
An Arbitrary Tree-Structured Replica Control Protocol

Jean Paul Bahsoun, Robert Basmadjian
Universit́e de Toulouse

Institut de Recherche en Informatique de
Toulouse (I.R.I.T)

{bahsoun,basmadji}@irit.fr

Rachid Guerraoui
Ecole Polytechnique F́ed́erale de Lausanne

Distributed Programming Laboratory
(LPD)

rachid.guerraoui@epfl.ch

Abstract

Traditional replication protocols that arrange logically
the replicas into a tree structure have reasonable availabil-
ity, low communication costs but induce high system load.

We propose in this paper the arbitrary protocol: a tree-
based replica control protocol that can be configured based
on the frequencies of read and write operations in order
to provide lower system load than existing tree replication
protocols, yet with comparable cost and availability. Our
protocol enables the shifting from one configuration into an-
other by just modifying the structure of the tree. There is no
need to implement a new protocol whenever the frequencies
of read and write operations change.

At the heart of our protocol lies the new idea of logi-
cal and physical levels in a tree. In short, read operations
are carried out on any physical node of every physical level
of the tree whereas the write operation is performed on all
physical nodes of a single physical level of the tree.

We discuss optimal configurations, proving in particular
a new lower bound, of independent interest, for the case of
a binary tree.

1. Introduction

In large distributed systems, data is replicated in order
to achieve fault-tolerance as well as improve system per-
formance. However, underlying synchronization protocols,
also known as replica control protocols, are required in or-
der to maintain data consistency among the replicas. These
protocols basically implement two operations:read and
write. When one-copy equivalence is to be ensured, which
is the case we consider in this paper, the write operation
must store a new value of the data whereas the read opera-
tion must return the most recent value written.

Given the importance of the topic, several replication
protocols have been described in the literature. They dif-
fer according to various parameters such as their commu-

nication costs, their ability to tolerate replica failures (also
termed as their availability), as well as the load they impose
on the system. For a system ofn replicas, the well known
ReadOneWriteAll(ROWA) [3] protocol has a read cost of1
and a write cost ofn. That is, a client needs only to contact
a single replica to read a value, whereas it needs to contact
all (n) replicas to write a value. Read operations are highly
fault-tolerant and induce a load of1

n
whereas the availabil-

ity of write operations is penalized due to the fact that the
crash of a single replica prevents the write operations from
terminating successfully; they induce a system load of1.

The Majority Quorumprotocol [13] has both read and
write communication costs ofn+12 for an odd-sized num-
ber of replicasn and imposes a system load of at least0.5.
It tolerates replica failures for read and write operations at
the expense of increased read costs with respect to those of
ROWA. Both ROWAandMajority Quorumprotocols have
a communication cost ofO(n): the cost thus increases lin-
early with the number of replicas in the system.

By imposing a logical structure on the replicas of the
system, it is possible to reduce the communication costs fur-
ther. The

√
n protocol (finite projective planeFPP) [9], the

Grid protocol [4], theTree Quorumprotocol [2], theHQC
protocol [8] and thePaths system[10] arrange logically the
replicas of the system within a specific structure while, just
like the Majority Quorumprotocol, still making use of a
quorum system. The load of these protocols was studied
in [10] using linear programming. It was proven that the
best optimal load of a quorum system ofn replicas is 1√

n

if the smallest quorum of the system is of size
√
n. It was

also established that the load of the system becomes higher
as much as the size of the smallest quorum of the system
becomes less than

√
n.

The logical organization ofn replicas of the system into
certain structures such as a finite projective plane or a grid
makes the smallest quorum become of size

√
n resulting in

the best optimal load of1√
n

. The tree structures provide
much smaller quorums of sizelog(n) but at the expense of
very high system loads.

The motivation of this paper is to ask whether it is possi-
ble for a tree-based replica control protocol to induce a low
system load with low communication costs and acceptable
availability.

In a tree protocol, every node of the tree represents a
replica of the system: the height of the tree is typically de-
noted byh whereasn denotes the number of replicas. One
of the first tree-based protocols [1] has a read cost that varies

from 1 to (d+1)h and a write cost of(d+1)h+1−1
d

where each
node of the tree has2d+1 descendants (for a non negative
value ofd). In [7], the the idea of [1] was generalized to
derive a protocol with a read cost that ranges from1 to Sh

whereas the write cost is ofO(log(n)) where every node of
the tree hasS= 3 descendants. In [5], the proposed protocol
requires a much smaller read costs than in [7] where such a
protocol has a read cost that ranges from1 to S

h
2 whereas

the write operation has a cost ofO(log(n)) where every
node of the tree hasS= 3 descendants. All these protocols
have a read cost of1 in the best case. However such a cost
is achieved by accessing only the root of the tree: therefore
the read operations of [1] and [7] having a cost of1 induce a
system load of1 whereas those of [5] induce a system load
of 0.5. Also, all these protocols are vulnerable to the root
crashing; in this case, no more write operations can be ac-
complished and these write operations impose a system load
of 1 because the root is a member of every write quorum.

The drawback of not completing any write operation
when the root of the tree crashes was solved in [2]. A read or
write operation is performed by selecting a path that starts
from the root of the tree and ends up at one of the leaves.
If such a path cannot be constructed due to some failures
then any inaccessible replica is replaced by paths that start
from all of its descendants and end up at their corresponding
leaves. This protocol has thus a read or write cost that varies
from log n to n+12 . For efficiency purposes, the authors con-
sidered the case of a binary tree. It was shown in [10] that
the optimal system load of [2] is2

h+2 when performing read
or write operations. However, this optimal load is achieved
with a communication cost much higher thanlog n. A com-
munication cost (or a quorum size) oflog n can be achieved
by taking a path that starts from the root of the tree and ends
up at one of the leaves. Such a quorum size oflog n induces
an optimal system load of1 since every such quorum has
the root of the tree as its member and any strategy of pick-
ing quorums of this size picks the root.

In Hierarchical Quorum Consensus(HQC) [8], a node
does not necessarily correspond to a replica. The protocol
is based on theQuorum Consensusapproach and organizes
the replicas of the system into a logical, multilevel hierarchy
where only the leaf nodes of the tree represent replicas of
the system. For efficiency purposes, the case of a ternary
tree is considered and is proved that the size of the quorums
of such a system isn0.63 if the size of a quorum at each

level is 2. It was shown in [10] that the optimal system load
of HQC is n−0.37which is higher than the best load of1√

n
.

We propose in this paper a protocol, which we call the
arbitrary protocol, and which somehow generalizes the pro-
tocol of [8]. As in the latter, we also organize logically the
replicas into a tree structure and every node of this tree can
be eitherlogical or physical: a physical node corresponds
to a replica of the system whereas a logical node does not.
At the heart of our protocol lies the new notions ofphysical
levelwhich contains at least one physical node andlogical
levelwhich has all of its nodes logical. Basically, the read
operation is carried out on any single physical node at ev-
ery physical level of the tree whereas the write operation is
performed on all physical nodes of a single physical level of
the tree. The structure of this tree can be configured based
on the frequencies of read and write operations. If the write
operations dominate in the system, then we add as much
physical levels to the tree as possible. On the other hand,
if the system ismostly-read, then all the replicas of the sys-
tem are arranged into one physical level. We propose an
algorithm that configures the tree structure by taking into
account both read and write frequencies. We show that the
write operations need only induce a system load of1√

n
with

a communication costs of
√
n, which is lower than exist-

ing tree replication protocols. Yet we preserve comparable
write availability. On the other hand, we show that the read
operations need only induce a cost of

√
n which is lower

than the existing tree replication protocols with comparable
system load and availability. We prove a new lower bound
of the system load of the binary tree structure of [2] and
show that the write operations of our protocol induce a load
of 1
log(n+1) which is lower than the one proved in [10] of
2

log(n+1)+1 . Hence our approach provides a “spectrum” al-
gorithm which can be tuned to suit theread-write ratio in
the system.

The rest of the paper is organized as follows. We start
by introducing few notations and give our representation of
a tree structure using these notations. Then we detail how
read and write operations of our protocol are performed and
give for each operation its corresponding communication
cost, availability and system load. We discuss the trade-offs
in constructing the tree structure based on the frequencies
of read and write operations.

2. Preliminaries

2.1. Definitions, notations and propositions

Most of the definitions, propositions and notations of this
section are inspired by [10].

DEFINITION 2.1 A Set systemS = { S1, S2, . . . , Sm }
is a collection of subsets Si ⊆ U of a finite universe U. A

Quorum system is a set systemS that has the intersection
property:S∩R 6= ∅ for all S,R ∈S. The sets of the system
are called quorums.

DEFINITION 2.2 A coterie is a quorum systemSthat has
the minimality property: there are noS,R ∈ S; S ⊂ R .

DEFINITION 2.3 A bi-coterie is a systemS that has
a separate set of read quorumsR = { R1,R2,. . . ,Rm }
where Ri ⊆ U and a separate set of write quo-
rums W = {W1,W2, . . . ,Wm } whereWi ⊆ U , such that
every read quorum intersects every write quorum,
i.e.R ∩W 6= ∅ ∀R ∈R and∀W ∈W.

DEFINITION 2.4 Consider a distributed system
S= { S1, S2, . . . ,Sm } over a finite universe U. We
say thatw ∈ [0, 1]m is a strategy forS if it is a probability

distribution over the subsetsSj ∈ S, i.e.
m∑

j=1

wj = 1.

DEFINITION 2.5 Let a strategy w be given for a system
S= { S1, S2, . . . ,Sm } over a finite universe U of size n.
For a replica of the systemi ∈ U , the load induced by w on

i is lw(i) =
∑

i∈Sj

wj . The load induced by a strategy w on a

systemS is:

Lw(S) = max lw(i) ∀i ∈ U.

The system load on a systemS is given by:

L(S) = minLw(S) ∀w ,

where the minimum is taken over all strategies w.

NOTATION 2.1 Let n denote the number of replicas of the
system and let h denote the height of the tree.

NOTATION 2.2 For a vectory ∈ [0, 1]n and a setS ⊆ U ,

let y(S) =
∑

i∈S

yi.

NOTATION 2.3 For a set of write quorumsW, let m(W)
denote the number of write quorums ofW. For a set of read
quorumsR, let m(R) denote the number of read quorums
of R.

PROPOSITION 2.1 Let a systemSbe given, and let w be
a strategy forS with an induced load ofLw(S)= L. Then
L is the optimal load iff there exists:y ∈ [0, 1]n such that
y(U) = 1 and y(S)≥ L ∀S ∈ S .

2.2. System model

A distributed system consists of a set of distinct sites that
communicate by exchanging messages through communi-
cation links. A site consists of a processing unit and a stor-
age device and has a uniqueSID whereas a communication
link is a bidirectional communication medium between two
sites. Sites can fail by stopping, as a result of the crash of a
critical subsystem, or they can fail by performing arbitrary
or malicious actions. We do not deal with suchByzantine
failures [11] in this paper. We assume that sites fail inde-
pendently with the same probabilityq. Moreover they are
fail-stop and failures are transient and detectable. Links can
fail either by not delivering messages at all to their desired
destination, or by dropping or excessively delaying some
of them. We also consider a special case of site and link
failures that lead to the partitioning of the system where
only sites in the same partition can communicate with each
other. No assumption is made on the underlying topology
of the network. We assume that sites of the system can be
logically organized into a tree structure. Hence, we con-
sider basic tree terminologies such as root, children, parent,
leaves, height, node and level. Each client uses a centralized
concurrency control scheme to synchronize accesses to the
replicas. We assume that users interact with sites by means
of transactions which are partially ordered set of read and
write operations. Moreover, we assume that transactions
are executed atomically, i.e. a transaction either commits
or aborts at all participating sites. If a transaction contains
write operations, a 2-phase-commit protocol at the end of
the transaction is executed among all sites. Finally, we con-
sider timestamps that consist of a version number and an
SIDwhich are used for read and write operations.

3. Our protocol

3.1. Notations and tree representation

Given a distributed system ofn replicas, we organize
them logically into a tree structure of heighth where any
non-leaf node of this tree can have any number of descen-
dants. More precisely, letS(i,k) denote theith node of the
kth level of the tree where the orientation is taken from left
to right and top to bottom respectively such thati ∈ [1,mk]
andk ∈ [0, h]. Letmk denote the total number of nodes at

level k such thatmk =
mk−1∑

i=1

m(i, k − 1) ∀k; k ∈ [1, h] and

m0 = 1. Letm(i, k) denote the number of descendants of
a non-leaf nodeS(i,k), wherei andk have the same defini-
tions as above, such thatm(i, h) = 0 ∀i; i ∈ [1,mh].

A node of the tree is said to belogical if it does
not represent a replica; otherwise the node is said

to be physical. Let S log(i,k) and Sphy(i,k) denote a
logical and a physical node of the tree respectively.
Let mlog(i,k) and mphy(i,k) denote respectively the num-
ber of logical and physical descendants of a non-leaf
nodeS(i,k) such thatm(i,k) =mlog(i,k) +mphy(i,k) , where
m(i,h) =mlog(i,h) =mphy(i,h) = 0 ∀i; i ∈ [1,mh]. Then
the total number of physical nodes at levelk is denoted

by:mphy k =
mk−1∑

i=1

mphy(i, k − 1) ∀k; k ∈ [1, h] andmphy 0 = 1

if the root of the tree is a physical node. On the other
hand, the total number of logical nodes at levelk is denoted

by: mlog k =
mk−1∑

i=1

mlog (i, k − 1) ∀k; k ∈ [1, h] andmlog 0 = 1

if the root of the tree is a logical node. Hence we have
mk =mphy k +mlog k ∀k; k ∈ [0, h] such thatm0 = 1 because
the root of the tree is either a physical or a logical node.

A level of the tree is calledphysicalif it contains at least
one physical node. LetKphy denote the set of all physical
levels of the tree where|Kphy| denotes the number of physi-
cal levels such that 1≤ |Kphy| ≤ h + 1. LetKphy[u] indicate
the level number of the physical level at indexu of Kphy

such thatu ∈ [0,|Kphy| – 1]. We assume that the physical
levels ofKphy are sorted in ascending order of their level
numbers. On the other hand, we call a level of the tree
logical if all of its nodes are logical, i.e.mk = mlog k and
mphy k = ∅. LetKlog denote the set of all logical levels of the
tree and let|Klog| denote the number of such logical levels
where 0≤ |Klog| ≤ h and|Klog| + |Kphy| = 1 + h .

ASSUMPTION 3.1 We assume that:
mphy 0< mphy 1≤ mphy 2≤ . . . mphy h such that the total number

of replicas of the system is given by: n =
∑

k∈Kphy

mphy k

Figure 1. A tree whose purple circles repre-
sent logical nodes and the blue ones repre-
sent physical nodes. Such a tree has one log-
ical level (0) and two physical levels (1 and 2).

3.2. The operations

Our system is abicoteriewhere the set of read quorums
R and the set of write quorumsW are constructed based
on definition 2.3. Furthermore, we assign separate strate-
gies of picking read and write quorums using definition
2.4. More precisely, letwread denote a strategy for pick-

ing read quorums ofR such thatwread =
m(R)∑

j=1

wread j and

letwwrite =
m(W)∑

j=1

wwrite j denote a strategy for picking write

quorums ofW wherewread j, wwrite j, m(R), and m(W)
are defined in next sections. The availability computa-
tions are carried out by taking the assumption that ev-
ery replica isindependently availablewith a probability
p = 1 –q greater than12 : it was proven in [12] that if the
replicas are fail-prone, with an individual availability prob-
ability less than12 , then the best strategy is not to repli-
cate and to pick asingle centralized king. In the rest of
this section, we used to denote theminimal number of
physical nodes of the physical levels of the tree such that
d =min {mphy k ∀k; k ∈ Kphy}, and usee to denote themax-
imal number of physical nodes of the physical levels of
the tree such thate=max {mphy k ∀k; k ∈ Kphy}. Next, we
demonstrate how we construct the read and write quorums
and give the communication cost, availability and system
load of read and write operations of our protocol.

3.2.1 The read operation

A read operation takes place by accessing all the mem-
bers of a read quorumRj ∈ R and retrieves the value of
data whose timestamp has the highest version number and
the lowest site identifier. A read quorumRj is constructed
by taking as its members any physical node of every physi-
cal level of the tree:
i.e.Rj = {Sphy(i,k) ∀k; k ∈ Kphy such that∃i; i ∈ [1,mk] }.

FACT 3.2.1 Let R = { R1, R2,. . . ,Rj } be the set of read
quorums such that every read quorumRj is constructed in
the same manner as explained in the previous paragraph.

Then m(R) =
∏

k∈Kphy

mphy k .

In order to compute the load of the system induced by
this read operation, we take a strategywread that picks each
read quorumRj with a probabilitywread j = 1

m(R) where

j ∈ [1,m(R)].
The read operation of our protocol has a communica-

tion cost ofRDcost = 1 + h – |Klog|, an availability of

RDavailability (p) =
∏

k∈Kphy

(1 − (1 − p)mphy k) and imposes

an optimal system load ofLRD = 1
d

. It is important to note
that as much asd increases, as much as the load imposed by
the read operations on the system and communication cost
diminish and the availability increases.

3.2.2 The write operation

A write operation, after obtaining the highest version
number of data and incrementing it by one, accesses all the
members of a write quorumWj ∈ W in order to update
their data with a new value and timestamp. A write quorum
Wj is constructed by taking as its members all the physical
nodes of any single physical level of the tree:
i.e.Wj = {Sphy(i,k) ∃k; k ∈ Kphy such that∀i; i ∈ [1,mk] }.

FACT 3.2.2 LetW = {W1,W2,. . . ,Wj } be the set of write
quorums such that every write quorumWj is constructed in
the same manner as explained in the previous paragraph.
Then m(W) = 1 + h – |Klog|.

In order to compute the load of the system induced by
this write operation, we take a strategywwrite that picks
each write quorum of our systemWj with a probability
wwrite j = 1

m(W) wherej ∈ [1,m(W)].
The write operation of our protocol thus has a min-

imum cost ofd, a maximum cost ofe and anaverage

cost ofWRcost =
∑

k∈Kphy

mphy k * w write j. Hence such a

strategywwrite of picking write quorums induces a com-
munication cost of n

1+h−|Klog|
. This operation has an

availability of WRavailability (p) = 1 –WRfail (p) where

WRfail (p) =
∏

k∈Kphy

(1− pmphy k) and it imposes an optimal

system load ofLWR = 1
1+h−|Klog|

. It is important to note
that as much as thenumber of physical levelsof the tree
increases, as much as the load imposed by the write oper-
ation on the system and communication cost diminish and
the availability increases.

3.2.3 Discussion

The proofs of theoptimality of system load induced by
the operations of our protocol are provided in theappendix
of this paper. The optimal system loads are computed by as-
suming that all replicas of the system are functioning prop-
erly. Therefore, the load of the system imposed by the op-
erations becomes higher as the replicas of the system start
to fail one after another. In order to compute the expected
load knowing that replicas are available with a probability
p, we use the following two equations:
EQUATION 3.2
ELRD = RDavailability(p) ∗ (LRD−1) + 1
ELWR =WRavailability(p) ∗ LWR +WRfail(p) ∗ 1.

Therefore, we can notice from these two equations that
as much as the availability of the operations is high, as much
as the expected load is close to the computed system load
induced by the operations. We call a system that has this
characteristicstable.

Next, we demonstrate that our system is abicoterie i.e.
any read quorum has anon empty intersectionwith any
write quorum. The read and write quorums of our proto-
col are of the following form:
Read Quorum =anyreplica ofeveryphysical level
Write Quorum =all replicas ofanyphysical level

The proof is by induction on the number of physical lev-
els of the tree:
Basis: Trivial for a tree of one physical level because all the
replicas of the system are found at the same level.
Induction hypothesis: Assume that it holds for a tree ofh
physical levels:|Kphy| = h .
Induction Step: Consider a tree ofh + 1 physical levels.
Since every read quorum already had an intersection with
every write quorum ofh physical levels (induction hypoth-
esisstep) then it holds true because the fact of adding one
new physical level does not prevent the read quorums to
have a non empty intersection with any write quorum of
h physical levels. On the other hand, since the read quo-
rums contain a replica from thenew physical leveland the
new write quorumcontains all the replicas of this same new
physical level, then any read quorum has a non-empty in-
tersection with this write quorum. Hence, by induction,
our protocol guaranteesnon-empty intersectionof read and
write quorums.

3.3. The tree organization and the trade-
offs

Given a distributed system ofn replicas, we organize
them logically into a tree structure as explained in section
3.1 . However, this tree structure must be configured in such
a way that it takes into account thefrequenciesof read and
write operations of the system. For instance, as much as the
number of physical levels of the tree increases, as much as
the communication cost and the system load of the write op-
erations diminish and the availability of the write operations
becomes better. However, the fact of adding more physical
levels to the tree results in increasing the communication
cost and the system load of the read operations and in dete-
riorating their availability. Therefore, such a configuration
is suitable for systems where write operationsdominatesthe
read ones. On the other hand, decreasing the number of
physical levels of the tree to theminimal(only one physical
level) diminishes the communication cost and the system
load of the read operations and improves their availability.
Therefore, such a configuration is appropriate for systems
whose operations aremostly-readand such a configuration

behaves likeROWA. Finally, if both read and write opera-
tions happen inproportional frequencies,then the tree must
be configured in such a way that both operations provide
acceptable results. For a distributed system ofn replicas
where every replica is available independently with a prob-
ability p such thatn > 32 andp > 0.65, the following or-
ganization of replicas always gives us satisfactory results
for both read and write operations:mlog 0 = 1,mphy 1 = 4,
mphy 2 = 4, mphy 3 = 4, mphy 4 = 4, mphy 5 = 4, mphy 6 = 4 and
mphy 7 = 4 whereas the remaining (n – 28) replicas of the
system can be added to the succeeding physical levels of
the tree in such a way that they obey the assumption 3.1.
Next we give an algorithm to construct the arbitrary tree
whenn> 64:

Algorithm 1 An algorithm to construct the arbitrarytree
1- Construct the arbitrary tree of alogical root nodeby fix-
ing |Kphy| =

√
n andh = |Kphy| .

2- Arrange 4 replicas at the1st seven physical levels of the
tree.
3- Arrangen−28√

n−7 replicas at every remaining physical level
of the tree by obeying the assumption3.1.

Therefore, when usingAlgorithm1 to configure the tree,
our protocol behaves in the following manner: the write
operation has aminimumcost of 4, amaximumcost of
n−28√
n−7 and anaveragecost of

√
n. It has afailure probabil-

ity of WRfail (p) = (1− p4)7 ∗ (1− p
(n−28√
n−7

)
)(
√
n−7)

and imposes an optimal system load of1√
n

.
On the other hand, the read operation has a
communication cost of

√
n, an availability of

RDavailability(p) = (1− (1− p)4)7 ∗ (1− (1− p)(
n−28√
n−7

)
)x

wherex =
√
n− 7, and imposes an optimal system load of

0.25. In order to study thebehaviorof the availability of
the operations for very large number of replicasn such that
0.5< p<1, we compute:
lim
n→∞

WRavailability(p) = 1 − lim
n→∞

WRfail (p) =

1−(1−p4)7 and lim
n→∞

RDavailability(p) = (1−(1−p)
4)7.

We can notice from these two equations that whenp> 0.8,
both operations have an availability of≈ 1.

Finally, if we assume that our protocol is applied directly
to a tree structure where every node of the tree has the
same number of descendants and represents a replica of the
system, then the write operations of our protocol impose
an optimal load of 1

log(n+1) and these write operations
are highly available (always greater than the availability
probabilityp) and have an average cost of n

log(n+1) whereas
the read operations of our protocol impose the highest
load of 1 to the system and these operations are poorly
available (always less than the availability probabilityp)
but has a communication cost oflog (n+ 1). Furthermore,

mk mphyk mlog k

m0 = 1 mphy 0 = 0 mlog 0 = 1
m1 = 3 mphy 1 = 3 mlog 1 = 0
m2 = 9 mphy 2 = 5 mlog 2 = 4

Table 1. The total, physical and logical nodes
of every level of the tree of Figure 1.

it was proven in [10] that the optimal system load imposed
by read or write operations of [2] is 2

log(n+1)+1 which is
higher than the system load imposed by the write operation
of our protocol. Therefore, we provide a new lower bound
on the load of the tree structure of [2] imposed by write
operations of our protocol.

3.4. An example

In this section, we give an example of a distributed sys-
tem of 8 replicas which are organized logically into a tree
structure as illustrated in Figure 1. We can notice that, such
a tree has a height of 2, one logical level at zero, and two
physical levels (1 and 2). Table 1 gives the corresponding
numbers of total, physical and logical nodes of every level
of the tree using the notations of section 3.1. Then we have:

• n =mphy 1 +mphy 2 = 3 + 5 = 8 such that this tree organi-
zation obeys to the assumption 3.1

• Kphy = {1,2}, |Kphy| = 2 andKlog = {0}, |Klog| = 1

• m(R) =mphy 1*mphy 2 = 3*5 = 15 andm(W) = 2

Using the definitions of sections 3.2.1 and 3.2.2 we obtain:

• RDcost = 2,RDavailability (0.7) = 0.97 andLRD = 13

• WRcost = 4,WRavailability (0.7)= 0.45 andLWR = 12

• ELRD = 0.35 andELWR = 0.775

In the rest of this paper, we represent such an arbitrary tree
in the following manner: 1–3–5 where the numbers 3 and 5
denote the number of physical nodes at each physical level
of the tree and “1” denotes alogical root node.

4. Configurations

In this section, we compare the communication costs as
well as the system and expected system loads of read and
write operations by setting up six different configurations.
In the first one, which we call “BINARY”, we take the case
of a binary tree of [2] such that the computations of the load
induced by read and write operations are based on the re-
sults of section 6.3 of [10]. The communication costs and

availability of the operations are based on the results of sec-
tion 4 of [2] where the communication costs are computed
by giving f a value of 22+h whereh is the height of the bi-
nary tree andf indicates the fraction of quorums that include
the root of a tree of levell+1 . In the second case, we ap-
ply the read and write operations of our protocol directly to
the binary tree structure of [2] without any modifications of
this structure and we call such a configuration “UNMOD-
IFIED”. The third case is taken by creating a completely
arbitrary tree of alogical root node by means ofAlgorithm
1 and apply the read and write operations of our protocol
where we call such a configuration “ARBITRARY”. The
“HQC” is studied by taking the tree structure of [8] where
the computations of the load induced by read and write op-
erations are based on the results of section 6.4 of [10] and
the communication costs as well as availability of the op-
erations are based on the results of sections 4 and 5 of [8].
In the fifth case, we configure the tree in such a way that
the root is alogical nodeand all the replicas of the system
are placed inone and only onephysical level. By applying
read and write operations of our protocol, it behaves like
ROWAand we call such a configuration “MOSTLY-READ”.
Finally, the last configuration is determined by constructing
the tree of alogical rootnode in such a way that for an odd-
sized number of replicas,|Kphy| = n−1

2 andh = |Kphy| such
that every physical level consists of two replicas and we call
such a configuration “MOSTLY-WRITE”. It is important to
note that, these last two configurations are special cases of
the3rd configuration. The communication costs, availabil-
ities and system loads of read and write operations of the
configurations 2, 3, 5, and 6 are based on the definitions of
sections 3.2.1 and 3.2.2.

The configurations are carried out by considering a dis-
tributed system composed of 15, 31, 63, 127 and 255 repli-
cas. The followings are the representations of the arbitrary
tree of the third configuration for the above-mentioned num-
ber of replicas respectively:1-3-3-3-3-3, 1-3-4-4-4-4-4-4-
4, 1-4-4-4-4-4-5-5-10-10-13, 1-4-4-4-4-4-4-4-24-25-25-25
and 1-4-4-4-4-4-4-4-25-25-25-25-25-25-25-25-27.

4.1. The communication costs

Figure 2 illustrates the communication costs of read and
write operations of our configurations. We can notice that,
of the six configurations, “MOSTLY-READ” has the low-
est communication cost of1 for read operations and the
worst cost ofn for write operations. These costs are due
to the wayn replicas are arranged logically intoone and
only one physical level. For an odd-sized number of repli-
casn, “MOSTLY-WRITE” has the highest costs ofn−12 for
read operations and the lowest cost oftwo for write oper-
ations. This is because “MOSTLY-WRITE” maximizes the
number of physical levels of the tree by adding ateach phys-

Figure 2. The communication costs of read
and write operations of our configurations

ical level two replicas. However, these two configurations
are suitable for specific environments where the read and
write operations do not happen in proportional frequencies.
Hence in the rest of this section, we compare the commu-
nication costs of read and write operations of the first four
configurations: “BINARY”, “ HQC”, “ UNMODIFIED”, and
“ARBITRARY”.

Of these four configurations, “BINARY” has the high-

est costs of 2
h∗(1+h)h

h∗(2+h)h−1 –2
h

for both read and write opera-
tions whereh denotes the height of the binary tree. On the
other hand, “ARBITRARY” has the lowest communication
costs for write operations whereas for read operations, it
has lower costs than “BINARY” and “HQC”, where the lat-
ter has a read and write costs ofn0.63, and has comparable
costs with respect to “UNMODIFIED”. Finally, this latter
has the least communication costs oflog(n + 1) for read
operations and has write costs of nlog(n+1) which is com-
parable with respect to “ARBITRARY” when n < 200 and
comparable to those of “HQC” for n> 200.

4.2. The (expected) system loads

In this section, we present the (expected) system loads
of read and write operations of our configurations. The ex-
pected system loads are computed using equations 3.2.

4.2.1 The read operation

The (expected) system loads of read operations are illus-
trated in Figure 3. We can notice that, of the six configu-
rations, “MOSTLY-READ” has the lowest system load of1

n

and we can observe that such a system load isstableand di-
minishes as the number of replicas increases. On the other
hand, “MOSTLY-WRITE” has a system load of12 for any
number of replicas and such a system load isinstableand

reaches easily to1 due to the fact that at every physical level
there are two replicas. In the rest of this section, we com-
pare the system and expected system loads imposed by read
operations of the first four configurations.

Figure 3. The (expected) system loads of read
operations of our configurations

We can observe that “UNMODIFIED” has the highest sys-
tem and expected system loads of1 for any number of repli-
cas among the six configurations. This is due to the fact
that the root is a member of every possible read quorum
and hence every read operation must access it. On the other
hand, we can notice in Figure 3 that “BINARY”, “ HQC” and
“ARBITRARY” havequite stablesystem loads which is due
to thehigh availabilityof their read operations.

Among the first four configurations, “HQC” has theleast
system loads ofn−0.37 and the least expected system loads
whenn > 15. On the other hand, “BINARY” and “ARBI-
TRARY” have quitesimilar (expected) system loads and
that they are comparable to those of “HQC”. Moreover,
“ARBITRARY” has always a system load of14 whenn> 32,
whereas “BINARY” has always a system load of 2

log(n+1)+1 .

4.2.2 The write operation

The (expected) system loads of write operations are illus-
trated in Figure 4. We can notice that, among the six config-
urations, “MOSTLY-READ” has the highest (expected) sys-
tem loads of1 due to the fact that alln replicas of the sys-
tem participatein every write operation. On the other hand,
“MOSTLY-WRITE” has the least system load of2

n−1 for an
odd-sized numberof replicasn and such a system load is
stable and diminishes as the number of replicas of the sys-
tem increases. In the rest of this section, we compare the
system and expected system loads imposed by write opera-
tions of the first four configurations .
We can observe that among the first four configurations,
“BINARY” has the highest system load of 2

log(n+1)+1 and

the highestexpected system load for any number of repli-
cas. “ARBITRARY” has theleastsystem load for any num-
ber of replicas. The load imposed by the write operations of

Figure 4. The (expected) system loads of
write operations of our configurations

our protocol is always1√
n

whenever the tree is constructed
using Algorithm 1. Furthermore, this configuration has the
smallest expected system load for small number of replicas
n and has comparable expected system loads with respect
to “HQC” as the number of replicasn becomes larger due
to the fact that the availability of the write operations of
“HQC” is better than that of “ARBITRARY” when p< 0.8.
Additionally, the write operations of “HQC” impose a sys-
tem load ofn−0.37 and have thebest expectedsystem load
for large number of replicasn. Finally, “UNMODIFIED”
has the second lowest system load of1

log(n+1) and has com-
parable expected system loads with respect to the config-
urations “BINARY”, “ HQC” and “ARBITRARY”. However
as we have seen in the previous section such a configura-
tion has theworst system loadfor read operations. The ex-
pected system loads imposed by read and write operations
of “ARBITRARY” become similar to the computed system
loads, as the availability probabilityp of the replicas be-
comes higher than 0.8.

5. Conclusion

In a large replicated system, multiple copies of data must
be kept synchronized by means of replica control protocols.
Such protocols inducetrade-offsbetween the communica-
tion costs and the system load. Whenever a low communi-
cation costs is desired for both read and write operations, a
high load penalty must be paid by the system and vice versa.
Tree-based replica control protocols can for instance pro-
vide low communication costs ofO(log(n)) for both read
and write operations but at the expense of very high system
loads.

In this paper, we proposed a new tree-based replication
protocol: the arbitrary protocol. This can be configured
appropriately based on thefrequenciesof read and write
operations of the system. “MOSTLY-READ” is best suited
for systems whereread operations are carried out exces-
sively, whereas “MOSTLY-WRITE” is appropriate for sys-
tems wherewrite operations dominate. We identified a con-
figuration which has the best combined read and write com-
munication costs of2 ∗

√
n and has the least system load of

1√
n

imposed by write operations compared to the existing
tree replica control protocols and its read operations always
induce a system load of14 . Our proposal enables the shift-
ing from one configuration into another by just modifying
the structure of the tree. There is no need to implement a
new protocol whenever the frequencies of read and write
operations of the system change.

Acknowledgement: We would like to thank the depart-
ment of Mathematics of Paul Sabatier University and pre-
cisely Mr. Dominique Bakri and Miss Guitta Sabiini for
their kind remarks on mathematical expressions.

References

[1] D. Agrawal and A. E. Abbadi. The tree quorum protocol: An
efficient approach for managing replicated data.Proceed-
ings of the 16th VLDB Conference, pages 243–254., 1990.

[2] D. Agrawal and A. E. Abbadi. An efficient and fault-tolerant
solution for distributed mutual exclusion.ACM Transactions
on Computer Systems, pages 1–20, 1991.

[3] P. Bernstein and N. Goodman. An algorithm for concurrency
control and recovery in replicated distributed databases.
ACM Transactions on Distributed Systems, 9 (4), 1984.

[4] S. Cheung, M. Ammar, and A. Ahamad. The grid proto-
col: A high performance scheme for maintaining replicated
data. Proc. IEEE Sixth Int’l Conf. on Data Engineering,
pages 438–445, 1990.

[5] S. Choi, H. Youn, and J. Choi. Symmetric tree replica-
tion protocol for efficient distributed storage system.ICCS,
pages 474–484, 2003.

[6] H. Garcia-Molina and D. Barbara. How to assign votes in a
distributed system.J ACM 32, pages 841–860, 1985.

[7] H. Koch. An efficient replication protocol exploiting logical
tree structures.The 23rd Annual International Symposium
on Fault-Tolerant Computing, pages 382–391, 1993.

[8] A. Kumar. Hierarchical quorum consensus: A new algo-
rithm for managing replicated data.IEEE Transactions on
Computers, pages 996–1004, 1991.

[9] M. Maekawa. A
√
n algorithm for mutual exclusion in de-

centralized systems.ACM Transactions on Computer Sys-
tems, pages 145–159, 1985.

[10] M. Naor and A. Wool. The load, capacity, and availability
of quorum systems.SIAM J. Comput, pages 423–447, 1998.

[11] M. Pease, R. Shostak, and L. Lamport. Reaching agreement
in the presence of faults.J ACM, pages 228–234, 1979.

[12] D. Peleg and A. Wool. The availability of quorum systems.
Inform. and Comput, pages 210–223, 1995.

[13] R. Thomas. A majority consensus approach to concurrency
control for multiple copy databases.ACM Transactions on
Database Systems, 4 (2):180–207, 1979.

6. Appendix: proofs of system load optimality

In this section, we provide the proofs ofoptimalsystem
loads induced by read and write operations of our protocol.

6.1. The load of read operations

In this section, we prove that theoptimal system load
imposed by read operations of our protocol ofn replicas
arranged logically into a tree structure is:LRD = 1

d
where

d =min {mphy k ∀k; k ∈ Kphy}.

6.1.1 Proof of the upper bound:LRD ≤ 1
d

Let R = { R1, R2,. . . ,Rj } be the set of read
quorums such that every read quorumRj is con-
structed in the same manner as explained in section

3.2.1. Then by Fact 3.2.1, we havem(R) =
∏

k∈Kphy

mphy k.

Let f(u) =
|Kphy|−1∏

x=u

mphy Kphy[x] ×
u−1∏

y=0 ; y 6=u

mphy Kphy[y] and

let g(u)=mphy Kphy[u] . Then every replicaSphy(i,Kphy[u])
of the system is a member ofmq read quorums where
mq is given by: mq = f(u)

g(u) ∀u;u ∈ [0, |Kphy| − 1] and
∀i; i ∈ [1,m Kphy[u]].

Let wread =
m(R)∑

j=1

wread j be a strategy of picking read

quorumsRj ∈ R as in definition 2.4 such that every
wread j = 1

m(R) ∀j; j ∈ [1,m(R)]. It is clear thatwread is a

strategy since
m(R)∑

j=1

wread j = 1. By definition 2.5, the load

induced by this strategywread on every replica of the sys-
tem is: lwread (Sphy(i,Kphy[u])) = mq × wread j = f(u)

g(u)×m(R)
∀u;u ∈ [0, |Kphy| − 1] and ∀i; i ∈ [1,m Kphy[u]].

However, f(u) =
∏

k∈Kphy

mphy k ∀u;u ∈ [0, |Kphy| − 1],

then the load induced on every replica of the system is:

lwread (Sphy(i,Kphy[u])) =
1

g(u)

∀u; u ∈ [0, |Kphy| − 1] and∀i; i ∈ [1,m Kphy[u]].
Hence by definition 2.5, the load induced by this strategy

wread on the set of read quorumsR is:

Lwread(R) = max lwread (Sphy(i,Kphy[u]))

∀u; u ∈ [0, |Kphy| − 1] and∀i; i ∈ [1,m Kphy[u]].
Let d =min{mphy Kphy[u] } ∀u; u ∈ [0, |Kphy| − 1] then
Lwread(R) = 1

d
and henceLRD ≤ 1

d
. Keep in mind that

Lwread(R) is the load induced by a strategywread on the set of
read quorumsR. Next we have to prove that such a strategy
is the optimal one that induces the optimal system load of
LRD when performing read operations of our protocol.

6.1.2 Proof of the lower bound:LRD ≥ 1
d

Given a tree of heighth, let t denote thefirst physical level
of this tree where the orientation is taken from top to bot-
tom. Letmphy t denote the number of physical nodes at level
t. Then by assumption 3.1, we havemphy t = d whered de-
notes theminimalnumber of physical nodes of the physical
levels of the tree. Let us suppose that there exists a strategy
wread that induces a system load ofLwread(R) = 1

d
when per-

forming read operations of our protocol. Now we have to
show that such a load is the optimal one. By using notation
2.2, then∀i; i ∈ [1,mt] wheremt denotes the total num-
ber of nodes at levelt, let yj = 1

d
for every replicaSphy(i,t)

andyj = 0 for the replicas other than those at levelt. Then
clearlyy(U) = 1 whereU is the universe of the system and
y(Rj) = 1

d
for every read quorumRj ∈ R. Then by propo-

sition 2.1 such a load is optimal and thereforeLRD ≥ 1
d
.

Hence we deduce from the lower and upper bounds that
LRD = 1

d
.

6.2. The load of write operations

In this section, we prove that theoptimalsystem load im-
posed by write operations of our protocol on a distributed
system ofn replicas organized logically into a tree struc-
ture is: LWR = 1

1+h−|Klog|
where h is the height and

|Klog| is the number of logical levels of the tree such that
0 ≤ |Klog| ≤ h.

6.2.1 Proof of the upper bound:LWR ≤ 1
1+h−|Klog|

Let W = { W1, W2,. . . ,Wj } be the set of write quo-
rums such that every write quorumWj is constructed as
explained in section 3.2.2. Then by Fact 3.2.2, we have
m(W) = 1 + h – |Klog| whereh is the height of the tree and
|Klog| is the number of logical levels. Furthermore, every
replicaSphy(i,Kphy[u]) of the system is a member of one and
only one write quorumWj whereu ∈ [0, |Kphy| − 1] and
i ∈ [1,m Kphy[u]].

Let wwrite =
m(W)∑

j=1

wwrite j be a strategy of picking write quo-

rums as in definition 2.4 such that everywwrite j = 1
m(W) . It

is clear thatwwrite is a strategy since
m(W)∑

j=1

wwrite j = 1 . Then

by definition 2.5, the load induced by this strategywwrite on
every replica of the system is :

lwwrite (Sphy(i,Kphy[u])) =
1 ∗ 1
m(W)

∀u;u ∈ [0, |Kphy| − 1] and ∀i; i ∈ [1,m Kphy[u]]. Hence by
definition 2.5, the load induced by this strategywwrite on the
set of write quorumsW is:

Lwwrite(W) = max lwwrite (Sphy(i,Kphy[u]))

∀u;u ∈ [0, |Kphy| − 1] and ∀i; i ∈ [1,m Kphy[u]].
Then from the above equation we can say
that:Lwwrite(W) = 1

1+h−|Klog|
.

Therefore, we can conclude from the proof that
LWR ≤ 1

1+h−|Klog|
.

6.2.2 Proof of the lower bound:LWR ≥ 1
1+h−|Klog |

Given a tree of heighth that has|Klog| logical levels,
then we have (1 +h – |Klog|) write quorums such that ev-
ery replicar of the universeU belongs toone and only one
write quorum. Let us suppose that there exists a strategy
wwrite that induces a system load ofLwwrite(W) = 1

1+h−|Klog|

when performing write operations of our protocol. The next
step is to prove that such a strategy is theoptimalone that
induces the optimal load. As we have mentioned above, the
system consists of (1 +h – |Klog|) write quorums. By
using notation 2.2, then∀u;u ∈ [0, |Kphy| − 1] we pick
one replicaSphy(i,Kphy[u]) from every physical level of the
tree and assign a value of 1

1+h−|Klog|
to its yj and a value

of zero to theyj ’ s of all other replicasSphy(i,Kphy[u]) other
than the picked one. Then clearlyy(U) = 1 whereU is the
universe andy(Wj) = 1

1+h−|Klog|
for every write quorum

Wj . Then by proposition 2.1, such a load is optimal and
thereforeLWR ≥ 1

1+h−|Klog|
.

Hence we deduce from the lower and upper bounds that
LWR = 1

1+h−|Klog|
where h is the height and|Klog|

is the number of logical levels of the tree such that
0 ≤ |Klog| ≤ h.

