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Abstract

In this paper, starting from the problem of reasoning with conditional probabilities,
we expose a mathematical programming based method. We show that this method is not
really efficient and, for a certain kind of problems, gives too imprecise results. Then we
propose an exact method and finally we compare the efficiencies of these two methods.
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1. Introduction

The problem of reasoning with probabilities was studied by Nilsson in
[NILSSON 1986] handling the probability of the material implication, i.e. P(a — b).

In [PEARL 1988], Pearl reasoned with conditional probabilities, i.e. the material
implication (a — b) is viewed as the conditional event (b | a).

To reason with conditional probabilities, Pearl used Bayesian networks
([PEARL 1988]),

where Q1 is P(c | a), Q2 is P(e ! ¢), and so on.

In such networks, loops (undirected cycles, e.g., <a, c, e, d>) are allowed, but

cycles are prohibited.
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entiled “Defeasible Reasoning and Uncertainty Management Systems” (DRUMS)
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But what we want to do is to reason with conditional probabilities viewed as a
generalization of numerical quantifiers ((DUBOIS, PRADE 1988]); and we then need to
handle cycles ({DUBOIS, PRADE, TOUCAS 1989}).

So, we represent graphically the problem, using an inference network, which
generalize the notion of Bayesian network, because cycles are allowed, e.g.,

€<

where the arc between “a” and “c”” and valued “Q1” means that “Q1 a’s are ¢’s,” i.e. Q1

(1921

elements of the set “a” are in the set “c.”

In such a framework, Q1 is called a numerical quantifier and is viewed as a constraint

acting on the cardinality of “c” relative to “a,” i.e.,

b 9

and, that way, Q1 is viewed as the answer to the question: “how many a’s are ¢’s.” For

instance, “how many students are young.”

So, noticing that relative cardinality is a particular case of conditional probability,

since

_lenal

P (c|a) Al

we are going to manipulate conditional probabilities only.

The problem is now to answer to queries like “QS5 a’s are b’s” (i.e. “how many a’s

are b’s”) in the preceding network. Which is equivalent to calculate P (b |a).

We are now going to present an approximate method to compute an interval for the

lower bound and, an interval for the upper bound of P (b|a).
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2. The mathematical programming based method

In [PAASS 1988], Paass presents an approximate method based on mathematical
programming to reason with conditional probabilities.

Let U={Uy, ..., Uy, 2 set of relevant propositions, we have to construct the
smallest set W ={Wy, ..., Wp,,} of “elementary propositions™ that fulfil the following
conditions:

(a) each U; is the disjunction of some of the Wj: U; = \/] c I(l)
(b) the Wj are exclusive : W, A Wi, is false for ji # j2

(c) the W; are exhaustive : Wy v ... v Wy, is true

We have to notice that because of (b) and (c),

and p (U;) = z p(W;), where U; = \/). <10 W;
jeJ()

We can now adopt a vector notation. Each specified (prior) probability &t; can be

considered as a conditional probability3 , then

p(UY)
p(Uj)

i:

where, Ui = AjjAApe Uand Ui = Ap e U, so

p(U)= 3 p(Wjandp(Uj)= 3 p(W
je]” (1) jef (i)
Then we define two (0-1)-matrix R =[r{],, ny a0d R” =[rjy,, n,, such that
p(Uf)=r].pw and p (Uj) = 15.pw, with
p (W)
pw = :
p (an)

3p (A) =P (A 11) where 1 is the ever true event
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then g = i’L-PW/ri'.pw & (mirg - 1f).pw = c.pw.

So, in a matrix form, C*.pw = 0. Then, if we want to determine the probability of

some proposition

*

U = Vje y Wj
we are going to calculate p (U‘) = g".pw, where g* is a (0-1) vector (g; =liffje ]').

Then, solving the two following linear programs, where Cﬁigh and CT  are constraints

low
matrix,
P(U *)high =Max g* . pw P(U*)ow =Min g* . pw
pPw Pw -

Chigh - pw =0 Chigh - pw 2 0
Cl?)w-PWSO Cﬁw.prO

Y P(W;)=1 Y P(Wy)=1

i i

Vi P(W;)=>0 Vi P(W;)=0

we obtain an interval as follows
P (U *) € [P (U *)low , P (U *)high]
In [PAASS 1988], Paass calls this approach the worst-case analysis.

So, now, in the framework of conditional probabilities, if we want to determine

P(U; A Uy

IR we let P(U1 A Uz) =g..pwand P(Uz) =g . pw.

P (Uq| U2) =

Then, P(U1|Uz)e [P(U1| Ughow, P (Uil Uolnigh), solving the two following
mathematical4 programs (in Ppigh and Pjow, the last constraint expresses the prior
probability distribution, and S denotes the set of constraints):

4 linear with fractional objective functions
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Phigh Pow
= &+ - PW — Min &+ - PW

P(Ulle)high—MaX gf_pw P(U1|U2)10w—Mlnm
Cﬁigh- pw=0 Cyl:igh .pw20

Chw - pw <0 Cow - pw <0

> P(Wy)=1 > P(Wy)=1

i i

Vi P(W;)=0 Vi P(W;)=0
P,.pw=a P,.pw=a

where “P,” is the prior probabilities vector.

According to Paass, it is not possible to apply the pure SIMPLEX algorithm, because
we maximize (or minimize) a ratio where the denominator and numerator are not
independent; so, we have no more linear programs. To solve this problem we may use a

“scanning” method, i.e.

we compute first an interval [piow, Phigh] by minimizing (for piow), and
maximizing (for phigh), the denominator of the initial objective function, over
S. Then we divide this interval in equal parts, called subdivisions
[pliow, P™*1high] and solve two (one with Min - with p*ijoy, as solution, and,
one with Max - with p*ihigh as solution) new linear program given by the
integration of the constraint p € [pllow, p'*thighl to S, and whith the
numerator of the initial objective function as new objective function. So, if N
is the number of subdivisions, we have to solve 2.N + 2 linear programs (N
to approximate the lower bound, and N to approximate the upper bound and
two to compute [plow, Phighl)- As great is the precision we--vvant, as great is
the number of intervals, and, the same the number of linear programs to
solve.

Then, for instance, if p*low denotes the solution of Pjgw, according to
Paass, “the maximum of all upper bounds and the minimum of all lower

bounds gives a globally valid range for ” p*jow.

But, this method can be improved. That’s what we are going to show now.
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3. An improvement which leads to an exact method

Here we show that we can transform the two following mathematical programs,

Phigh wa
p = &+ - PwW — Min & PW
P(Ut| Uzhign =Max E=B% [P (01| Uzhw, = Min B0
Cﬁigh.pwz() Cﬁigh.pwzo
Cw - pw <0 CEw - pw <0
Y P(W;)=1 Y P(Wj)=1
i i
Vi,P(Wi)ZO Vi,P(Wi)ZO
P,.pw=a Pa.pw=a

to obtain linear programs.

In [SCHAIBLE, IBARAKI 1983], such nonlinear programs are called fractional
programs. A fractional can be transformed in an equivalent linear program ([SCHAIBLE,
IBARAKI 1983], [CHARNES, COOPER 1962]).

In the following, we are going to show the transformation only for Phigh (for Pyw,

the method is the same).

Assume we have (P), the following fractional program,

(P) ()
[Maxm

\xeS

where S = {x € C: hj(x) £0, i € ]m]} is the set of constraints. Then, with the following
variable transformation [CHARNES, COOPER 1962],

- X _andt=-—L_

Y0 T
we reduce (P) to

(P")

Max t £ (¥/;)
thi(¥Yp)<0, ie Im]
tg(Yp<1
\)’/te C

t>0
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If, f and g are linear, (P) is called a linear fractional program and may be written, as

follow,
(P) (P
’Maxi’i—‘“—@ IMachnyt
T —
d*x+ which yields the new linear program (P'), By-bt<0
x20 y20,t>0

So, in this new formalism, Phigh is (x = pw, @ =B =b=0,cT =g4,dT = g),

which yields the linear program,

Pi'ligh

Maxcl.y, y20,t>0
Chigh -y 20
Cow -y <0

dl.y=1

> (yi-y)=0 (1)

1

P,.y-at=0 (2)

noticing that the constraint (1) has to be removed.

Now, we define the following vector,
p (Wl)

qu p(wnw)
t
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P
Pz_ﬂ T . ?l
Then, if, P, = : , we can define P, = P. , S0, the constraint (2) becomes
Pap ap
-a

P;,.qw =0,

Thus, for Ppigh, we derive the equivalent linear program Q (y = qw),

Q
Max g, . qw

Cﬁigh.qwzo
C{(t,w.quO
Vi P(W;)=0
P,.qw =0
g-.qw=1

And then, the same way for Pyy.

So, now, we are going to solve only two (one to compute the exact lower bound and

one to compute the exact upper bound) linear program, instead of 10002 (2 to compute

the first interval, 5000 to approximate the lower bound and 5000 to approximate the

upper bound) or more if we want a great precision of the result, by Paass method.

4. A counter-example

Here, we show, with an example, that the method presented in [PAASS 1988] is not

always correct. For a certain kind of problems, we show that the precision of the result

does not increase with the number of subdivisions.

Let us consider the following mathematical program (see example 2 in section 5 of

this paper),

PM

]MIN f(x)= X1 +X3
g(x) X1+x2+x3+x4

[
—

X1 +Xx2 +Xx3 +x4 +x5 +X6 +X7 +x8

10x1 +10x2 -90x3 -90x4 =0
75x1 +75x2 -25x5 -25x%6 =0
10x1 -9 x2 +10x5 -90x6 =0

40 -60x3 +40xs -60x7

it
[=]
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from the minimisation and the maximization of g(x), under the preceding constraints, we
obtain g(x) € [tg, tN] (top = O and tny = 0.174). So, we derive the new mathematical

program,

PL
MIN f(x)=x1 + X3

X1 +Xx2  +X3  +X4  +X5  +X +x7 4@ =1 (D
10x; +10x2 -90x3 -90x4 =0 @
Bx1 +75Bx2 -25x5 -25x6 =0 @
10x; -90x2 +10x5 -90x6 =0 @
40x1 -60x3 +40x5 -60x7 =0 &

X1 +X2 43 +x4 2y @

X1 +X2  +X3  +x4 N O

with two new constraints.

The interval [tg, tN] is then split into intervals [tj, tj+1], and, we solve as many

problems as intervals, where tg is changed into t; and ty into tj4, for all i.

What we are going to show now is that, even with a great number of subdivisions

over [tg, tN], we wont get a more precise result for the lower bound; because tg = 0.

Indeed, if we consider a subdivision over the interval [0, tN], and the associated
solutions of (PL) in the following figure,

Min f (x)
0.486
= 0480

S T 0463 et

0432 ~1— —

0.405 11— S——
0.360 —4— ——
0.270 == —

I
]
|
I
I
[
I
I
[
;

O—XI | | l l | l !

Min g (x)
! I 1 ! I T T T T >
to =0 0.017/0.035 0.052 0.069 0.087 0.104 0.122 0.139 0.156 tny=0.174

and, because the lower bound of Min(f(x)/g(x)) is the minimum of all the minima of f(x)
on each interval of the subdivision of [0, tN], the lower bound of the solution of (PM)
is 0.

Then, even if N is very big, i.e. if the first interval, [0, t1], of the subdivision of

[0, tN] is very narrow, the solution of (PL) in this interval is always 0.
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So, now, we can derive the following result

Let (P),

(P)

f(x)
MIN - ®
Ax=b

the mathematical program to solve (p* the optimal solution), and, if
in (P’) and (P”’),

(P") P)
MIN g(x) [MAX g(x)
Ax=b Ax=b

0 is solution for (P’) and t is solution for (P’’), then, the Paass

method will always give 0 as lower bound for p*; whatever the
number of subdivisions over [0, t].

5. Comparative tests

Here, we give three examples. One given by Paass in [PAASS 1988], and, two
others which are relevant for the problem we want to treat. The second example is the one

exposed as counter-example in section 4.
Example 1: see [PAASS 1988] page 226

First, we give the associated inference network

Then (PM1), the mathematical program proposed by Paass to answer to the query
“Q1 (—a A b)’s are d’s,” and (PL1), the linear program we propose,




_“L)______)G
B(X) X5+Xx7

60x; +60x; -40x3 -40xg
80x; -20x3 +80x3 -20xq

7Vx3 -W0xq
Ox3 -50x4

X1 + X2 +)3 + X4 +X5 +X6 + X7 + X8

40x; -60x2 +40x5 -60xg

0x; -80xp +20x5 -80xg
PVxs -I0x -0x7 -xg
0x5s +10x -9x7 -9xg

+70x7 -0xg
+50xy -S0xg

x; +70x2 +70x3 +70x4 -30x5 -30x5 -0xy -Wxg

30x; +30x +30x3 +30x4 -7x5 -70x -70x7 -70x3

where OPTI is either MIN or MAX.

Example 2: the simplest one

First, the associated inference network

CGtudent 3

(90 % ; 90 %]

(25 % ; 25 %]
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L1

OPTIf (x)=x5

60xp
80 x1
40 x;
20x

70 x1
D xg
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+60x2
-20xp

-80xa

+70x2
+30x7

[60 % ; 60 %]

-40x3
+80x3

[90 % ; 90 %]

-40x4
-20 x4

X5

+40x5 -60xg
+2x5 -80xg
30x -30xg
10x5 +10xg

-30xs -30xg

+x7

-70x7 -70xg

+70x7 -30xg

+50x7 -50xg
-30x7 -30xg
-70x7 -70xg

]
—

BY¥BXANEAYKNXA

Then (PM2), the mathematical program proposed by Paass to answer the query

“Q2 students are single,” and (PL2), the linear program we propose

PM2
OPT1 f(x) _ X1 +x3

g(X) XI+x2+x3+xq
X1 +X2  +X3  +X4 +X§
I 10x1 +10x2 -90x3 -90x4

75x1 +75x2 -25x5
0x1 -90x2 +10x5
40x1 -60x3 +40xs

+ X6 +X7 +X8

-25x%6
-90xg
-60x7

where OPTI is either MIN or MAX.

L e s L

P2
OPTIf(x)=x1 +>3
X1 +Xx2 +3 + x4
10x; +10x2 -%0x3 -90x4
Bx1 +75x - -Bx5 -Bxg
10x; -90x2 +10x5 -0 xg
40 x1 -60x3 +40x5 - 60 x7

Example 3: the “big one” (which is not so big in fact)

L4 8L

I
(=}

This example corresponds to the syllogism problem solved analytically in [DUBOIS,

PRADE, TOUCAS 1989].

First we give the associated inference network
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[80%;85%]
{70%:;90%]

[70%;90%]

[25%:35%]

Then (PM3), the mathematical program given by Paass. This program is too big to be
written in a formal form, so, we give bellow the SIMPLEX array, noticing that we have

32 variables and 26 constraints

11 1 1 1 11 T 1 1 1 1 1 1 1 1 1 1 1 1 11 0 1 11 111 1 1= 1
J6 30 30 30 36 30 36 30 -70 -7 -7¢ -0 -To -I0 - -1 & e o o 4 © © ©6 O o o6 © & o o o020
16 310 10 10 16 10 16 10 -90 90 -90 -30 -9 -9 -9 - ¢ 6 o © o6 o6 ©® o6 o o o o © ©° O 0% 0O
15 15 1S 15 -85 -5 -85 -85 13 15 15 15 -85 -85 -5 -85 ¢ o6 o o o 0 e ¢ © o o o o o o o2 0

s s S 5 -9 -85 -95 -5 S S 3 5 -95 -95 -9 -9 o © O © O @ © o0 © o o o O o s 0% o
@ 6 € 6 & § & & o 8 0 © © o 9 —40 -40 40 40 -40 -40 40 40 & © o0 o & o © 020
40 40 40 40 40 40 40 40 5 © 9o @ © © ©0 0 -60 -60 -60 -60 -60 -60 -6 60 6 o © o o0 o o 9< O
20 20 -40 -80 20 20 -85 -@6 © © © ©0 © 6 6 © 20 20 -60 -80 20 20 -40 8 ¢ o © ©o o ¢ o OoZ O
15 15 -85 -as  1s 15 -eS —4s o ¢ o6 © © © 6 o 15 15 -85 -65 1S 15 -45 -5 o © 0 O °o o o o5 o
16 10 10 10 -3 -3 -% % 6 © © o © o ©6 o 10 10 10 10 -3 -% -9 - ¢ © © ¢ o o o 02O

¢ 8 o ©0-100-106-160-100 © © © o0 ©6 © 6 © o © o 0-100-100-100-100 o ¢ © ©6 © o 9 050
% 15 15 15 ® o o e 15 15 IS I 6 © 6 0 -25 -25 -25 -25 o0 O O O -2% -25 25 -25 O O O 620
& 6 6 € 9 o0 ©0 0 & € & & 0o 06 0o 0 -I5 -I5 -35 -I5 e o o6 -3 -3% -3 -335 © © 0 0S5 O
20 20 20 20 © o0 6 O -8 -8 -#0 -8 © © o © 20 20 20 20 O O© 0 O 40 -8 -#0 -0 0o 0 O 0Z o
10 1¢ 10 16 9 ©& o 6 -9 -90 -% -% o 0 O o 16 10 16 10 O o0 O6 o -% -9 - -% 0 o o 9% 0
16 10 -9 -% 6 © © © 10 10 -3 - ¢ O 5 © 10 16 -%0 - o o o6 9 10 16 -2 -% 6 o o 02 O
o o-0-100 © 6 © © 0 ©0-W8-l0C I 6 © © ® ©0-100-16 o o 0 © O ©-We-l6 © o & 0L O
95 -5 9 -S © © o o0 9 -5 9% -5 0 6 © © 9% -5 ¥ -5 o0 o o 0 95 -5 5 -5 ¢ © o og o
3 3 6 o 3 36 6 o0 -0 -7 @ o -8 -7¢ o © 36 3 © © 30 3 o © -7 -0 o ©0 -7 -7 o 0Z O
1 10 6 o 16 16 0 o -%6 -30 6 0 -% -9 o O 10 10 o 6 lo 1 o © % -% 0 o6 - - e o5 0
40 4 o6 0 -60 —60 0 0 40 40 O 0 -6 -0 6 0 40 40 0 O -0 -€ 0 O 49 40 O O —6 -6 o 02X 0O
20 20 @ o -8 -86 © O 2o 20 O o -89 -0 ® O 26 20 0 O -9 40 ©° 9 20 20 o 0 -80 -85 0 0% &
% -5 o © 9% -5 o o0 % -5 ©0 ©o %% -5 o6 o % 5 © o 9 -5 o o6 9% -5 0 0o 9 -5 0o o020
9 -10 9 6 % -1 6 © 96 -1 ©0 O % -106 O © 9% -1 o0 o % -1 o 0 % -l o6 ©° 30 -6 0 O°0F O
9% o 95 o -3 © -5 o 9 ©o 9 o0 -5 o -5 0 9 06 % o -5 0 -5 0 5 o 9% o0 -5 o0 -5 0S5 0
%5 o -5 o 9 0 -5 @& 9 6 -5 o % o6 -5 0 % ¢ -5 0 9 o -5 0 B o -5 o 9% o -5 0O

and the function to optimize (maximize or minimize) is

f(x) _ X1+ X3+ X9+ X1
g3 5
X

i=1

to answer to the query “Q3 student’s are young and have children.”

And (PL3), the linear program we propose, given in the preceding form, with always
32 variables and 26 constraints

T 1 11 11 1 11 1 1 1 1 1 o 6 © & © © & o6 © o © o o ©6 0 0= 1
3¢ 30 30 30 3o 3o 36 30 -10 -70 - -7 -To -0 -Jo -0 @ o 8 6 O O e ¢ o © o © o o 5 o2 o
16 10 10 10 10 10 30 10 -390 -90 -% -9 -9 -9 -9 % & o 6 o o o o ©°© 0 o & © o o o os o
15 15 15 15 -85 -85 -5 -85 13 15 15 15 -85 -85 -85 65 o ¢ o o © o o o 3 o 6 o o ¢ o o2 0

s 5 $ 8 -95 -95 .95 -9 3 5 5 S -9 -95 -95 9% o ¢ © o o © © o ° ©o o o 6 o5 o o% o
@ € 60 € & 6 & & o © 98 © 0 8 U -40 -40 40 -40 -40 40 -40 40 o © O © o o © oz o
40 40 40 40 40 40 40 4 O B © O 5 6 O 0 -60 -60 -60 €0 -0 60 € -0 o o ©o 0O e o o6 o< o
20 20 -so -#0 20 20 -0 -e6 © 0 6 © © O & O 20 20 -80 -840 20 20 -40 -840 O o o o ¢ o o o2 o
15 15 -85 -85 15 13 -5 -8 © o 6 © 6 © o O 15 15 -45 -5 15 15 -85 -¢s O O o O O O 6 ox o
16 10 10 10 -% -%0 -9 -% © © @ o0 ©6 ¢ o © 18 18 10 10 -3 -0 -90 -%0 0 s o e e o o oz 0
8 © © 0-100-160-l06-100 o ©6 o6 ©6 6 © © © © © 6 0-100-100 -100 -100 0 s o o o o o os o
I I 1 I o e o o 15 1% M W0 o o o -25 -2%5 -2% -25 6 6 & © -25 -2% -25 -2% o e o o2z o
& 65 65 & o e 8 o 65 € & & o e o o -35 =35 -3% -3% ¢ o6 o o -I5 ~35 -3% -1S s o © o< o
28 20 20 20 o © © ¢ -80 -80 -60 -80 9@ © o 6 20 20 20 20 O 0O o o -e0 -8 -80 -80 6 o & o2 ¢
19 16 10 1 © o 1o o -9 -9 -9 - 6 O © o 10 1 1w 106 9o o 6 o -30 -0 -% -9 o o o o5 o
19 10 -3 -% © o 6 o6 10 10 -% -% ©° o ©° o 10 10 -3 -% 0o 0 o ¢ 10 10 -9% -% e ©o & o209
o ©o-wo-l166 © & © © O 0-100-160 6 @ @ ¢ 6 0-106-18¢ O° & 0 ©°o ©° 0-100-100 e o e o< o
% -5 95 -5 0o o o o % -5 % -3 o o © ©0 9 -5 9 -5 O & O0 0 9 -5 B -5 o° 0O o o% o
LI 1) e o 3 3 & © -1 -7 © © -T0 -0 o 6 Jo I8 © 9 30 3 9o o - - 0 0 -To -T0 o 02 0
1 10 e o0 10 10 o 6 -9 -9 o © -9 -% 6 O 18 18 o 0 10 1 o o6 -9 -% 0 0 -3 - e o< o
49 4 0 o -60 -0 06 © ¢ 40 O 0 -6 -60 O o 40 40 O o -6 -6 6 0 40 40 O 0 -60 -60 o o2 0
20 260 o o -86 -#6 © © 20 20 0 © -8 -46 © 6 20 20 g o0 -0 80 o o 20 20 © © -80 -0 0o 0% O
9 -5 © o e -5 0o ¢ 9 -5 0 o 9 -5 0 0 9 -5 0 O 95 -8 e o 9 -5 o 6 9 -5 ©o 020
w -0 © o 9% -0 © © % -0 © © % -1o6 o o 3% -le o 0 9% -l 6 © 9% -1 6 ©°o 9% -1 ° 0% o
% o ¥ o -5 o -5 9 9 o 9 [ o -5 o 9 o % 6 -5 9 -5 o % 6 9% o -5 © -5 0% 0
% o -5 o 9 o -5 5 9 o -3 o o -5 o 95 o6 % 0o ¥ o -5 0 9 ¢ 5 o 9 o -5 0% 0

with the following function to optimize (maximize or minimize)
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f(x)=x1 + x3 + X9 + X11

And in the following table, we compare the results given by the Paass method and
our method.

In the columns denoted “s” we give the running times in seconds. And, for the Paass
method we give in the columns “answer” the intervals of the lower and upper bounds;

while, for our method, we give the interval where the exact value liesd .

Improved Paass Method Paass Mcthod Paass Method Paass Method Paass Method
Method 2 subdivisions 10 subdivisions 100 subdivisions 500 subdivisions 10000 subdivisions
answer il answer s answer s answer s answer s answer s
[0.294;0.560} [0.477,0.544} [0.532,0.539} [0.537;0.539] {0.538;0.538)
Ql §[0.538;1.000)1] 2 3 8 63 306 6053
[0.988,1.981) [0.999,1.142)] [0.999;1.012] {1.000;1.003] [1.000;1.000]
{0.000;0.540] [0.000;0.540] [{0.000,0.540] [0.000;0.540) {0.000;0.540)
Q2 §[0.540;1.0001{ 2 2 4 22 104 2070
{1.000;2.000} [1.000,2.000] {1.000;2.000) [1.000;2.000} {1.000;2.000)
{0.000,0.000] {0.000;0.000] [0.000;0.000] [0.000,0.000] (0.000;0.000)
Q3 §[0.000,0.121] ] 12 56 210 1739 8618 167211
[0.121;0.243) {0.121;0.243) {0.121;0.243] [0.121;0.243] [0.121,0.243]

These tests have been done on a SUN WORKSTATION 3/50, diskless and without
arithmetical coprocessor. The algorithms, including the SIMPLEX, are written in Pascal.

The implementation of the SIMPLEX algorithm is extracted from [LEMAIRE 1988]
and is not very efficient, but, more than the efficiency itself, what we must note is the

gain in time. This gain will be the same with a more efficient SIMPLEX and/or computer.
6. Conclusion

In this paper, we have shown that the Paass method in [PAASS 1988] is not always

correct, and, even so, can’t be used in a system reasoning with conditional probabilities.

The method we have as an improvement of the Paass method is correct and is more
efficient, but, it is still impossible to use it in a real system, because it may be not efficient

enough for large networks.

In fact, such a method (i.e. a linear programming based method) is not directly
applicable in an artificial intelligence system, because it is then impossible to explain the

results.

5 167211 seconds = 46 H 26 Mn 51 s
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We think that our method could be used locally, i.e. on small parts of the inference
network, to guide the inference over the whole net. Moreover, it can useful to evaluate
the performance of local propagation techniques such as derived from inference rules
described in [DUBOIS, PRADE, TOUCAS 1989].
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