrawn from the input queue. These

messages could serve for security management (e.g.

required certificates); they could be secured (e.g. by

encryption, signature, etc.), or unsecured-that is passed

directly to the agent’s core.

The queue of outgoing messages contains messages

created by security module (e.g. request for certificate) and

ones created by the agent’s core. The latter are secured

according to the requirements of the core. Agent’s core is

allowed to restrictedly influence behavior of the security

module. Inner structure of security module is shown on

Figure 3.

Security module contains several individual units:

 5

1. Cryptology unit: it provides the encryption, the

decryption, the creation and the check of the message

signature.

 2. Exchange unit: it provides connection to SCA and

exchanges certificates with other agents.

3. Storage unit: it maintains database of received

certificates, private keys and session keys. This unit

provides them to other units. It is also required to store data

safely during agent’s migration.

4. Interface unit: it provides interface between security

module and agent’s core, which is necessary, for instance, to

configure the security or when partial encryption is required.

 Standardplatform agents

A1 A2 An

… DF AMS SCA

other agents on platform

…

 Incoming messages Outgoing messages

KASS-Security's

core

 Messages with certificates and keys

Communication

layer

Security layer

Core layer
Agent's core

T
es

t
si

g
n

at
u

re
 o

r

d
ec

ry
p

t

S
et

 s
ig

n
at

u
re

 o
r

en
cr

y
p

t

Figure 2 : Integration of security module to agent

Figure 1 : Agent platform with Security Certification Authority

 6

5. Conclusion

KASS system tries to avoid some disadvantages of the

current security systems [9,10] such as failure of security

functions during SCA inaccessibility, security uses of other

communication channels and the control of MAS and

security system from outside of the MAS. Proposed system

has the following advantages: security can be included into

already existing MAS, only parts of the message can be

secured, system is usable in the area of mobile agents.

In addition to its advantages, this system has also several

limits such as: as security regards, although there are an

authentification of the agents and an access control, the

level of protection is likely to be sophisticated. For example,

we will be able to encrypt the transfer of the agents and the

exchanged messages. Moreover, the agents profiting from

this security system must be able to refuse any

communication with not authenticated agents. It is also

possible to extend the KASS system security module by

adding it a decision unit which could prevent the security

agent of the platform by a signal or a message [8, 11].

6. References

[1] Petr Novak et al., “X-Security Architecture in AgentCities”.

Czech Technical University in Prague. In: Agent Technology

Competition 2003.

 [2] Vlcek T., Zach J., “Considerations on Secure FIPA Compliant

Agent Architecture”. In: Proc. of IEEE/IFIP International

Conference on Information Technology for Balanced

Automation Systems in Manufacturing and Services.V.Marik,

L.M.Camarinha-Matos, H. Afsarmanesh (Eds.). pp. 11-124,

2002.

[3] Foner, L.N., “A security architecture for multi-agent

matchmaking”. In: Proceedings of the Second International

Conference on Multi-Agent Systems (ICMAS96), pages 80-

86. AAAI Press, 1996.

[4] Wong H. C., Sycara K., “Adding Security and Trust to Multi-

Agent Systems.” In: Proceedings of Autonomous Agents '99

(Workshop on Deception, Fraud and Trust in Agent

Societies). May 1999, Seattle, Washington, pp. 149-161,

1999.

[5] FIPA 98, “Agent Security Management Specification”.

http://www.fipa.org/repository/obsoletespecs.html

[6] Burr W., Dodson D., Nazario, N., Polk, W.T., “Minimum

Interoperability Specification for PKI Components”, NIST

Special Publication 800-15, 1998.

[7] Lyons-Burke K., “Federal Agency Use of Public Key

Technology for Digital Signatures and Authentication”, NIST

Special Publication 800-25, 2000.

[8] Farah AbdelMajid BARIKA, “Vers un IDS Intelligent à base

d’Agents Mobiles ”, Mémoire de DEA en informatique,

Institut Supérieur de Gestion de Tunis, Tunisie 2003.

[9] Chelliah Thirunavukkarasu, Tim Finin and James Mayfield,

“Secret Agent-A Security Architecture for the KQML Agent

Communication Language”, CIKM’95 Intelligent Information

Agents Workshop, Baltimore, December 1995.

[10] Katia P.Sycara, Timothy W.Finin. “Personal Security Agent :

KQML-Based PKI”. The Robotics Institute Carnegie Mellon

University Pittsburgh, 1998, PA.15123.

[11] Bilel ELAYEB and Mohamed BEN AHMED, “Proposition

d'un système de sécurisation d'agent à base de KQML”,

Mémoire de Mastère en informatique, Ecole Nationale des

Sciences de l'Informatique, Tunisie 2004.

Management of

certificates and keys

Communication layer

Security layer

Core layer

B
lo

k
in

g
 m

es
sa

g
es

 w
it

h

w
ai

tn
g

 f
o

r
ap

p
ro

p
ri

at
e

ce
rt

if
ic

at
e

T
es

t
si

g
n

at
u

re
 o

r

d
ec

ry
p

t

Other services of agent's

core

Receiving and sending

certificates and keys

B
lo

k
in

g
 m

es
sa

g
es

 w
it

h

w
ai

tn
g

 f
o

r
ap

p
ro

p
ri

at
e

ce
rt

if
ic

at
e

S
et

 s
ig

n
at

u
re

 o
r

en
cr

y
p

t

Private keys

Certificates

Session Keys

K
A

S
S

-S
ec

u
ri

ty
 M

o
d

u
le

Figure 3 : Security module layer

