
ups-irit, 118 route de Narbonne, 31062 Toulouse cedex 9

+33 (0) 561 55 67 65 info@irit.fr www.irit.fr

Technical Report

irit/rr–2014-09–fr

Proving Tight Bounds on Univariate
Expressions in Coq

Érik Martin-Dorel1 and Guillaume Melquiond2

1Université Paul Sabatier, IRIT, équipe ACADIE.
2Inria Saclay–Île-de-France, LRI, UMR 8623 CNRS,

PCRI, bât 650, Université Paris-Sud, 91405 Orsay Cedex, France.

November 24, 2014

Proving Tight Bounds on Univariate Expressions in Coq

Abstract

The verification of floating-point mathematical libraries requires computing
numerical bounds on approximation errors. Due to the tightness of these
bounds and the peculiar structure of approximation errors, such a verifica-
tion is out of the reach of traditional tools. In fact, the inherent difficulty of
computing such bounds often mandate a formal proof of them. In this paper,
we present a tactic for the Coq proof assistant that is designed to automati-
cally and formally prove bounds on univariate expressions. It is based on a
kernel of floating-point and interval arithmetic, associated with an on-the-fly
computation of Taylor expansions. All the computations are performed inside
Coq’s logic, in a reflexive setting. This paper also compares our tactic with
various existing tools on a large set of examples.

Keywords

Interval arithmetic. Formal proof. Decision procedure. Coq proof assistant.
Floating-point arithmetic. Nonlinear arithmetic.

1

Proving Tight Bounds on Univariate Expressions in Coq

Contents

Abstract & Keywords 1

1 Introduction 5
1.1 Background and Scope . 6
1.2 Related Works . 6
1.3 Content . 7

2 Floating-point and Interval Arithmetic 8
2.1 Preliminaries About Interval Arithmetic . 8
2.2 Floating-point Operators . 9
2.3 Interval Operators . 11
2.4 Floating-point and Interval Elementary Functions 12

3 Reducing the Dependency Effect 13
3.1 Bisection . 14
3.2 Automatic Differentiation . 14
3.3 Taylor Models . 16

3.3.1 Preliminaries about Taylor models . 16
3.3.2 Main features of the CoqApprox formalization 16
3.3.3 Integration of CoqApprox into CoqInterval 17

4 The interval Tactic 18
4.1 Reification and Reflection . 19
4.2 Power and Shortcomings . 20
4.3 Performances . 21

4.3.1 Selection of some reference problems 21
4.3.2 Experimental results . 23

5 Conclusion 26
5.1 Summary . 26
5.2 Perspectives . 27

References 27

Acknowledgements 29

3

Proving Tight Bounds on Univariate Expressions in Coq

1 Introduction

Libraries of mathematical functions (so called libm) are pieces of software that provide floating-
point approximations of the most common mathematical functions, e.g. exp, cos. The use of
such functions is so pervasive nowadays that it is critical that libraries document the accuracy of
the computed values. In fact, some library authors go as far as publishing mathematical proofs
showing that the documented accuracy is correct.

For instance, if we take a look at the correctness proof for the implementation of exp in the
CRlibm library,1 we can notice that it relies on the following assumption, among others: For any
x such that |x | ≤ 355 · 2−22, we have the following bound:

�����
x + 0.5 · x2 + c3x3 + c4x4 − exp x + 1

exp x − 1

�����
≤ 2−62 (1)

with c3 = 6004799504235417 · 2−55 and c4 = 1501199876148417 · 2−55.
Verifying such an assumption by hand is extremely tedious and error-prone. So we might

first want to get a bit more insight on that property. Since the relative error it bounds is a well-
behaved univariate function of x, we could first try to plot it with some computer algebra system:
Maple, Mathematica, Matlab, and so on. Indeed, if the extremum points of the function graph
visually satisfy the property, then the assumption is most certainly valid. While not a formal proof
in any way, this check would already go a long way in increasing the confidence in the library.
Unfortunately, as can be seen on Figure 1, the resulting plot looks so fishy that it might have the
opposite effect on the users: a decreased confidence in the library. The reason why most tools fail
to plot the relative error should not come as a surprise. Indeed, their plotting procedures perform
binary64 computations, as it is the floating-point arithmetic natively supported by most processors.
Such computations have a precision of 53 bits, while the relative error we are interested in requires
at least 80 bits for its plot to look sensible.

-5e-12

 0

 5e-12

 1e-11

 1.5e-11

 2e-11

-8e-05 -6e-05 -4e-05 -2e-05 0 2e-05 4e-05 6e-05 8e-05

-2.5e-19

-2e-19

-1.5e-19

-1e-19

-5e-20

 0

 5e-20

-8e-05 -6e-05 -4e-05 -2e-05 0 2e-05 4e-05 6e-05 8e-05

Figure 1: On the left, the function from Equation (1), as plotted by tools relying on binary64
floating-point numbers. On the right, its actual graph, as plotted by Sollya.3

At that point, we have no other choice than to turn to some other tools, if we ever want to trust
the correctness proofs of mathematical libraries. The property above is quite representative of the
kind of statements one encounters when proving a mathematical library. In fact, the correctness of
a modern library might depend on the proof of hundreds of tight bounds on univariate functions.
Ideally, we should even go all the way to a formal proof, to get the highest confidence in the
implementation of these libraries.

1http://lipforge.ens-lyon.fr/www/crlibm/
3http://sollya.gforge.inria.fr/

5

http://lipforge.ens-lyon.fr/www/crlibm/
http://sollya.gforge.inria.fr/

Technical Report irit/rr–2014-09–fr

1.1 Background and Scope

Historically, the CoqInterval development was at the origin of this effort to verify bounds on uni-
variate functions by using the Coq proof assistant. It provided a formalization of a computable
floating-point library [17] and a decision procedure based on interval arithmetic was built on top
of it [18]. The floating-point reference algorithms were later moved to the Flocq library [3], while
the CoqInterval library focused on formalizing faster versions of the floating-point operators and
elementary functions [19]. Independently developed, the CoqApprox library was built on top of
the interval kernel of CoqInterval. It was designed to compute guaranteed polynomial approx-
imations of univariate functions which can then be fed to programs solving the Table-Maker’s
Dilemma [4, 16].

So, at that point in time, we had, on one side, a decision procedure for verifying bounds on
univariate functions and, on the other side, a library able to generate accurate polynomial approx-
imations. It was then natural to try to merge both approaches in order to get a more efficient
decision procedure for the Coq proof assistant. This paper gives an overview of how these differ-
ent libraries are combined together and what features they offer in the context of automatically and
formally verifying bounds on univariate functions. The resulting decision procedure is part of the
CoqInterval formalization and thus available at

http://coq-interval.gforge.inria.fr/

Before going any further, let us specify what univariate means in the context of this paper. The
first interpretation is: only one variable can occur in an expression; all the other arity-0 symbols
are numeric constants. This is a bit too restrictive. Indeed, the approach we present is based on
interval arithmetic, so the amount of variables does not really matter. A better interpretation would
therefore be that, for tight bounds to be computed, among all the variables of the expression, only
one occurs several times. This requirement can be relaxed a bit further: if a variable is the only one
to appear in a sub-expression, it can be seen as appearing only once in that sub-expression. For
instance, the function f (x, y) = x +cos(x + (y+exp(y))) fits this interpretation since y only occurs
in the (y + exp(y)) sub-expression and x does not occur there. As a consequence, the methods
presented in this paper could deal with such a function. Still this is quite restrictive, hence the
usage of “univariate” rather than “multivariate”.

1.2 Related Works

There are various other systems that make it possible to prove inequalities on real-valued expres-
sions. Their purposes are rather diverse. Some are limited to univariate expressions, while others
can deal with multivariate expressions. Some are limited to polynomial expressions, while oth-
ers also support some elementary functions, e.g. exp, tan. Finally, some generate proofs that are
mechanically checked by proof assistants, while others are standalone tools.

Let us start with Sollya [7, 6]. Its interface looks like it comes from a generic computer algebra
system but the tool is dedicated to manipulating univariate expressions and computing guaranteed
bounds on them. It supports a large range of elementary functions. It is based on the interval
arithmetic paradigm: while its results might be useless, they are never incorrect, by design. It does
not generate any proof.

MetiTarski is another standalone tool, but it does look like a decision procedure [1]. This is a
version of the Metis resolution prover that was extended with a decision procedure solving poly-
nomial systems. Elementary functions are supported thanks to axioms giving some polynomial
lower and upper bounds on them. It is complete when it comes to polynomial expressions, but
for elementary functions, it is only as strong as the polynomial approximations it uses for them.
MetiTarski can generate proofs but, to our knowledge, there exists no tool that can mechanically

6

http://coq-interval.gforge.inria.fr/

Proving Tight Bounds on Univariate Expressions in Coq

check them yet. For instance, while PVS provides a metit strategy, it blindly trusts the result of
MetiTarski [10].

The HOL Light proof system provides a decision procedure REAL_SOS for polynomial sys-
tems based on sum-of-square certificates [12]. The certificates are generated by an external non-
guaranteed solver for semi-definite programming; their correctness is then verified by the HOL
Light kernel. Because of round-off errors in this external solver, the certificates might fail the ver-
ification step. For this reason, the decision procedure also uses various heuristics to improve the
handling of univariate expressions.

In the context of the Flyspeck project,4 a new HOL Light procedure verify_ineq was de-
signed in order to support multivariate expressions involving some elementary functions [23]. An
external tool first precomputes a suitable subdivision of the input domain. Then HOL Light com-
putes on each subdomain an order-1 Taylor–Lagrange polynomial approximation (that is, with a
quadratic remainder) and uses it to prove the bound on the expression. Computations are per-
formed using interval arithmetic.

For multivariate polynomial expressions, the PVS proof system uses an approach based on
Bernstein polynomials [21]. It first represents the input expression in the Bernstein basis. Then
it uses a branch-and-bound procedure to compute tight enclosures of the extremum values. There
is also an interval strategy for bounding multivariate expressions that involve elementary func-
tions. It relies on interval arithmetic and a generic branch-and-bound algorithm [22].

Finally, another tool was designed to tackle the multivariate inequalities that appear in the Fly-
speck project: NLCertify [2]. First, non-algebraic expressions are bounded by sets of quadratic
forms. Then, the resulting semialgebraic system is solved using an external non-guaranteed solver
for semi-definite programming. All the results are meant to be verified using the Coq proof assis-
tant, but for now, only the certificates for expressing polynomials as sums of square are.5

1.3 Content

Interval arithmetic is a well-known tool to compute bounds on real-valued expressions. In most
settings, an interval is a closed subset of the real numbers which is represented by a pair of bounds
[a,b]. The main idea behind interval arithmetic is to extend operations on real numbers to opera-
tions on intervals. This extension should satisfy two properties. First, computing the result of an
interval operator should only involve arithmetic operations on the bounds of the input intervals,
so that computing with intervals is both effective and efficient in practice. Second, the interval
operators should satisfy the containment property: the resulting interval should be large enough so
that it contains all the possible results of the operation applied to real numbers. That way, interval
arithmetic can be used to formally prove properties on real-valued expressions. Section 2 shows
how to formalize an interval arithmetic and how to compute with it inside Coq.

Thanks to containment, properties that can be deduced from an interval computation are triv-
ially correct. Unfortunately, interval arithmetic is plagued by a major issue called the dependency
effect. Indeed, the efficiency of interval arithmetic does not come for free: while the resulting
intervals are guaranteed to contain any possible real result, they might be so grossly overestimated
that it is impossible to deduce anything interesting from them. This issue appears as soon as a
variable occurs several times in an expression evaluated by interval computations. Indeed, interval
arithmetic does not track the dependencies between all these occurrences. Section 3 presents three
approaches that we have formalized in Coq to alleviate this issue: bisection, automatic differenti-
ation, and Taylor models.

4https://code.google.com/p/flyspeck/
5The author of NLCertify is considering relying on CoqInterval to check the quadratic forms that bound elementary

functions. This would be a step further in getting completely verified results with NLCertify.

7

https://code.google.com/p/flyspeck/

Technical Report irit/rr–2014-09–fr

With both an effective interval arithmetic and some ways to reduce the dependency effect, it
is possible to implement some tools to automatically and formally prove tight bounds on real-
valued univariate expressions. They are packaged in the interval tactic for Coq. It converts a
goal to be proved into a problem that is hopefully solvable using interval computations. Section 4
presents this reflection-based approach. We also compare the performances of our implementation
with all the tools described in Section 1.2 on a large set of examples. These examples contain
various approximation problems, but also some tests taken from MetiTarski, and some well-known
multivariate problems.

2 Floating-point and Interval Arithmetic

2.1 Preliminaries About Interval Arithmetic

Throughout this article, a boldface variable x denotes an interval enclosing a real variable x. Its
lower and upper bounds are written x and x, so that x = [x, x]. A function over real numbers is
denoted f and its application is f (x). The image of interval x by f is f (x); it is defined as

f (x) = {y | ∃x ∈ x, y = f (x)} .

An interval extension of f is denoted f . It is not uniquely defined, since it just has to satisfy the
containment property:

∀x ⊆ R, f (x) ⊆ f (x).

Interval operators usually satisfy some other properties, such as isotonicity, but they are somewhat
useless when proving the correctness of an algorithm.6

The main idea behind interval arithmetic, dubbed the fundamental theorem of interval analysis,
is that the containment property is preserved by function composition, e.g. f ◦ g is an interval
extension of f ◦ g [20]. Thus one only needs to build interval extensions of basic operators in
order to perform interval computations.

An interval x is represented by a pair [x, x] of bounds. So as to support half-bounded intervals,
we allow x to be −∞, and x to be +∞. (Note that, while we denote intervals with square brackets, in
the case of infinite bounds, they are not part of the interval, that is, [−∞,+∞] = R.) Infinite bounds
are not a mandatory feature of interval arithmetic and one could define a usable one without them.
It is helpful to have them though, as we ultimately want to reason about inequalities, which half-
bounded intervals make possible to easily represent. For instance, in order to prove that ∀x, x ≤
0⇒ f (x) ≥ 0, one can just compute the following interval inclusion: f ([−∞,0]) ⊆ [0,+∞].

Let us now consider the interval subtraction as an example. One way to define this operator
sub so that it satisfies the containment property is as follows:

∀u, v ⊆ R, sub(u, v) = [u − v,u − v]. (2)

Notice that an interval subtraction can be performed at the cost of just two bound subtractions,
which makes it an efficient operation. As a rule of thumb, most interval operations have this kind
of complexity. The implementation is rather straightforward, though one has to be careful when
performing the operations on bounds, due to the potential presence of infinities. They also tend to
make the proof of the containment property a bit cumbersome due to the explosion of cases.

Let us consider another example, the exponential function. Due to the monotonicity of exp,
the containment property is trivially satisfied by the following interval extension:

∀u ⊆ R, exp(u) = [exp(u),exp(u)].

6Isotonicity means that, the tighter x is, the tighter f (x) is. This property does not occur in any of the proofs, but it
helps with performances.

8

Proving Tight Bounds on Univariate Expressions in Coq

It raises a question though: how to represent bounds? As can be seen on that example, they can
indeed be almost any real number. We could simply use standard real numbers to represent them,
but that would prevent us from using the reduction engine to perform computations on them, so this
is not a suitable solution for a Coq implementation. We could restrict the bounds to computable
real numbers instead, but we expect the performances to be dreadful.

This issue is not new and people have dealt with it since day one. Since the only property
we are interested in is the containment property, an interval result does not have to be the tightest
possible one, it can be slightly enlarged. As a consequence, instead of real numbers, one can use
any subset of R as the set of finite bounds. We only need to have some functions 5 and 4 that,
given a real number, return a bound that is smaller, respectively larger. The interval extension of
exp can then be defined as

∀u ⊆ R, exp(u) = [5(exp(u)),4(exp(u))]. (3)

Note that these two functions 5 and 4 are only for exposition and proof purpose. We cannot first
compute the exponential and then round it to a bound. Both operations happen at once: given a
bound b, we compute a bound that is smaller (resp. larger) than exp(b).

Now, which subset of real numbers to choose? We could use rational numbers as was done in
PVS. But numerators and denominators of rational numbers tend to grow during computations,
hence making them slower as they progress further. To prevent this growth, we could round
rational numbers from time to time. But if we are to round them, we might just as well use only
floating-point numbers (a subset of rational numbers) as they are especially suited for rounded
operations.

Section 2.2 gives an overview of the floating-point kernel we are using. Section 2.3 presents
the interval type and how to define interval operators for addition, multiplication, division, and so
on, once the corresponding floating-point operators have been formalized. Section 2.4 shows how
to combine basic floating-point and interval operators to compute floating-point approximations
and interval extensions of elementary functions, e.g. exp and cos.

2.2 Floating-point Operators

Floating-point numbers are rational numbers that can be written m · βe with m and e two integers
and β a fixed integer larger than or equal to 2. Their set is

Fβ =
{
x ∈ R �� ∃m,e ∈ Z, x = m · βe

}
.

While most algorithms can cope with an odd radix, they are often more efficient when the radix is
even. In fact, the parser of the interval tactic assumes β = 2. So let us suppose β to be set once
and for all; we will simply write F instead of Fβ .

Note that the representation of a real number as a floating-point number m · βe , if it exists, is
not unique. In practice, this is not an issue, not even a source of inefficiency, so we do not have to
restrict m to integers that are not multiple of β.

Defining addition and multiplication on this representation is straightforward:

(m1 · β
e1) + (m2 · β

e2) = (m1 × β
e1−e + m2 × β

e2−e) · βe with e = min(e1,e2),

(m1 · β
e1) × (m2 · β

e2) = (m1 × m2) · βe1+e2 . (4)

Obviously, such operations suffer from the same growth that caused us to discard rational num-
bers in the first place. So let us introduce the operators 5 and 4. These operators are parameterized
by a precision p. This positive integer specifies how many radix-β digits the resulting mantissa
can have at most. Contrarily to β, the value of p can be selected on a per-operation basis. As a

9

Technical Report irit/rr–2014-09–fr

matter of fact, the library increases the precision of intermediate computations on-the-fly, if the
current precision would lead to grossly inaccurate results; this will be detailed in Section 2.4.

To define 5 and 4, let us first restrict F to the following subset:

Gp =
{
m · βe ∈ F �� |m | < βp

}
which will be the range of these operators. They can now be defined as

5(x) = max
{
y ∈ Gp

��� y ≤ x
}

and 4(x) = min
{
y ∈ Gp

��� y ≥ x
}
. (5)

By definition, we have 5(x) ≤ x ≤ 4(x) for any real x. So these operators are sufficient to
ensure the containment property. The definitions of F, of Gp , and of the rounding operators come
from the Flocq library, a multi-radix multi-precision multi-format formalization of floating-point
arithmetic in Coq [3].

Notice that these operators return the tightest representable enclosure of x, which is much
stricter than what is actually needed for automated proof purpose. Their definitions, however,
make it possible to use external tools to test the Coq implementation, and vice-versa. Indeed,
these definitions comply with the IEEE-754 standard for floating-point arithmetic and are thus
found in most floating-point hardware and in libraries such as SoftFloat7 or MPFR.8 Note that the
precision p is arbitrary for MPFR, while it is restricted to a few values (e.g., p = 24 and p = 53)
for hardware and SoftFloat. A peculiarity of the floating-point kernel of CoqInterval is that the
exponent range of the numbers in Gp is unbounded, so underflow and overflow never occur.

The definitions of 5 and 4 in Equation (5) are suitable for proofs, but they do not offer a
way to actually compute the results of the operators. This makes them useless for the purpose of
automated proof. So the library also provides some functions that, given a value of F compute
a value of Gp . For instance, Fround_at_prec(β,mode,p,m · βe) returns the element of Gp

the closest to m · βe , with the meaning of closest being controlled by mode (5 or 4). Then one
can just compose such a function with + and × to get rounded values. For instance, the rounded
multiplication between two floating-point values is defined in our library as follows.

Definition Fmul beta mode prec (x y : float beta) :=
Fround_at_prec mode prec (Fmul_aux x y).

In this definition, Fmul_aux is the exact product between two floating-point numbers of type Fβ ,
as defined in Equation (4).

For division and square root, however, this approach does not work, since the intermediate
results cannot be represented as values of F. So dedicated algorithms are provided for these op-
erators. While originally designed for this library, these algorithms and their proofs have now
migrated to Flocq.

That said, even if the algorithms in Flocq are useful as reference implementation, they are not
that efficient. In particular, they do not take advantage of the value of β or of the regularity of Gp

(fixed precision, no subnormal numbers). So our library also provides some optimized versions of
these algorithms, which are proved equivalent to the ones in Flocq. For instance, when β = 2, to
know whether an integer is a multiple of βk , rather than performing a costly Euclidean division,
one can just count the number of less-significant bits that are equal to zero.

In the end, our library proposes several implementations of the basic floating-point operators.
For instance, one uses the Z type of integers represented as a string of bits, while another one
uses the BigZ type of integers represented as a balanced binary tree of 31-bit native integers. All
these implementations have the same interface though, so the user can swap one for the other. In

7http://www.jhauser.us/arithmetic/SoftFloat.html
8http://www.mpfr.org/

10

http://www.jhauser.us/arithmetic/SoftFloat.html
http://www.mpfr.org/

Proving Tight Bounds on Univariate Expressions in Coq

particular, the interval operators do not care about the actual implementation of the floating-point
kernel.

This kernel just has to provide the computable versions of the following floating-point opera-
tions and their correctness proofs: comparison, minimum, maximum, absolute value, opposite, ex-
act addition, exact subtraction, exact multiplication, addition, subtraction, multiplication, division,
square root, multiplication by a power of β, multiplication by a power of 2, rounding, conversion
from Z, and so on. The complete interface can be found in the Interval_float_sig.v file.

One last point about our floating-point arithmetic is that it supports a ⊥ element that is prop-
agated along the computations. So, the domain of all the functions is not F but F = F ∪ {⊥}, and
floating-point operations behave as if they were part of the option monad. Note that, in general,
having such an absorbing element is not that useful for formalizing floating-point arithmetic. In
fact, Flocq does not even support it. Its point will be clearer when it comes to interval arithmetic.

2.3 Interval Operators

As explained before, in order to support half-bounded intervals, one wants to be able to use −∞
as a lower bound and +∞ as an upper bound. Our floating-point arithmetic does not support
such infinities, but it supports an absorbing element ⊥, which we can use to represent infinities.
Whenever a floating-point lower bound is ⊥, the interval extends to −∞, and similarly for the
upper bound and +∞. The set I of intervals with floating-point bounds is thus just F2. These
intervals are built with the constructor Ibnd in the code snippets below.

Now that we have a type and an arithmetic for the bounds, we can define interval operators.
Let us consider the example of interval subtraction. Its Coq implementation is as follows, with
F.sub being the subtraction from a kernel of floating-point arithmetic, and rnd_DN and rnd_UP
being the directions 5 and 4.

Definition sub prec xi yi :=
match xi, yi with
| Ibnd xl xu, Ibnd yl yu =>
Ibnd (F.sub rnd_DN prec xl yu) (F.sub rnd_UP prec xu yl)

end.

Notice that, because ⊥ is absorbing, no extra care needs to be taken to handle infinite bounds, they
just propagate along the computations. Theorem sub_correct then states that the implementation
above satisfies the containment property, as given in Equation (2).

For interval multiplication, the implementation is not as simple as for subtraction. Indeed, the
traditional way of computing it is

mul(u, v) = [5(min(uv,uv,uv,uv),4(max(uv,uv,uv,uv))].

It suffers from two issues. First, it performs a bit too many multiplications of bounds. Second,
the resulting interval will be grossly overestimated, if one of the bound multiplication involves
0 and ⊥. For instance, such an algorithm would return [−∞,+∞] when computing the product
between [0,0] and [−∞,+∞] while the tightest interval satisfying the containment property is
[0,0]. So we use a more complicated algorithm that returns the tightest results while being less
costly on average.

Contrarily to the situation for floating-point arithmetic, division and square root on intervals
are as simple as multiplication, so we do not detail their implementation. Internally, optimized
implementations of multiplication and division are also available when one of the inputs is known
to be a singleton interval.

Finally, the last operation worth mentioning is the interval extension of x 7→ xk for k an
integer. Indeed, due to the dependency effect, computing x2 as mul(x, x) would give grossly

11

Technical Report irit/rr–2014-09–fr

overestimated results if x straddles zero. More generally, computing xm+n as mul(xm , xn) (as
would a fast exponentiation algorithm) is a poor choice in interval arithmetic. So we provide a
dedicated algorithm for this kind of exponentiation. It checks whether k is even or odd, looks at
the signs of the bounds of x, and then computes lower and/or upper bounds on xk and/or xk using a
fast exponentiation algorithm. Note that, contrarily to the other operations, the result is guaranteed
to be the tightest interval only when k ∈ [−1,2]. For the other powers, the bounds of the result
might be off by a few units in the last place (while still satisfying the containment property), for
the sake of speed.

As with floating-point arithmetic, our interval arithmetic also supports an absorbing element
⊥I . So the actual type of intervals is I = I ∪ {⊥I }. Again, there is not much use for such an
element and most implementations of interval arithmetic do without it. Its benefits will show up
when implementing the tactic, as it allows to keep track of the results of partial functions, e.g.
[−1,1]−1 is defined as ⊥I (due to 0−1) rather than [−∞,+∞].

From now on, we no longer use a bold face for the basic interval operators, unless there is an
ambiguity. In fact, we will simply use the infix operators, as if the inputs were real numbers rather
than intervals. The bold face will still be used for composite interval functions, as the dependency
effect causes them to be a large overestimation of set-extension functions, hence the need to set
them apart.

2.4 Floating-point and Interval Elementary Functions

At this point, we have some floating-point and interval functions for the basic arithmetic operators:
addition, multiplication, division, square root. Yet we want the tactic to support more mathematical
functions. In particular, we need some elementary functions, e.g. exp and cos, since our goal is to
formally verify libraries of such functions.

As before, in order to get interval extensions, the first step is to build floating-point approxi-
mations. The first notable point is that we cannot expect to compute correctly-rounded approxi-
mations of elementary functions. For instance, we can compute a floating-point number y smaller
than exp(x) for x a floating-point number, but we cannot guarantee that y = 5(exp(x)). Indeed,
while there are simple algorithms for computing 5(exp(x)), proving their termination is next to
impossible in Coq.9 Fortunately, our goal is to perform interval arithmetic, so we are fine even if
the results are not always the closest possible floating-point numbers. So let us look for a good
enough approximation rather than the best one.

Since the precision parameter is unbounded, methods based on fixed polynomial evaluation
cannot be used. So we evaluate truncated power series instead. There are two difficulties: knowing
at which point to truncate the series and knowing how much the partial sum should be overesti-
mated to account for the part that was truncated away. There are techniques to solve these two
issues, as can be seen in MPFR, but they are still too complicated for our purpose. If we wanted to
approximate arbitrary special functions, e.g. Airy or Bessel, we would have to apply such methods,
but here we are dealing with elementary functions.

The main difference between special functions and elementary functions is that the latter have
argument reduction identities. For instance, the identity cos(x) = 2 cos2(x/2)−1 makes it possible
to transform the input x into an input arbitrarily close to 0. (Note that, for β = 2, the computation
of x/2 is trivial and does not introduce any error.) Once x is close enough to 0, the process of
evaluating the power series becomes much simpler.

Consider an elementary function f with a Taylor series f (x) =
∑

(−1)kak xk . Let us assume

9The idea of the proof is as follows. If such an algorithm were to not terminate, it would mean that exp(x) is a
rational number, which is impossible when x , 0.

12

Proving Tight Bounds on Univariate Expressions in Coq

that the sequence k 7→ ak xk is positive decreasing. Then we have the following inequalities:

0 ≤ (−1)n *
,

f (x) −
n−1∑
k=0

ak xk+
-
≤ an xn .

They solve both issues at once: they tell us that we can stop summing terms when an xn becomes
small enough and that the truncated power series is off from the value of f (x) by at most an xn .

As for the evaluation of the power series itself, we perform it using interval arithmetic. Note
that this interval computation only succeeds when evaluating floating-point functions, not interval
ones. Indeed, due to the alternated signs, the dependency effect is at its worst here. Fortunately,
for floating-point functions, the input interval is a singleton [x, x], so the overestimation stays in
check. But for interval extensions, the results would be so wide that they would be meaningless.

We now have a way to compute an elementary function when x is close to 0, but we are not yet
out of the woods though. We still have to invert the argument reduction process. Unfortunately,
for a function like cos, the reconstruction of the result takes a number of arithmetic operations
proportional to ln |x |, and each of these operations incurs an additional overestimation. To alleviate
this issue, when approximating a function with a precision p, the intermediate computations are
performed at a precision p′ that depends on p and ln |x |.

The process is similar for functions other than cos. First, we look for an interval of R where
the function is approximated by an alternating series. The series should converge fast enough, to
ensure good performances. Then, we look for an argument reduction that brings any input into
this interval. Finally, we look for a recurrence that computes efficiently and accurately the series.
More details on how arguments are reduced and how precision was tweaked can be found in [19].

Once we have floating-point approximations for elementary functions, we can devise interval
extensions. Since exp, ln, and arctan, are monotonic, extending them to intervals is straightfor-
ward, as can be seen in Equation (3). Note that these extensions are not guaranteed to return the
tightest results, since the corresponding floating-point operations do not even have this property.

As for cos, sin, and tan, their interval extensions are quite naive. Indeed, because they are not
monotonic, the implementation and the proof of these extensions have been simplified by making
their results meaningful only on a small domain around zero. For instance, the interval extension
of sin just returns [−1,1] if its input is not a subset of [−2π,2π].

3 Reducing the Dependency Effect

The dependency effect was mentioned several times already, but we were able to avoid it up to
now, since the interval extensions we had to compute (e.g. xk ,

∑
ak xk) were under our control.

But we now want to tackle whatever the user can throw at our automated procedure, so correlations
are bound to appear.

First of all, let us explain what the dependency effect is. Consider the expression x− x. Thanks
to the containment property, we know that the values of this expression are contained in x − x. Let
us perform this interval computation and see what we can deduce about x − x. For x = [0,1], we
have

x − x = [0,1] − [0,1] = [0 − 1,1 − 0] = [−1,1].

If our intent was to prove that x − x = 0 when x ∈ [0,1], there is no way we can deduce it from
the result [−1,1].

This seems like an artificial example, but this is exactly what happens in practice. Remember
that our objective is to prove inequalities that appear when verifying the correctness of libraries of
mathematical functions and that these inequalities have the general form | f (x) − f̃ (x) | ≤ ε with

13

Technical Report irit/rr–2014-09–fr

f̃ an approximation of f . Because of the dependency effect, computing f (x) − f̃ (x) will never
produce any interesting result.

This section presents the various methods we have formalized to reduce the dependency effect,
from the simplest one to the most complicated. The most naive one is the bisection (Section 3.1),
then comes an approach based on automatic differentiation (Section 3.2), and finally the most
powerful approach using Taylor models (Section 3.3).

3.1 Bisection

The idea behind bisection is simple. If an interval x can be decomposed into sub-intervals x =

x1 ∪ . . . ∪ xn , then we have the following inclusion:

f (x) ⊆ f (x1) ∪ . . . ∪ f (xn).

This approach only works if the right-hand side is tighter than f (x) (which it fortunately is, by
isotonicity). If we consider the x − x example again, we can see that, by using x1 = [0,1/2] and
x2 = [1/2,1], we now obtain x − x ∈ [−1/2,1/2] instead of [−1,1]. By doubling the number
of input intervals, we have reduced the overestimation of the output interval by a factor 2. This
statement is a good rule of thumb when it comes to the dependency effect.

This approach is far from a panacea though. As can be seen on the x − x example, it is
impossible to find a subdivision such that one can prove x − x = 0 with this approach. And even
if we only wanted to prove |x − x | ≤ 10−12, it would require to consider 1012 sub-intervals and
perform as many interval computations, which is out of reach of any proof assistant.

Still, it has a property that makes it interesting to have. It can be combined easily with the
other approaches to reduce the dependency effect. Assume that the other approaches fail because
of some singularity in the input interval x. Then the bisection will be able to isolate the singularity
in a tiny interval x2 and let the other approaches deal with x \ x2 = x1 ∪ x3.

Given a function chk from intervals to Booleans, the bisection process works as follows:

bisect(n, x) =

if n = 0 then false
else if chk(x) then true
else let m be the midpoint of x in
bisect(n − 1, [x,m]) && bisect(n − 1, [m, x])

Integer n is the maximum depth of the process: the width of the sub-intervals will never diminish
below 2−n times the width of x. At each step, either chk(x) returns true, or x is split into two
sub-intervals and the bisect function is recursively called on each sub-intervals. If bisect(n, x)
evaluates to true, then for any predicate P over real numbers, we have

(∀u, chk(u) = true⇒ ∀u ∈ u, P(u)) ⇒ ∀x ∈ x, P(x). (6)

So, when trying to prove some property ∀x ∈ x, P(x), we first build the corresponding chk
function, we then prove the left-hand side of Equation (6), and we finally call bisect, hoping
that it evaluates to true. For instance, let us suppose that we want to prove some bound on an
approximation error, that is, P(x) is | f (x) − f̃ (x) | ≤ ε. We define chk(u) as | f (u) − f̃ (u)) | ⊆
[−∞, ε]. The left-hand side of Equation (6) thus becomes a straightforward consequence of the
containment property.

3.2 Automatic Differentiation

The main issue that occurs in the archetype x − x of the dependency effect is the fact that x and −x
have opposite variations: when one increases, the other decreases. This is the kind of correlations

14

Proving Tight Bounds on Univariate Expressions in Coq

that interval arithmetic cannot track. The first idea to reduce the dependency effect is thus to track
the way sub-expressions evolve when the input x changes.

Let us consider the function f (x) = x−x. Its derivative is f ′(x) = 1−1. The interval extension
f ′(x) evaluates to [1,1] − [1,1] = [0,0], which is the optimal enclosure. From that enclosure, we
can deduce that f is a constant function, and thus that x − x = 0 by performing an evaluation at an
arbitrary point.

Mechanizing this reasoning is done as follows. First, let us remind the Taylor–Lagrange for-
mula at order 0 (also known as the mean-value theorem). Assuming that f is differentiable over x
and that x0 ∈ x, we have

∀x ∈ x, ∃ξ ∈ x, f (x) = f (x0) + (x − x0) × f ′(ξ).

Weakening it using the containment property, it becomes

∀x ∈ x, f (x) ∈ f ([x0, x0]) + (x − [x0, x0]) × f ′(x).

By definition, the right-hand side is an interval extension of f . (In practice, one would choose the
midpoint of x for x0.)

To automate this approach, we need some way to compute f ′(x). This is done using the ideas
of automatic differentiation. Instead of just performing arithmetic on intervals, we now compute
on pairs of intervals. The first member of the pair is the enclosure of the expression, while the
second one is the enclosure of its derivative. Here are a few examples of arithmetic operations:

(u,u′) + (v, v′) = (u + v,u′ + v′),

(u,u′) × (v, v′) = (u × v,u′ × v + u × v′),

exp(u,u′) = (exp(u),u′ × exp(u)).

There is a containment property that suits these pairs of intervals. As with the containment
property on single intervals, it is preserved by composition, so we get (f (x), f ′(x)) at the end of
the computation. Once we have f ′(x), we compute f ([x0, x0]) and we apply the interval version
of the Taylor–Lagrange formula. The first member of the pair could be discarded, but we use it to
further refine the result of the Taylor–Lagrange formula.

This approach was the reason for introducing the absorbing element ⊥I . It is used as the
second member of the pair (u,u′) to indicate that the sub-expression is not differentiable at some
points of x (or at least not proved to be differentiable) and thus that the Taylor–Lagrange formula
cannot be used at the end. In that case, we simply use the first member of the pair.

Automatic differentiation works rather fine, but there is still some dependency effect when
computing (x − [x0, x0]) × f ′(x). We can do slightly better in some cases. Indeed, if the interval
f ′(x) happens to be of constant sign, then we can prove that f is monotonic on x. As a con-
sequence, we can just compute f ([x, x]) and f ([x, x]), take their convex hull, and thus obtain a
superset of f (x). Since the input intervals are singleton, the dependency effect is minimal and the
enclosure is tight. When combining automatic differentiation with bisection, the latter will split
into sub-intervals at worst until f ′ has constant sign on them.

Finally, it should be noted that automatic differentiation also handles unbounded intervals. For
instance, evaluating the expression exp x−(1+x) for x ∈ [0,+∞] gives the pair ([−∞,+∞], [0,+∞]).
The first component is useless, but the second one tells us that the function is increasing. So an
evaluation at x = 0 suffices to prove that the expression is nonnegative for x ∈ [0,+∞]. This ability
to handle monotonic functions and unbounded intervals is specific to this approach; it will be lost
with Taylor models.

15

Technical Report irit/rr–2014-09–fr

3.3 Taylor Models

3.3.1 Preliminaries about Taylor models

Borrowing the term chosen in [13], we call rigorous polynomial approximation (RPA) a pair (P,∆)
where P is a univariate polynomial in a given polynomial basis, and ∆ is an interval error. Over a
given interval I , an RPA (P,∆) represents a whole set of functions, namely the functions f : R→
R such that

∀x ∈ I , f (x) − P(x) ∈ ∆, (7)

or more concisely f ∈ ~(P,∆)�I . Typical instances of univariate RPAs include Taylor models
([15, 14] and [13, Chap. 2]), where the polynomial P is represented in the Taylor polynomial
basis,10 and Chebyshev models [13, Chap. 4].

We will work with Taylor models (P,∆) where the polynomial P has small interval coeffi-
cients. This choice simplifies the algorithms within an approximate arithmetic, as the rounding
errors are directly handled by the interval computations. This specific kind of Taylor models will
be used in all the intermediate steps of the algorithms. If need be, we could turn an interval Taylor
model (P,∆) into a standard Taylor model (P,∆′) satisfying Equation (7), by picking the Pi inside
the Pi and accumulating the errors into ∆′.

3.3.2 Main features of the CoqApprox formalization

The CoqApprox library gathers certified algorithms for univariate Taylor models, which can be
executed inside the logic of Coq [4, 16]. The main data type involved in the formalization is a
record rpa (for rigorous polynomial approximation) that combines a polynomial approx and an
interval error; it is parameterized by a type for representing polynomials and another type for
intervals. We say that an rpa (P,∆) is a Taylor model for a given function f : R→ R if it satisfies
the following predicate (cf. [16, Definition 1]):

f ∈ ~(P,∆)�x0
I

def
⇐⇒ x0 ⊆ I ∧ 0 ∈ ∆

∧ ∀x0 ∈ x0, ∃Q ∈ R[X],




size Q = size P,
∀i < size P, Qi ∈ Pi ,

∀x ∈ I , f (x) −
∑

i<sizeQ

Qi · (x − x0)i ∈ ∆.

(8)

The library first provides some Coq functions for computing Taylor models of basic functions
such as square root, exponential, or sine. For instance, TM_exp (p, x0, I ,n) returns an rpa centered
at x0 that approximates exp over the interval I . Here, p is the working precision of the floating-
point computations and n is the order of the Taylor model. The library then makes it possible
to combine these Taylor models according to some composite functions. Each operation +, −,
×, ÷, and ◦ (composition), corresponds to a dedicated algorithm [13]. Note that for division, we
currently handle a function f

g as f × (inv ◦ g) (as in [13]) but a more efficient algorithm, based on
Newton’s method for example, could be formalized.

All these algorithms are proved correct with respect to the predicate (8). For instance, the
correctness lemma for TM_exp is as follows:

TM_exp_correct : ∀p, x0, I ,n, x0 ⊆ I ∧ x0 , ∅ =⇒ exp ∈
�
TM_exp(p, x0, I ,n)

�x0
I ,

10In the univariate case, P(x) =
∑n

i=0 Pi · (x − x0)i for a given expansion point x0 ∈ I .

16

Proving Tight Bounds on Univariate Expressions in Coq

and the correctness lemma for the addition of Taylor models is:

TM_add_correct : ∀p, x0, I ,TM f ,TMg , f ,g, size(TM f) = size(TMg) =⇒

f ∈
�
TM f
�x0
I ∧ g ∈

�
TMg

�x0
I =⇒ f + g ∈

�
TM_add(p,TM f ,TMg)

�x0
I .

The hypothesis size(TM f) = size(TMg) makes it possible to simplify the implementation, but it
might seem overly restrictive. In practice though, when computing a univariate Taylor model, all
the intermediate polynomials have the same size.

The formalization of these algorithms was carried out with a special focus on modularity.
Relying on the module system of Coq, we reused CoqInterval’s interface for intervals, and defined
a dedicated interface for polynomials. The Taylor model algorithms are then implemented and
proved in a parameterized module (i.e. a functor) that depends on these interfaces. This approach
makes it easier for the user to swap a given implementation of the basic data structures for another
one, possibly more efficient (e.g. floating-point bounds based on the BigZ type of integers in place
of the Z type of integers).

Regarding the implementation of basic functions in CoqApprox (
√
·, exp, sin, etc.), we aimed

at factoring the algorithmic chain as much as possible, in order to increase the extensibility of the
library. Roughly speaking, for computing a Taylor model (P,∆) for some function f , we only have
to implement two algorithms: an interval extension f of f (see Section 2.4) and a formula relating
the iterated derivatives of f (e.g. its differential equation). Typically, this formula is expressed as
a recurrence relation F such that ck = F (ck−1, k) with ck = f (k) (x)/k!.

The Taylor model is then computed as follows. For P, the recurrence is “unrolled” by a
higher-order function, e.g., trec1(F, f (x0),n) for an order-1 recurrence F as above. For ∆, we
mainly use Zumkeller’s technique [16, Algorithm 1]. It gives sharp bounds when it detects that
the function Rn (f , x0)(x) := f (x) −

∑n
k=0 f (k) (x0)/k! · (x − x0)k is monotonic on each side of

x0, which is usually the case for the basic functions we are interested in. The formal verification
of this technique benefited from the pen-and-paper proof of Proposition 2.2.1 in Mioara Joldeş’
thesis [13], which relies on Lemma 5.12 in Roland Zumkeller’s thesis [25].

3.3.3 Integration of CoqApprox into CoqInterval

The integration of CoqApprox into CoqInterval is performed through a generic interface Univar-
iateApprox for approximating univariate expressions. This extra layer will make it possible to
easily swap our Taylor model implementation with another implementation of polynomial approx-
imations, such as Chebyshev models.

This interface is a parameterized signature that depends on an implementation of intervals.
It declares an abstract data type T and a ternary relation A(I , t, f) which holds if t of type T is
an approximation of function f over the interval I . It also declares abstract functions to build
approximations, starting from identity or constants, and combining existing approximations by
using an operation (addition, subtraction, multiplication, or division), an elementary function (

√
·,

exp, sin, etc.), or the absolute value. For example, the correctness claim for exp : (precision ×
N) → I→ T→ T is

exp_correct : ∀u, I , t, f , A(I , t, f) =⇒ A(I , exp(u, I , t), exp ◦ f). (9)

The interface also declares a function eval for computing the range of an expression from its
approximation with the following correctness claim:

eval_correct : ∀u, I , t, f , A(I , t, f) =⇒ ∀J , ∀x ∈ J , f (x) ∈ eval(u, t, I , J).

17

Technical Report irit$rr–2014-09–fr

The eval function takes two interval arguments I and J so that one can evaluate an approxi-
mation that is valid on I over multiple subsets J I . This additional flexibility is not currently
used by the tactic presented in the upcoming Section 4; we will just call the function with J := I .

Finally, an implementation of this interface UnivariateApprox is provided in the form of
a functor, which depends on an implementation of intervals, and which uses the CoqApprox al-
gorithms. Regarding the implementation of the abstract data type T, we do not directly use the
type rpa for efficiency reasons. Instead, we add three extra constructors to handle some specific
families of functions:

Inductive T := Dummy | Const of I | Var | Tm of rpa.

Dummy approximates any function. Const represents a constant function with a value contained
in the interval argument, while Var represents the identity function. Both constructors Const and
Var make it possible to compute the Taylor models of some common expressions without going
through a full-blown composition of Taylor models. For instance, the expression exp(x) is handled
as exp ◦ id, as shown by property (9), yet it does not need an actual composition. Also, it may be
noted that the interval argument x0 involved in the CoqApprox algorithms does not occur in our
UnivariateApprox interface. Indeed, the instantiation of this argument is handled transparently
to the user: we just take the singleton interval built upon the midpoint of the interval I .

4 The interval Tactic

The kernel of interval arithmetic and the three approaches for reducing the dependency effect
have been packaged into two tactics: interval_intro and interval. When the goal is an
inequality, calling interval tries to formally prove it. The interval_intro tactic is useful
when doing some forward reasoning: when called on an expression, it computes an enclosure of
it, then formally proves it using interval, and finally adds it to the proof context. The syntax of
these two tactics is as follows:

• interval [options],

• interval_intro expr [mode] [options].

By default, interval_intro computes both a lower and an upper bound for expr. If only one of
them is needed, one can tell the tactic about it by specifying lower or upper as a mode, so as to
speed up the proof process. Both tactics can be configured with the following options:

• “i_prec p” changes the precision of floating-point computations (default: 30 bits),

• “i_depth n” changes the maximum depth of the bisection process (default: 15 for interval,
5 for interval_intro),

• “i_bisect x” asks for a bisection along variable x,

• “i_bisect_diff x” asks for a bisection and an automatic differentiation of expressions
with respect to variable x,

• “i_bisect_taylor x d” asks for a bisection and the computation of degree-d Taylor mod-
els with respect to variable x.

Obviously, the last three options are mutually exclusive, and if none of them is passed, the tactic
does not use any method to reduce the dependency effect.

Below is a toy example showing the usage of the tactic. (Rabs denotes the absolute value in
Coq; other symbols have their intuitive meaning.)

18

Proving Tight Bounds on Univariate Expressions in Coq

Goal
forall x, 3/2 <= x <= 2 ->
forall y, 1 <= y <= 33/32 ->
Rabs (sqrt(1 + x / sqrt(x + y))

- 144/1000*x - 118/100) <= 71/32768.
Proof.
intros.
interval with (i_prec 19, i_bisect x).

Qed.

Notice that the goal inequality involves two variables x and y. In fact, the tactic can cope
with an arbitrary number of variables; but the methods for reducing the dependency effect can be
applied to only one of those variables, here x. As for performances, the formal verification takes
half a second, which is slow with respect to some other Coq tactics, but still tolerable for the user.

The tactic supports any expression composed of the following standard Coq operators: Ropp
(unary minus), Rabs (absolute value), Rinv (multiplicative inverse), Rsqr (square), sqrt, cos,
sin, tan, atan, exp, ln, pow (power by a nonnegative integer), powerRZ (power by any integer),
Rplus, Rminus, Rmult, Rdiv. The constant PI is also supported. There are some restrictions on
the domain of a few functions: pow and powerRZ are only supported if the exponent has a numeric
value; inputs of cos and sin should be between −2π and 2π; inputs of tan should be between
−π/2 and π/2. If not, the tactic might fail to prove anything interesting. These restrictions on
the trigonometric functions are related to the naive implementation of their interval versions; any
improvement to their code would lift them.

4.1 Reification and Reflection

The interval tactic works by reflection. Given a goal G to prove, it constructs a Boolean expres-
sion b, such that the following implication holds:

b = true⇒ G.

This general theorem has been proved once and for all; Coq just has to check that b and G are
suitable to instantiate it. Once this theorem has been applied to the goal, what is left to prove is
just b = true. Then the tactic tells Coq that this is just a consequence of the reflexivity of equality.
The formal checker of Coq is thus forced to evaluate b to verify that it is indeed equal to true
(assuming the goal was provable this way), which concludes the proof. In the context of Coq, this
approach has two advantages. First, it leverages the efficient reduction engines for the evaluation
of b. Second, it produces proof terms that are tiny: just two deduction steps.

An important point about reflection is that b is not a small expression. Indeed, several libraries
about integer arithmetic, a library about lists, a library about floating-point arithmetic, a library
about interval arithmetic, a library about Taylor models, etc., were used to design the interval
tactic. All the computable parts of these libraries might end up in b, depending on which options
were passed to the tactic. In fact, if the definitions were to be unfolded, b would amount to several
hundreds of lines of ML code. So it should not come as a surprise that the evaluation of b is the
expensive stage of the verification process.

Naive interval arithmetic, automatic differentiation, and Taylor models all follow the same ap-
proach: they inductively perform computations on the sub-expressions in order to deduce the range
of the whole expression. Therefore, to automate this process, we need an inductive representation
of expressions. An abstract syntax tree would work, but we wanted to allow for some sharing be-
tween common sub-expressions. So, instead, we represent expressions as straight-line programs
with static single assignment. An expression is a sequence of statements, each statement being

19

Technical Report irit/rr–2014-09–fr

composed of an arithmetic operator and some integers pointing to the location of the inputs. For
instance, the expression (x + y) · x + (x + y) is reified into the following program, with comments
indicating which values would be contained in the program stack before evaluating each statement.

(* initial state: [y, x] *) Binary Add 1 0
(* current state: [x+y, y, x] *) :: Binary Mul 0 2
(* current state: [(x+y)*x, x+y, y, x] *) :: Binary Add 0 1
(* current state: [(x+y)*x+(x+y), ...] *) :: nil

We have designed a generic evaluator for such programs. The tactic instantiates it in several
different ways to prove the goal. First, there is a trivial instance that associates to each operator
the corresponding uninterpreted function on real numbers. Given a program, the evaluator thus
produces the original real-valued expression; it is used to check that the reification process pro-
duced the correct program. Then, there are three specializations of the evaluator for doing actual
computations, one with single intervals, one with pairs of intervals for automatic differentiation,
and one with sequences of intervals for Taylor models. For these three instances, we have proved
that the arithmetic operators satisfy the respective containment properties, and by induction, that
the program evaluations do too.

4.2 Power and Shortcomings

For a univariate expression on a bounded input interval, as long as the bounds the user wants to
prove are not attained for some value in the input interval, there should always be a precision and
a bisection depth such that the tactic succeeds. Indeed, the tactic only supports functions that are
continuous on their definition domain, so the range of the expression is a closed interval if the input
interval is a subset of its domain. As a consequence, if the proved bounds are not attained, there
is a gap sufficient to compensate both sub-expression dependencies and floating-point round-off

errors. Note that this only tells us that the process will eventually succeed, not how fast.
That is it for the theoretical semi-decidability of our approach; let us see some of its short-

comings. One of them comes from the bisection process. Since it is performed inside the logic
of Coq rather than being driven by an external source, e.g. an oracle that would give the optimal
partition, the partition that is actually built might be arbitrarily large. For instance, let us suppose
that, for a given problem, the optimal partition is [0,2−n] ∪ [2−n ,1]. The bisection has to process
2n + 1 intervals to complete the proof (n failures and n + 1 successes), while an oracle could have
immediately provided the two optimal intervals.

There are also some issues with the approach based on automatic differentiation, since it re-
quires the expression to be differentiable. If it is not, it does not perform any better than naive
interval arithmetic. Yet this approach could be made to work for any Lipschitz-continuous func-
tion. In fact, even that would be too restrictive, since a function such as square root at zero could
be handled. The idea is that derivatives do not really matter, only slopes do. The Taylor–Lagrange
formula could then be replaced by

∀x ∈ x, f (x) ∈ f ([x0, x0]) + (x − [x0, x0]) × hull
{

f (u) − f (v)
u − v

�����
u , v ∈ x

}
.

Interestingly, most of the formulas used for automatic differentiation would work in this new
setting, since the set of derivatives is equal to the closure of the set of slopes for C1 functions.

There is another issue with our implementation of automatic differentiation. For each sub-
expression, its range and the range of its derivative are computed. But the knowledge learned about
the derivative is not used to further refine the range of the sub-expression. Only the final expression
benefits from the Taylor–Lagrange formula. As a consequence, the intermediate computations
suffer from the dependency effect, which in turn inflate the overestimation on the derivatives, thus

20

Proving Tight Bounds on Univariate Expressions in Coq

causing some monotonic functions to not be detected as such. Obviously, applying the Taylor–
Lagrange formula at each step would induce an overhead, so there is a trade-off to explore between
both implementations.

Taylor models suffer less from this specific issue, since the range of a sub-expression only
matters when applying an elementary function to a Taylor model. Yet we still need to be able to
compute the range of an expression from its Taylor model, if only for bounding the final one when
concluding the proof. Unfortunately, evaluating the polynomial part with Horner’s rule tends to
greatly overestimate the range of the function represented by a Taylor model. Again, the culprit
is the dependency effect. For instance, consider the polynomial x2. Its interval evaluation will be
performed as (1 × x + 0) × x + 0, which amounts to computing x × x. Let us see what happens
for the input interval x = [−1,1]. (Due to the way Taylor models are formalized, the polynomial
is always evaluated on an interval centered at 0.) We get [−1,1] while the actual range of the
polynomial is just [0,1].

To avoid this issue, we have implemented a slightly better interval evaluation of polynomials.
The idea is to rewrite them to reduce the dependency effect [5]. We did not formalize the whole
method though; we only applied it to the quadratic part of the polynomials:

a0 + x · (a1 + x · (a2 + . . .)) = a0 −
a2

1

4a2
+ a2 ·

(
x +

a1

2a2

)2

+ x3 · (. . .).

If we assume that the higher-degree part of polynomials induces only negligible correlations, this
rewriting gives an optimal enclosure without being much slower than Horner’s rule. Because of
the bisection process, this assumption is ultimately valid, though it might have a large overhead.

4.3 Performances

We have compared our tactic to the tools described in Section 1.2. To do so, we have selected
several problems and tested whether they successfully verified them, and if so, how long it took to
prove them.

4.3.1 Selection of some reference problems

Our selection of problems includes a few approximation problems taken from the literature and/of
from actual implementation:

• CRlibm exponential: |(x + 0.5 · x2 + 6004799504235417 · 2−55 · x3 + 1501199876148417 ·
2−55 · x4 − exp x + 1)/(exp x − 1) | ≤ 2−62 when 2−20 ≤ |x | ≤ 355 · 2−22;

• square root [18]: |
√

x − (((((122/7397 · x − 1733/13547) · x + 529/1274) · x − 767/999) ·
x + 407/334) · x + 227/925) | ≤ 5 · 2−16 when x ∈ [0.5,2];

• arctangent, with a tighter bound w.r.t. [8, p. 235]: | arctan x − (x − 11184811/33554432 ·
x3 − 13421773/67108864 · x5)) | ≤ 5 · 2−28 when |x | ≤ 1/30;

• Earth’s radius of curvature [9, 18]: ��(r (φ)− p((715/512)2−φ2))/r (φ)�� ≤ 23 ·2−24 when φ ∈
[0,715/512], with r (φ) = 6378137/

√
1 + (1 − 109/298257223563)2 · tan2 φ and p(t) =

4439091/4+t · (9023647/4+t · (13868737/64+x · (13233647/2048+x · (−1898597/16384+

x · (−6661427/131072)))));

• Tang’s exponential [11, 24]: |(exp x−1)− (x + 8388676 · 2−24 · x2 + 11184876 · 2−26 · x3) | ≤
(23/27) · 2−33 when |x | ≤ 10831 · 10−6.

21

Technical Report irit/rr–2014-09–fr

We have also crafted some increasingly-difficult approximation problems using the minimax
relative polynomial approximations of f (x) = cos(1.5 · cos x) for x ∈ [−1,1/2]. The goal is to
prove |(pn (x) − f (x))/ f (x) | ≤ Cn with n the degree of the approximation between 2 and 8. The
bounds are C2 = 57 ·2−10, C3 = 51 ·2−11, C4 = 51 ·2−14, C5 = 3 ·2−12, C6 = 17 ·2−16, C7 = 25 ·2−19,
and C8 = 5 · 2−20. The polynomial coefficients are easily obtained by running the following Sollya
command, so they will not be reproduced here: fpminimax(f , n, [|SG...|], [-1;1/2],
relative).

We have also selected a few polynomial problems that have been recurrently used for testing
tools [21, 23]. While multivariate (up to 7 variables), they fit into our definition of univariate
expressions and thus were a sensible choice:

• 3-variable reaction diffusion: −36.7126907 ≤ −x1 + 2 · x2 − x3 − 0.835634534 · x2 · (1 + x2)
when x1, x2, x3 ∈ [−5,5];

• adaptive Lotka-Volterra system: −20.801 ≤ x1 · x2
2 + x1 · x2

3 + x1 · x2
4 − 1.1 · x1 + 1 when

x1, x2, x3, x4 ∈ [−2,2];

• Butcher’s problem: −1.44 ≤ x6 ·x2
2+x5 ·x2

3−x1 ·x2
4+x3

4+x2
4−x1/3+4/3·x4 when x1 ∈ [−1,0],

x2 ∈ [−0.1,0.9], x3 ∈ [−0.1,0.5], x4 ∈ [−1,−0.1], x5 ∈ [−0.1,−0.05], x6 ∈ [−0.1,−0.03];

• magnetism: −0.25001 ≤ x2
1 + 2 · x2

2 + 2 · x2
3 + 2 · x2

4 + 2 · x2
5 + 2 · x2

6 + 2 · x2
7 − x1 when

x1, . . . , x7 ∈ [−1,1].

Finally, we have selected some univariate problems that are not approximation problems. They
were originally designed for MetiTarski [1]. Note that some problem statements had to be slightly
modified so as to accommodate as many systems as possible. First, the bounds of all the inputs
have to be finite and closed. So bounds that were originally infinite were replaced by ±10, while
open bounds were modified by ε = 2−10 so that they could be closed. Second, in order for
numerical solvers to succeed, there must be a gap large enough between both sides of an inequality.
So, whenever both sides could be equal for some inputs, ε was added to one of them to make them
disjoint. For instance, the original version of the first problem is 2 |x | /(2 + x) ≤ |ln(1 + x) | when
x > −1, so it exhibits all of these issues: its input x has an open lower bound, it has an infinite
upper bound, and both sides of the inequality are equal when x = 0.

• MT1: 2 |x | /(2 + x) ≤ |ln(1 + x) | + ε when x ∈ [−1 + ε,10];

• MT2: |ln(1 + x) | ≤ − ln(1 − |x |) + ε when x ∈ [−1 + ε,1 − ε];

• MT3: |x | /(1 + |x |) ≤ |ln(1 + x) | + ε when x ∈ [−1 + ε,1];

• MT4: |ln(1 + x) | ≤ |x | (1 + |x |)/ |1 + x | + ε when x ∈ [−1 + ε,1];

• MT5: |x | /4 < ��exp x − 1�� when x ∈ [−1,1] \ (−ε,ε);

• MT6: ��exp x − 1�� < 7 |x | /4 when x ∈ [−1,1] \ (−ε,ε);

• MT7: ��exp x − 1�� ≤ exp |x | − 1 when x ∈ [−10,−ε];

• MT8: ��exp x − (1 + x)�� ≤ ��exp |x | − (1 + |x |)�� when x ∈ [−10,−ε];

• MT9: ��exp x − (1 + x/2)2�� ≤ ��exp |x | − (1 + |x | /2)2�� when x ∈ [−10,−ε];

• MT10: 2x/(2 + x) ≤ ln(1 + x) + ε when x ∈ [0,10];

• MT11: x/
√

1 + x ≤ ln(1 + x) + ε when x ∈ [−1/3,0];

22

Proving Tight Bounds on Univariate Expressions in Coq

• MT12: ln ((1 + x)/x) ≤ (12x2 + 12x + 1)/(12x3 + 18x2 + 6x) when x ∈ [1/3,10];

• MT13: ln ((1 + x)/x) ≤ 1/
√

x2 + x when x ∈ [1/3,10];

• MT14: exp(x − x2) ≤ 1 + x + ε when x ∈ [0,1];

• MT15: exp(−x/(1 − x)) ≤ 1 − x + ε when x ∈ [−10,1/2];

• MT16: |sin x | ≤ 6/5 · |x | + ε when x ∈ [−1,1];

• MT17: 1 − 2x < cos(π · x) when x ∈ [ε,100/201];

• MT18: 0 ≤ cos x − 1 + x2/2 + ε when x ∈ [−10,10];

• MT19: 8
√

3 · x/(3
√

3 +
√

75 + 80x2) ≤ arctan x + ε when x ∈ [0,10];

• MT20: 1 < (x + 1/x) · arctan x when x ∈ [ε,10];

• MT21: 3x/(1 + 2
√

1 + x2) ≤ arctan x + ε when x ∈ [0,10];

• MT22: cos x ≤ sin x/x when x ∈ [ε,π];

• MT23: cos x < (sin x/x)2 when x ∈ [ε,π/2];

• MT24: 0 < sin x/3 + sin(3x)/6 when x ∈ [π/3,2π/3 − ε];

• MT25: 12−14.2·exp(−0.318·x)+(3.25·cos(1.16·x)−0.155·sin(1.16·x))·exp(−1.34·x) > 0
when x ∈ [0,2].

4.3.2 Experimental results

For the experiments conducted within the PVS proof assistant, we have been using the ProofLite
package by César Muñoz to install the following scripts in batch mode:

• Using the metit strategy of PVS 6.0 (based on MetiTarski 2.2):

%|- * : PROOF
%|- (metit :timeout 180)
%|- QED

• Using the interval strategy of PVS 6.0:

%|- * : PROOF
%|- (then (skosimp*)(split)(skosimp*)
%|- (apply (interval) :time? t :timeout 180))
%|- QED

• Using the Bernstein strategy of PVS 5.0:

%|- * : PROOF
%|- (then (skosimp*)
%|- (apply (bernstein) :time? t :timeout 180))
%|- QED

23

Technical Report irit/rr–2014-09–fr

As Alexey Solovyev’s verify_ineq decision procedure handles goals that are strict inequal-
ities and supports sin, cos, but not tan, we manually adapted our reference problems to fit in this
setting. We also rephrased some statements to remove the absolute value whenever possible. Still,
some of our reference problems cannot be handled by the tool: this includes inequalities involv-
ing unsupported functions such as exp. For all the goals that have been discharged with this HOL
Light decision procedure, the base of arithmetic was 200 and precision was 5 (except for inequality
MT23, which was proved with precision 6).

Table 1 shows the CPU time for proving our selection of problems. For these benchmarks, a
laptop with an Intel Core i5-4200M CPU clocked at 2.50 GHz has been used, along with Sollya
4.1, OCaml 4.01.0, and Coq 8.4pl5. The version 6.0.8 of the NASA PVS libraries has been used
with PVS 6.0 (except for the Bernstein strategy, which is only available for PVS 5.0 at the time
we are writing this paper). Finally, we have been using development versions of HOL Light11
(rev. 196) as well as of flyspeck/formal_ineqs12 (rev. 3660). For systems that have no time
limit per se, and may not terminate on some examples of our test suite, we have been setting up a
timeout. For all systems, a timeout reported in the table means that they did not succeed after 180
seconds of computations.

Let us give a bit of information about the missing results first. Both PVS/Bernstein and HOL
Light/REAL_SOS only handle polynomial systems, which explains why most of their columns are
empty. HOL Light/verify_ineq and NLCertify were designed to tackle the inequalities from the
Flyspeck project, so they have no support for functions such as exp. This explains the missing
results for most of the tests extracted from MetiTarski [1].

The failure of MetiTarski on its own test might seem surprising. Yet in MetiTarski’s testsuite,13
MT19 is documented as “probably not provable”, due to the “square root approximation degrading
for large inputs”. So it is not clear whether it is supposed to pass.

Regarding the parameters of CoqInterval, most tests pass with the default floating-point pre-
cision of 30 bits or by increasing it a bit to 40 bits. There are few exceptions though. The most
notable one is the first test, which verifies the approximation used by CRlibm. Indeed, since it
approximates the function with an accuracy of 62 bits, it is impossible to prove it with a precision
lower than that, as shown in Figure 1. As a matter of fact, we had to ask for 90 bits of precision,
for the proof to successfully go through.

When using Taylor models, we never had to use degrees higher than 5. As explained in Sec-
tion 4.2, we are not yet able to fully extract the information contained in high-degree polynomials,
so they would not speed up the bisection process anyway. The tests that benefited from using a
degree-5 polynomial are crlibm_exp, rel_err_geodesic, MT22, and MT23.

Regarding approximation errors, the only tools able to check them are Sollya, CoqInterval and
HOL Light/verify_ineq. Theoretically, PVS/interval should also be able to handle them, but
due to the dependency effect, it cannot succeed in a reasonable amount of time. As for MetiTarski,
it cannot prove more than what its predefined axioms allow, and thus cannot be used as a general
tool for verifying approximation errors. As for performances, CoqInterval is much faster than
verify_ineq on the most complicated examples, since it is not restricted to degree-2 polynomial
approximations. It is much slower than Sollya though, but its results are formally verified by Coq.
Note that the advanced algorithms of Sollya fail on the rel_err_geodesic test and we had to fall
back to checkinfnorm, which is rather slow.

On the tests extracted from MetiTarski, CoqInterval does not perform as fast as MetiTarski.
The comparison is not that unfavorable though, when one keeps in mind that all the results are

11https://code.google.com/p/hol-light/
12https://code.google.com/p/flyspeck/source/browse/#svn/trunk/formal_ineqs
13https://metitarski.googlecode.com/hg-history/V2_4/tptp/Problems/atan-problem-1-sqrt.

tptp

24

https://code.google.com/p/hol-light/
https://code.google.com/p/flyspeck/source/browse/#svn/trunk/formal_ineqs
https://metitarski.googlecode.com/hg-history/V2_4/tptp/Problems/atan-problem-1-sqrt.tptp
https://metitarski.googlecode.com/hg-history/V2_4/tptp/Problems/atan-problem-1-sqrt.tptp

Proving Tight Bounds on Univariate Expressions in Coq

Problems C
oq

In
te

rv
al

So
lly

a

M
et

iT
ar

sk
i

N
L

C
er

tif
y

(n
ot

ve
ri

fie
d)

N
L

C
er

tif
y

(p
ar

tly
ve

ri
fie

d)

PV
S/

in
te

rv
al

H
O

L
L

ig
ht

/

v
e
r
i
f
y
_
i
n
e
q

PV
S/

B
er

ns
te

in

H
O

L
L

ig
ht

/

R
E
A
L
_
S
O
S

crlibm_exp 1.04? 0.01 Failed - - Failed - - -
remez_sqrt 0.57 0.02 0.07 16.82? Timeout Failed 4.02? - -
abs_err_atan 0.54 0.01 0.09 Failed Failed Timeout 2.59? - -
rel_err_geodesic 3.51 2.43 Timeout Timeout Timeout Failed 252.54? - -
harrison97 0.50 0.01 0.14 - - Failed - - -

cos_cos_d2 0.86 0.06 Timeout Timeout Timeout 22.50 6.39? - -
cos_cos_d3 0.93 0.06 Timeout Timeout Timeout 53.30 6.97? - -
cos_cos_d4 1.04 0.07 Timeout Timeout Timeout Timeout 9.86? - -
cos_cos_d5 1.64 0.07 Timeout Timeout Timeout Timeout 17.41? - -
cos_cos_d6 1.78 0.07 Timeout Timeout Timeout Timeout 23.19? - -
cos_cos_d7 2.53 0.08 Timeout Timeout Timeout Timeout 46.57? - -
cos_cos_d8 3.23 0.09 Timeout Timeout Timeout Timeout 97.09? - -

MT1 0.60 - 0.12 - - Failed - - -
MT2 1.75 - 0.04 11.30? Timeout Failed - - -
MT3 0.20 - 0.17 - - 1.23 - - -
MT4 0.26 - 0.20 1.39? 21.70? 1.33 - - -
MT5 0.13? - 0.06 - - 1.37 - - -
MT6 0.18? - 0.08 - - 1.40 - - -
MT7 0.05 - 0.03 - - 2.25 - - -
MT8 0.38 - 0.18 - - Timeout - - -
MT9 0.58 - 0.48 - - Timeout - - -
MT10 0.21 - 0.05 1.03 16.70 Failed - - -
MT11 0.11 - 0.22 0.42 7.70 1.84 - - -
MT12 3.21 - 0.07 Timeout Timeout Timeout - - -
MT13 1.10 - 0.09 12.83 153.71 Failed - - -
MT14 0.08 - 0.06 - - 0.93 - - -
MT15 0.17 - 0.08 - - 1.08 - - -
MT16 0.14 - 0.04 0.66? 9.42? 3.49 0.63? - -
MT17 0.12 - 0.03 0.22 4.55 1.37 0.25 - -
MT18 0.19 - 0.01 0.22 2.78 0.73 0.84 - -
MT19 0.58 - Failed 6.03 84.13 Failed 2.11 - -
MT20 3.48 - 0.04 2.83 50.41 Timeout 17.19 - -
MT21 0.36 - 0.43 4.12 58.55 Failed 1.53 - -
MT22 0.78 - 0.08 Timeout Timeout Failed 126.19 - -
MT23 1.31 - 0.11 Failed Failed Failed Failed - -
MT24 0.12 - 0.40 0.19 2.75 Failed 0.27 - -
MT25 0.33 - 0.14 - - 1.95 - - -

RD 0.29 - 0.02 2.12 75.01 1.87 0.54 3.70 Timeout
adaptiveLV 0.19 - 0.04 0.26 3.63 1.09 1.41 4.44 4.22
butcher 0.48 - 0.05 0.82 12.41 21.87 2.45 20.10 Timeout
magnetism 0.21 - 0.04 1.63 23.28 Timeout 347.25 Timeout 0.25

Table 1: CPU time (in seconds) for proving the selected problems. Timeout indicates that the prover did not
terminate under 180s. Failed indicates that it terminated but did not succeed in proving a problem. When
some result is followed by a star, it means that the problem has been split into several sub-problems, and the
given timing is the total CPU time for proving them. For example, this is the case when the input domain is
not connected (e.g. for MT5, it is [−1,−ε] ∪ [ε,1]), or when some inequality with absolute values has been
rephrased into a conjunction of inequalities. Regarding the PVS results, we do not include the proof time
for the Type Correctness Conditions (TCCs) that are generated when proving the considered problems.

25

Technical Report irit/rr–2014-09–fr

formally verified by Coq. The column for PVS/interval gives us some clues as to which problems
are simple enough to be handled by naive interval arithmetic.

It should be noted that, while all the problems of this category have bounded inputs, CoqInter-
val is able to prove some of the original problems with unbounded inputs. For instance, automatic
differentiation has no difficulty with the unbounded versions of MT7, MT18, and MT20. For
MT8 to go through with an unbounded domain, the user has to manually remove some absolute
values beforehand. MT15 can also be proved with an infinite lower bound, as long as the user
rewrites x/(1− x) into 1/(1/x−1). A similar transformation makes it possible to prove MT19 and
MT21. The running time of these seven problems is hardly changed when going from the bounded
versions to the unbounded versions.

Finally, the multivariate problems show that CoqInterval can handle them quite easily, as long
as only one variable really matters. It also shows that some multivariate solvers would benefit
from heuristics for reducing multivariate problems to univariate ones. In particular, magnetism is
actually a straightforward problem, once one has noticed that only x1 matters.

5 Conclusion

5.1 Summary

This paper has presented a tactic for the Coq proof assistant that is designed to automatically
and formally verify numerical bounds on univariate expressions. While the original CoqInterval
package was already designed for that purpose, it was not powerful enough to tackle bounds on ap-
proximation errors. Indeed, its approach was based on order-0 Taylor–Lagrange approximations,
which would cause an explosion of the number of subdomains to verify for the harder cases. Using
Taylor models instead, the execution time is sufficiently reduced for the tactic to become usable
when verifying mathematical libraries.

Our approach is fully reflexive; starting from a representation of the univariate expression, it
numerically computes some bounds of it. The tactic does not depend on an external oracle that
would generate certificates that the prover would check. Instead, all the numerical computations
are performed inside the logic of Coq and are proved correct. In fact, one could extract the code
from our tactic and build a native tool independent from Coq. (In a sense, that is already what
the native_compute tactic performs, except that the resulting native code is then transparently
invoked by Coq.)

Let us summarize how our approach compares to the other tools. First, it only handles mostly
univariate expressions, as does Sollya [7], while all the other tools are meant to support truly mul-
tivariate expressions. It supports some elementary functions, contrarily to REAL_SOS for HOL
Light [12] and bernstein for PVS [21]. It is restricted to the universally-quantified fragment,
while MetiTarski [1] can tackle more intricate problems. (To a lesser extent, bernstein can also
handle a wider range of problems.) Its computations are performed inside the logic of a proof
system, contrarily to MetiTarski, Sollya, and to a lesser extent the PVS strategies. It performs
numerical computations using floating-point arithmetic, as do Sollya and the verify_ineq pro-
cedure for HOL Light [23], while all the other tools use rational arithmetic.

Finally, if we exclude the tools that only supports polynomial systems, the main difference
between the remaining tools is whether they focus on univariate or multivariate expressions. In-
deed, in the multivariate case, Taylor-like approximations grow up exponentially, while they grow
only linearly in the univariate case. This partly explains why verify_ineq (HOL Light) and
NLCertify handle only degree-2 polynomials as approximations. Unfortunately, this low degree
is not sufficient to tackle the kind of proofs required when verifying mathematical libraries. Tools
dedicated to univariate expressions do not suffer from this limitation.

26

Proving Tight Bounds on Univariate Expressions in Coq

5.2 Perspectives

While CoqInterval has now reached the point where it can formally prove some of the bounds that
appear when verifying a floating-point mathematical library, there is still work to be done. First
of all, additional floating-point approximations of mathematical functions should be formalized.
Unfortunately, implementing efficient approximations is still a costly process that involves lots of
custom code and proofs. It would be better to get a more generic way of formalizing floating-
point approximations. A promising approach is to automatically derive implementations from the
differential equation of a function.

Another part that could be improved in CoqInterval is the interface between the floating-point
kernel and the interval one. Indeed, it leaks numerous implementation details about the floating-
point operations, e.g. the unbounded range of exponent, while the interval operations should only
care about inequalities such as 5(u + v) ≤ u + v ≤ 4(u + v). As a consequence, one cannot blindly
replace a floating-point implementation by another. For instance, using a library like MPFR or the
floating-point unit of the processor for improved performances would invalidate all the proofs by
breaking some assumptions.

Finally and more importantly, some work has to be done in bridging the gap between the
univariate approaches and the multivariate ones. Multivariate methods obviously handle a larger
spectrum of problems, but they are quite inefficient when it comes to univariate problems.

References

[1] Behzad Akbarpour and Lawrence C. Paulson. MetiTarski: An automatic theorem prover
for real-valued special functions. Journal of Automated Reasoning, 44(3):175–205, 2010.
doi:10.1007/s10817-009-9149-2.

[2] Xavier Allamigeon, Stéphane Gaubert, Victor Magron, and Benjamin Werner. Certification
of bounds of non-linear functions: The templates method. In Jacques Carette, David As-
pinall, Christoph Lange, Petr Sojka, and Wolfgang Windsteiger, editors, Intelligent Computer
Mathematics - MKM, Calculemus, DML, and Systems and Projects, volume 7961 of Lecture
Notes in Computer Science, pages 51–65, 2013. doi:10.1007/978-3-642-39320-4_4.

[3] Sylvie Boldo and Guillaume Melquiond. Flocq: A unified library for proving floating-point
algorithms in Coq. In Elisardo Antelo, David Hough, and Paolo Ienne, editors, Proceedings
of the 20th IEEE Symposium on Computer Arithmetic, pages 243–252, Tübingen, Germany,
2011. doi:10.1109/ARITH.2011.40.

[4] Nicolas Brisebarre, Mioara Joldeş, Érik Martin-Dorel, Micaela Mayero, Jean-Michel Muller,
Ioana Paşca, Laurence Rideau, and Laurent Théry. Rigorous polynomial approximation
using Taylor models in Coq. In Alwyn Goodloe and Suzette Person, editors, Proceed-
ings of 4th International Symposium on NASA Formal Methods, volume 7226 of Lec-
ture Notes in Computer Science, pages 85–99, Norfolk, Virginia, 2012. Springer. doi:
10.1007/978-3-642-28891-3_9.

[5] Martine Ceberio and Laurent Granvilliers. Horner’s rule for interval evaluation revisited.
Computing, 69(1):51–81, 2002. doi:10.1007/s00607-002-1448-y.

[6] Sylvain Chevillard, John Harrison, Mioara Joldeş, and Christoph Lauter. Efficient and accu-
rate computation of upper bounds of approximation errors. Journal of Theoretical Computer
Science, 412(16):1523–1543, 2011. doi:10.1016/j.tcs.2010.11.052.

27

http://dx.doi.org/10.1007/s10817-009-9149-2
http://dx.doi.org/10.1007/978-3-642-39320-4_4
http://dx.doi.org/10.1109/ARITH.2011.40
http://dx.doi.org/10.1007/978-3-642-28891-3_9
http://dx.doi.org/10.1007/978-3-642-28891-3_9
http://dx.doi.org/10.1007/s00607-002-1448-y
http://dx.doi.org/10.1016/j.tcs.2010.11.052

Technical Report irit/rr–2014-09–fr

[7] Sylvain Chevillard, Mioara Joldeş, and Christoph Lauter. Sollya: An environment for the
development of numerical codes. In Komei Fukuda, Joris van der Hoeven, Michael Joswig,
and Nobuki Takayama, editors, Proceedings of the 3rd International Congress on Mathemat-
ical Software, volume 6327 of Lecture Notes in Computer Science, pages 28–31, Heidelberg,
Germany, 2010.

[8] Marc Daumas, David Lester, and César Muñoz. Verified real number calculations: A library
for interval arithmetic. IEEE Transactions on Computers, 58(2):226–237, 2009.

[9] Marc Daumas, Guillaume Melquiond, and César Muñoz. Guaranteed proofs using interval
arithmetic. In Paolo Montuschi and Eric Schwarz, editors, Proceedings of the 17th IEEE
Symposium on Computer Arithmetic, pages 188–195, Cape Cod, MA, USA, 2005. doi:
10.1109/ARITH.2005.25.

[10] William Denman and César Muñoz. Automated real proving in PVS via MetiTarski. In
Cliff B. Jones, Pekka Pihlajasaari, and Jun Sun, editors, FM, volume 8442 of Lecture Notes in
Computer Science, pages 194–199. Springer, 2014. doi:10.1007/978-3-319-06410-9_
14.

[11] John Harrison. Verifying the accuracy of polynomial approximations in HOL. In Elsa L.
Gunter and Amy P. Felty, editors, Proceedings of the 10th International Conference on The-
orem Proving in Higher Order Logics, volume 1275 of Lecture Notes in Computer Science,
pages 137–152, Murray Hill, NJ, USA, 1997. doi:10.1007/BFb0028391.

[12] John Harrison. Verifying nonlinear real formulas via sums of squares. In Klaus Schneider and
Jens Brandt, editors, Proceedings of the 20th International Conference on Theorem Proving
in Higher Order Logics, volume 4732 of Lecture Notes in Computer Science, pages 102–118,
Kaiserslautern, Germany, 2007.

[13] Mioara Joldeş. Rigorous Polynomial Approximations and Applications. PhD thesis, ENS de
Lyon, France, 2011. URL: http://tel.archives-ouvertes.fr/tel-00657843/en/.

[14] K. Makino. Rigorous Analysis of Nonlinear Motion in Particle Accelerators. PhD thesis,
Michigan State University, East Lansing, Michigan, USA, 1998.

[15] K. Makino and M. Berz. Taylor models and other validated functional inclusion methods.
International Journal of Pure and Applied Mathematics, 4(4):379–456, 2003. URL: http:
//bt.pa.msu.edu/pub/papers/TMIJPAM03/TMIJPAM03.pdf.

[16] Érik Martin-Dorel, Micaela Mayero, Ioana Paşca, Laurence Rideau, and Laurent Théry. Cer-
tified, efficient and sharp univariate Taylor models in Coq. In SYNASC 2013, pages 193–200,
Timişoara, Romania, 2013. IEEE. URL: http://hal.inria.fr/hal-00845791v2/en/,
doi:10.1109/SYNASC.2013.33.

[17] Guillaume Melquiond. Floating-point arithmetic in the Coq system. In Proceedings of the
8th Conference on Real Numbers and Computers, pages 93–102, Santiago de Compostela,
Spain, 2008.

[18] Guillaume Melquiond. Proving bounds on real-valued functions with computations. In
Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors, Proceedings of the
4th International Joint Conference on Automated Reasoning, volume 5195 of Lecture
Notes in Artificial Intelligence, pages 2–17, Sydney, Australia, 2008. doi:10.1007/
978-3-540-71070-7_2.

28

http://dx.doi.org/10.1109/ARITH.2005.25
http://dx.doi.org/10.1109/ARITH.2005.25
http://dx.doi.org/10.1007/978-3-319-06410-9_14
http://dx.doi.org/10.1007/978-3-319-06410-9_14
http://dx.doi.org/10.1007/BFb0028391
http://tel.archives-ouvertes.fr/tel-00657843/en/
http://bt.pa.msu.edu/pub/papers/TMIJPAM03/TMIJPAM03.pdf
http://bt.pa.msu.edu/pub/papers/TMIJPAM03/TMIJPAM03.pdf
http://hal.inria.fr/hal-00845791v2/en/
http://dx.doi.org/10.1109/SYNASC.2013.33
http://dx.doi.org/10.1007/978-3-540-71070-7_2
http://dx.doi.org/10.1007/978-3-540-71070-7_2

Proving Tight Bounds on Univariate Expressions in Coq

[19] Guillaume Melquiond. Floating-point arithmetic in the Coq system. Information and Com-
putation, 216:14–23, 2012. doi:10.1016/j.ic.2011.09.005.

[20] R. E. Moore. Interval Analysis. Prentice-Hall, 1966.

[21] César Muñoz and Anthony Narkawicz. Formalization of a representation of Bernstein
polynomials and applications to global optimization. Journal of Automated Reasoning,
51(2):151–196, 2013. doi:10.1007/s10817-012-9256-3.

[22] Anthony Narkawicz and César Muñoz. A formally verified generic branching algorithm for
global optimization. In Ernie Cohen and Andrey Rybalchenko, editors, Proceedings of the
5th International Conference on Verified Software: Theories, Tools, Experiments, volume
8164 of Lecture Notes in Computer Science, pages 326–343, Menlo Park, CA, USA, 2013.
doi:10.1007/978-3-642-54108-7_17.

[23] Alexey Solovyev and Thomas C. Hales. Formal verification of nonlinear inequalities with
Taylor interval approximations. In Guillaume Brat, Neha Rungta, and Arnaud Venet, editors,
Proceedings of the 5th International Symposium on NASA Formal Methods, volume 7871 of
Lecture Notes in Computer Science, pages 383–397, Moffett Field, CA, USA, 2013. doi:
10.1007/978-3-642-38088-4_26.

[24] Ping Tak Peter Tang. Table-driven implementation of the exponential function in IEEE
floating-point arithmetic. ACM Transactions on Mathematical Software, 15(2):144–157,
1989. doi:10.1145/63522.214389.

[25] Roland Zumkeller. Global Optimization in Type Theory. PhD thesis, École polytechnique,
France, 2008. URL: http://alacave.net/~roland/FormalGlobalOpt.pdf.

Acknowledgements

This work was funded by the Verasco ANR project (ref. ANR-11-INSE-003). It was partly done
while the first author was with Inria Saclay–Île-de-France, in the LRI research laboratory.

We would like to thank the people from the ANR TaMaDi project for initiating and greatly
contributing to the CoqApprox project.

29

http://dx.doi.org/10.1016/j.ic.2011.09.005
http://dx.doi.org/10.1007/s10817-012-9256-3
http://dx.doi.org/10.1007/978-3-642-54108-7_17
http://dx.doi.org/10.1007/978-3-642-38088-4_26
http://dx.doi.org/10.1007/978-3-642-38088-4_26
http://dx.doi.org/10.1145/63522.214389
http://alacave.net/~roland/FormalGlobalOpt.pdf

ups-irit, 118 route de Narbonne, 31062 Toulouse cedex 9

+33 (0) 561 55 67 65 info@irit.fr www.irit.fr

Keywords

Interval arithmetic. Formal proof. Decision procedure. Coq proof assistant.
Floating-point arithmetic. Nonlinear arithmetic.

Abstract

The verification of floating-point mathematical libraries requires computing
numerical bounds on approximation errors. Due to the tightness of these
bounds and the peculiar structure of approximation errors, such a verifica-
tion is out of the reach of traditional tools. In fact, the inherent difficulty of
computing such bounds often mandate a formal proof of them. In this paper,
we present a tactic for the Coq proof assistant that is designed to automati-
cally and formally prove bounds on univariate expressions. It is based on a
kernel of floating-point and interval arithmetic, associated with an on-the-fly
computation of Taylor expansions. All the computations are performed inside
Coq’s logic, in a reflexive setting. This paper also compares our tactic with
various existing tools on a large set of examples.

	Abstract & Keywords
	1 Introduction
	1.1 Background and Scope
	1.2 Related Works
	1.3 Content

	2 Floating-point and Interval Arithmetic
	2.1 Preliminaries About Interval Arithmetic
	2.2 Floating-point Operators
	2.3 Interval Operators
	2.4 Floating-point and Interval Elementary Functions

	3 Reducing the Dependency Effect
	3.1 Bisection
	3.2 Automatic Differentiation
	3.3 Taylor Models
	3.3.1 Preliminaries about Taylor models
	3.3.2 Main features of the CoqApprox formalization
	3.3.3 Integration of CoqApprox into CoqInterval

	4 The interval Tactic
	4.1 Reification and Reflection
	4.2 Power and Shortcomings
	4.3 Performances
	4.3.1 Selection of some reference problems
	4.3.2 Experimental results

	5 Conclusion
	5.1 Summary
	5.2 Perspectives

	References
	Acknowledgements

