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Ubéda,

Abstract

Wireless LANs experienced great success in the past five years. This technology has been quickly

adopted in private and public areas to provide a convenient networking access. The fast pace of de-

velopment has often induced an uncoordinated deployment strategy where WLAN planning tools have

been barely used. This article highlights the difficulty of planning such wireless networks in indoor

environments. The first issue the WLAN planning problem has to face is to accurately describe the

quality of a network, based on realistic propagation predictions. The second issue is to implement a

search strategy that provides several alternative solutions. By this way, the radio engineer can choose the

most promising one among them based on his experience and maybe some additional constraints.

A description of already proposed planning strategies is given and opens out onto a new multiobjective

planning formulation. This formulation evaluates coverage, interference level and quality of service (in

terms of data throughput per user) to measure the quality of a planning solution. A Tabu multiobjective

algorithm is then implemented to search for the optimal set of non-dominated planning solutions and a

final selection process extracts the most significant solutions for the end user. This multiobjective QoS-

oriented method is illustrated on a practical example that shows the performance of looking for several

solutions, each one of them expressing other trade-offs between the planning objectives.
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QoS constrained wireless LAN optimization

within a multiobjective framework

I. INTRODUCTION

In the last decade, wireless LANs experienced great success as lots of networks have been deployed in

companies or private areas either as hot spots for public access or as private networks. These networks

provide the seed for developing new mobility-related applications such as Voice over IP for WiFi networks.

Efficiency of such high-level services is strongly correlated to the transmission quality. First small WiFi

networks were efficiently deployed with simple rules of thumb (e.g. site surveys, quick installations,

on-site network tuning). Now, the growth of these networks impacts the IEEE802.11 WLAN standard

that suffers from a lack of radio resource to face very large scale roll-out scenarii. For quick roll-

outs, it is often preferred to overestimate the number of APs to avoid lack of coverage and to increase

throughput. This choice strongly impacts the complexity of the channel allocation problem and provide

high interference levels, worsening final network performance. Bad performance originates from three

main reasons: lack of radio coverage (i.e. low Signal to Noise Ration (SNR)), inter-cell interference (i.e.

low Signal to Interference and Noise Ratio (SINR)) and high number of users sharing the same channel

resources. WLAN planning thus aims at contending with all of these issues by looking for the network

configuration that minimizes one or more evaluation criteria.

Automatic planning solutions proposed for about ten years rely on two main features: the optimization

algorithm and the propagation prediction model. Main efforts have been done for cellular networks

planning problem, which strongly differs from WLAN planning as described in this paper.

Herein, three sets of primary criteria dealing with coverage, interference limitation and QoS provi-

sioning are suitably defined for the WLAN planning problem. Because optimizing a global cost function

combining all the criteria is delicate to handle, a multiobjective formalism is herein proposed. A problem

is said multiobjective if a global cost function can only be defined as a trade-off between 2 or more

criteria. It is exactly the concern WLAN planning is facing: on the one hand the number of APs and

their power has to be high to achieve better coverage and throughput, and on the other hand, they have to

remain low to reduce interference. The best configuration is obviously a trade-off between both objectives.

In this framework, an implementation of a multiobjective Tabu search is proposed.
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II. WLAN PLANNING OBJECTIVES

A. Overview

Network planning looks for a network configuration that provides an optimal quality of service to face

the rapid growth in size of upcoming WLANs and the increased need for new QoS-oriented applications.

The main variables are:

• the number N of transmitters,

• the set of potential transmitter locations,

• the transmission powers,

• the antenna type, azimuth and tilt.

This problem is closely related to the well-known cellular network planning problem. However, both

planning problems differ in many points. The number N of chosen transmitters is important for both

networks to mitigate data loss due to interference. But for cellular systems, the available set of base

stations locations is limited due to environmental constraints, what makes the choice of transmission

power and antenna parameters critical [1]. On the opposite, transmission power for WLAN access points

is often fixed with a roughly omnidirectional radiation pattern. In this case, the foremost variable is the

AP location that strongly impacts the WLAN QoS due to the density of obstacles. The environment also

differs as Indoor propagation is difficult to handle. Lastly, concerning the QoS evaluation, WiFi planning

faces the same problem than cellular systems in predicting the QoS in IP-based systems. To sum up,

WiFi planning is a ’smaller problem’ (less variables) but needs accurate propagation and traffic modeling.

First works on WLAN planning handled position and power as continuous variables [2], [3], often

with a fixed number of APs chosen prior the search. Recent works [4], [5] determine the number N and

locations of APs based on a combinatorial formulation of the problem. Such formulation helps to plan

bigger environments by reducing the size of the search space. In this case, a set of candidate locations are

selected before the search and the algorithm looks for the best subset of locations among all candidate

ones.

The basic service a WLAN has to offer is access provision. It relies on satisfying both coverage and

interference criteria. In the literature, first WLAN planning methods only deal with coverage [6]. Interfer-

ence criteria minimizing the overlapping between cells are added to avoid a joined channel allocation [5].

Indeed, getting more accurate interference estimation implies performing a channel assignment for each

solution resulting in more computational load [4], [7]. The NP-complete frequency assignment problem

(FAP) of a finite set of frequencies aims at minimizing overall network interference. To ensure enough
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throughput for the users, new efforts have been devoted to the definition of bandwidth sharing criteria

[4], [5], [7]. Based on these statements, we propose a generic formulation to gather all criteria in a

multicriteria framework afterwards.

B. A generic combinatorial formulation

Let us consider both discrete sets:

i) RI = {RI1, . . . RIl . . . RIL}, the set of the L regions of interest (RI) for which a radio access

is expected. Each RI represents for instance a room.

ii) AP = {AP1, . . . APm . . . APM}, the set of the M candidate AP positions. Locations may be

chosen on a regular grid or account for the geometry of the environment.

In our case, RI and AP sets are obtained automatically with the wireless propagation simulator (cf.

section V-A and Fig.3). The wireless prediction tool computes the mean power received Fm
l from each

candidate APm on each region of interest RIl.

Let be defined a generic measure of the service provided by the network for each region. This utility

value Ul is assigned to each RIl knowing the subset of N active APs, (N < M). For instance, the

strongest received signal power Fm
l on RIl may be defined as the utility value for a coverage criterion.

Let be defined a penalty function Ul 7→ fpl = fp(Ul) that estimates the quality of RIl regarding

the value of utility Ul. The aim of this function is to measure the asset of a region regarding a global

optimization objectif. The shape assigned to fp for a minimization problem is presented in Fig.1. Here, a

maximum penalty of ∆ is considered when Ul is smaller than a threshold Smin and a null penalty when

Ul is higher than Smax. The penalty function is linear or at least continuously decreasing between both

thresholds. The fact that this function is bounded helps reducing the influence of too bad or too good

small regions and thereby avoid border effects in the optimization process.

Let be defined a global optimization criterion as a weighted quadratic sum of the values of fpl:

f =
√ ∑

l∈[1..L]

µl.fp
2
l (1)

µl is a scaling coefficient representing the relevance of RIl. Here, we use the ratio between the surface

area of RIl and the total surface are. This criterion both minimizes the mean and the standard deviation

of the penalty function.
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Fig. 1. Penalty function fp applied to a region of interest knowing its utility value Ul. Maximal penalty ∆ is applied when

Ul is smaller than Smin and no penalty exists when Ul is higher than Smax. The penalty is linear between both thresholds.

C. WLAN planning criteria

1) Coverage: A region of interest is covered if and only if the best signal to noise ratio SNRl =

max
k

(Fm
l −Nl) allows efficient demodulation of the signal, Nl standing for the noise power. The coverage

criterion is commonly based on measuring the satisfaction of the constraint Fm
l ≥ S+Nl in the building,

S being the lowest received power permitting demodulation.

A hard criterion only based on coverage is used in [5] where a solution is said valid if all the RIs

are covered. Smoother criteria have also been proposed: i) maximization of the covered surface area [3],

ii) joint minimization of the average and the worst attenuation for all the RIs [2]. The latter criterion

does not guaranty coverage for the whole environment as penalization is not bounded. Threshold based

criteria have also been proposed [3], [8] where RIs are penalized according to a given function when a

coverage constraint is not fulfilled.

The coverage penalization function used in our approach is threshold based, following the generic

formulation previously introduced in Eq.(1). The utility value associated with each RIl is the strongest

received power and is referred to as the Best Server signal FBS
l = maxm∈(1,..,M) Fm

l . Threshold Smin

is the receiver sensitivity needed to achieve the lowest data rate and Smax the sensitivity that ensures the

highest data rate. The maximum penalization ∆ equals (Smax − Smin). This coverage criterion aims at

providing each mobile user with the best possible coverage.

Adapting this criterion to any technology is done by choosing accordingly Smin and Smax. For instance,

for an IEEE802.11b network, our proposal is to set Smin and Smax respectively to the receiver sensitivity

of a 1 Mbits/s transmission and an 11 Mbits/s transmission. Table II-C.1 summarizes the threshold

values we advocate for IEEE802.11 networks.
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Network Smin Smax

802.11a -85dBm (6 Mbits/s) -67dBm (54 Mbits/s)

802.11b -90dBm (1 Mbits/s) -86dBm (11 Mbits/s)

802.11g -90dBm (1 Mbits/s) -67dBm (54 Mbits/s)

TABLE I

EXAMPLE OF THRESHOLD VALUES FOR IEEE 802.11 COVERAGE. THESE VALUES CAN SLIGHTLY VARY WITH THE

TRANSMISSION MATERIAL USED.

2) Interference: Optimizing the previous coverage criterion alone can only be achieved with a fixed

number N of APs having fixed transmission power P . If N and P are ideally chosen, this minimization

may lead to a good solution. If either P or N are relaxed, this criterion leads to solutions overestimating

either P or N , or both. An additional interference criterion is therefore introduced to compensate for it.

As already mentioned, interference can be controlled either by using an exact interference estimation

or simply by exploiting adjacent cells overlapping [2]. The former needs to solve the channel allocation

problem (FAP) within the planning stage [4], [7], while the later allows to make it afterwards. Reducing

overlapping is an appealing method to avoid the computational cost of channel allocation. Main matter

is to define overlapping. A definition has been proposed in the context of cellular systems planning in

[9]. The powers received above noise power Nl by all the APs on RIl are ordered from the strongest to

the weakest:

FBS
l ≥ F 1

l ≥ · · · ≥ F h
l ≥ F h+1

l ≥ · · · ≥ Nl (2)

The strongest signal is the Best Server signal FBS
l , the h following ones are considered necessary for

handover while the remaining ones are interferer.

To provide few interference on each RI, a penalty function based on the generic formulation of II-B

is defined to get the strongest interferer F h+1
l below the noise power Nl:

fpI(F
h+1
l ) = max(F h+1

l −Nl, 0) (3)

This formulation takes out the first h interferers because: i) they are originate from adjacent cells and ii)

the a-posteriori FAP algorithm is expected to provide proper channel assignments for them. By this way,

these h signals will use other frequencies preventing them from jamming the best server communication.

This penalty function balances the coverage criterion by:

1) minimizing the number of APs,
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2) reducing the transmission power,

3) moving APs away from each other.

For WiFi based applications, experimental tests have shown that h should be kept low because of the

lack of non-overlapping channels in IEEE 802.11a/b/g.

3) Quality of service: QoS refers to the final quality of service offered to the users. In a general scope,

such a QoS may be defined as the average effective throughput per user, either for downlink and/or uplink

communications [4], [5]. In this paper, we also focus on the average effective throughput per user.

The criterion proposed penalizes the RIs when the effective throughput Tl does not meet a target

throughput per user T l
∗. The penalization function is given by:

fpQoS(d
l
) = max(T l

∗ − Tl, 0) (4)

The main matter is to get a correct estimate of Tl. As APs and users are interfering with each other, a

global study of the WLAN has to be done to infer it. First of all, let us consider the case of an isolated AP

and its connected users. Contrary to most wireless systems that dedicate a separated radio resource for

uplink and downlink flows, IEEE802.11 flows share the same channel. Moreover, it is highlighted in [10]

that the access fairness provided by the IEEE 802.11 CSMA/CA MAC protocol leads to a long term AP

throughput that is a function of the transmission rate the users get from the AP. Besides, transmission rate

is a function of the link quality in terms of SNR. Therefore, estimating the average effective throughput

of an AP is done by: 1) selecting the RIs covered by the AP, 2) calculating its transmission rates Rl for

each RI based on SNRl, 3) finding the effective bandwidth of the AP based on the transmission rates

of all the users present in the area.

This last step depends on the distribution of traffic flows. When having downlink traffic, it is the AP

that chooses the best packet scheduling for each communication. One can assume that a basic access

provides fair throughput distribution between the users. If there is only uplink traffic, the CSMA/CA

protocol regulates the access and has to be evaluated. In this case, there are packet losses due to collisions

and the whole back-off process of the IEEE802.11 MAC protocol has to be modeled as proposed in [11].

When there is a mix between uplink and downlink flows, access is still regulated by the same protocol

but the AP has to share its bandwidth like other users.

The performance evaluation model of [11] provides a fine estimation of the effective uplink throughput

per user, under the assumption that the medium is neither shared nor interfered by adjacent cells. But

in the general case, multiple cells are deployed and the mean throughput of each cell decreases due to

interference.
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f2

f1

Dominated solution

Non-dominated solution

Fig. 2. Non-dominated and dominated solutions for a 2-function minimization problem.

During the planning stage, interference and QoS criteria are considered separately. The QoS criterion

thus deals with the maximal achievable throughput for each cell. This throughput is achieved only if a

FAP algorithm succeeds in annihilating co-channel and inter-channel interference. It is claimed herein

that the association of a throughput per cell and an interference reduction criteria provides solutions

reflecting a trade-off between throughput maximization and interference avoidance.

The chosen penalization function expresses the difference T l
∗ − Tl in decibels to improve readability

of the penalty and for consistency with the other criteria. Hence, a difference of 3dB shows a loss of

half of the bandwidth per user on the RI. For Tl = 0, the maximum penalization of δ = (T l
∗)dB is

applied. Average throughput per user is computed thanks the model of Lu and Valois [11] knowing the

distribution of users in the building.

III. MULTIOBJECTIVE MINIMIZATION

A. Multiobjective search

Each criterion defined in the previous section tackles the quality of one utility of the network. Getting

the solution that has the best possible rating for each criterion is not obvious, especially when the criteria

optimized have an antagonistic influence on the variables. For instance, networks composed of a high

number of APs have good coverage and throughput performance but suffer from high interference levels.

A good planning solution is the result of a trade-off between the criteria involved in the search. Joint

optimization of antagonistic criteria is the definition of a multiobjective search problem.

Each multiobjective problem has a set of Pareto-optimal solutions. Each solution represents a different

optimal trade-off between the objectives and is said ’non-dominated’ as it is not possible to improve

one criterion without worsening another one. Figure 2 illustrates dominance by representing solutions
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for a two objectives minimization problem. The x- and y-axis respectively stand for the values of two

arbitrary functions f1 and f2. The solutions depicted with crosses belong to the set of non-dominated

Pareto-optimal solutions. These solutions are the solutions of Pareto rank r = 1. Solutions of Pareto rank

r are obtained by removing the solutions of rank r − 1 and selecting the non-dominated solutions.

The aim of multiobjective search is first to find the solutions of the Pareto front (possibly extended to

any rank r) and then to select the solutions that provide the most appealing compromises in this set by

accounting for other deployment constraints.

B. Multiobjective problem resolution

As stated above, the wireless network planning problem faces simultaneously several optimization

objectives. There are two ways of resolving such problems [12]:

1) First, each objective function can be weighted according to its importance. The problem can then

be expressed as a unique evaluation function by adding all the weighted criteria. Standard mono-

objective optimization heuristics can be applied [2], [3], [6] providing a unique trade-off between

the criteria.

2) The second choice looks directly for the solutions of the optimal Pareto front and a-posteriori

selects the most appropriate ones thanks to complementary constraints as already implemented for

cellular planning [1].

With a mono-objective heuristic, the weighting coefficient of each objective function has to be defined.

Finding the optimal values that correspond to a desired trade-off is tricky and often needs several

optimization launches. On the opposite, multiobjective heuristics provide a set of optimal Pareto solutions

in one launch. The best solution can be selected a posteriori to meet all the network roll-out requirements.

C. Multiobjective minimization

Multiobjective optimization algorithms either store the non-dominated solutions encountered during a

mono-objective search process or look for the optimal Pareto front by trying to improve iteratively the

quality of a set of solutions called the search front [12]. The main matter is to get the best representation

of the optimal Pareto front by getting solutions distributed all over the problem trade-off surface. The

search front based approach revealed to be the most successful. An iteration of such heuristic is composed

of three main steps:

1) Search front expansion,

2) Update of the optimal Pareto front,
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3) Selection of the new search front.

IV. IMPLEMENTATION

A. Tabu metaheuristic

Our search algorithm is derived from a Tabu search metaheuristic firstly suggested by F.Glover [13].

Tabu search corresponds to a local search algorithm whose main feature is its ability to store information

about the choices done at previous iterations. The basic idea is to partially explore the search space of all

feasible solutions by a sequence of moves. At each iteration, the move carried out is the most promising

one among those available. The optimum solution is updated only if the solution found is better than the

current optimum. A list of moves already done, called the Tabu list, is stored to prevent the search from

cycling round on the same set of solutions.

B. Multiobjective Tabu

The multicriteria algorithm, derived from Tabu search, looks for the number, the location and the

transmission power of the APs. Each variable is discrete and its values are selected in a previously

computed set. The AP locations are here chosen among M candidate locations. A solution S is expressed

as a vector of M items, each item s(m) storing the transmission power pe(m) of the candidate access

point APm at location number m if and only if this AP belongs to the solution. If APm does not belong

to S, s(m) = 0.

The aim of the algorithm is to concurrently minimize the three previously defined criteria: fcov, fI and

fQoS . At each iteration, the quality of a current search front is improved if possible.

In our algorithm, the current search front Fc(i) at iteration i and made of K solutions is expanded by

computing a set of neighboring solutions. A neighbor solution is obtained by either moving one candidate

AP from position m to m′, adding an AP, removing an AP or by changing the transmission power of one

of the selected AP. The neighborhood of a solution is composed of all its non Tabu solutions. The set of

neighboring solutions of the front is the union of the neighborhoods of the K solutions of the front.

The non-dominated solutions of this neighborhood are selected and the optimal front FP is updated

with these new solutions. The new search front Fc(i + 1) is chosen randomly in the set of all the non-

dominated solutions of Pareto rank r smaller than a fixed value Rmax. The solutions of the optimal front

FP are the solutions of Pareto rank r = 1. When the solutions of rank r ≤ R are removed, the remaining

set of non-dominated solutions is composed of solutions of Pareto rank r = R + 1.
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Each new solution ~Sk
c is selected in the neighborhood of the old solution number k which is stored

in a Tabu list. The duration of this Tabu list is randomly chosen at each iteration within an interval

[Tmin, Tmax]. The algorithm describing an iteration i is the following:

- For each solution ~Sk
c of the search front Fc(i):

• Computation of the neighborhood V (~Sk
c ) of ~Sk

c ;

• Selection of the set PR(V (~Sc)k) of non-dominated solutions of rank R ≤ Rmax from

V (~Sk
c ) ;

• Addition of PR(V (~Sc)k) in the optimal front FP;

• Random selection of a solution of PR(V (~Sc)k) and addition of it in Fc(i + 1);

- Removal of the solutions with rank R > 0 from FP;

- Update of the Tabu list for each solution.

The algorithm is stopped after a fixed number NI of iterations. The random selection of the new search

front introduces diversity in the search process.

C. Selection of optimal solutions on the Pareto front

At the end of the search, FP counts numerous solutions. It is necessary to select a number Nopt of

solutions figuring significant and different trade-offs between the objectives. The selection is based on

two elements:

1) dissimilarity of the criteria trade-offs obtained,

2) dissimilarity of the selected solutions,

The dissimilarity in the criteria trade-offs is evaluated by the analysis of coverage, interference and QoS

criteria, too. First, the solutions are selected based on a maximal admissible cost for each criterion. The

remaining solutions are divided into Nsh sets representing different trade-offs between the three criteria.

These sets, referred to as the sharing sets, are obtained thanks the use of a sharing function Sh(~S). This

function assigns to each solution a weight proportional to the density of solutions in its neighborhood.

This function has been presented in the N.S.G.A. algorithm (cf. [12] for further description). This sharing

function is computed knowing the distance between solutions in the evaluation function space. Neighbor

solutions are the ones that belong to the same sphere of radius σsh. Each sharing set represents a family

of solutions expressing the same order of trade-offs between the criteria.

When these sharing sets have been determined, the dissimilarity of the solutions is evaluated. For each

sharing set, an average geometrical distance (in the physical space) between the solutions is computed.
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The D most different solutions are then selected in each set.

The quality of the remaining D · Nsh solutions are then evaluated more precisely. First, an optimal

channel assignment is computed thanks a Tabu FAP heuristic described in [14]. A variant of our QoS

criterion, f I
QoS , is computed knowing the exact interference distribution now defined. This criterion follows

the same expression of Eq.(4) and uses the same model to estimate the throughput Tl. The only difference

holds in the computation of the transmission rate Rl that is now based on a real SINR estimation after

FAP. Knowing the frequency assigned to each AP, the real interference powers Il are evaluated, providing

exact SINR values, SINRl = FBS
l /(Il +Nl); the transmission rate is then deduced. In each sharing set,

the best solution regarding this new criterion is considered and the Nopt most different solutions among

them are finally presented to the radio engineer for a final manual selection.

V. ILLUSTRATIVE EXAMPLE

A. Propagation prediction

The estimation of realistic planning criteria relies on accurate propagation simulations. The prediction

tool presented in [15] implements the Multi-Resolution Fourier Domain ParFlow (MR-FDPF) model [16].

This propagation model is based on a finite element frequency domain modeling. Its originality stems

from the pre-processing phase, exploiting a multi-resolution formalism and providing a pre-computed

multi-resolution (MR) tree. This phase doesn’t depend on the APs’ characteristics (position, emission

power...). The next phase, i.e. the propagation phase, exhibits a very low computational load (less than

1s. for 100m× 100m environments) to compute the coverage of each AP candidate, thanks to the MR

tree. This time is comparable to the time needed with a standard empirical model, but rendering all the

multiple reflection and diffraction effects. Furthermore, the multi-resolution concept allows to compute

the mean power over homogeneous blocks instead of computing the mean power in each pixel, further

reducing the coverage computational time. In this approach, the environment is divided into homogeneous

regions, the blocks (see Fig.3), and the received power Fm
l is estimated for each one. This model has

been experimentally assessed for Indoor environments, leading to a mean square error between signal

power measurements and predictions of about 5dB [15].

B. Simulation setup

The proposed multi-objective algorithm has been launched on a 12600 m2 environment depicted in

Fig.3. A set of M = 256 candidate APs and a set of L = 499 regions of interest have been defined.

Candidate AP locations are represented by black dots on Fig.3 placed at the center of previously selected
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blocks of the MR-FDPF model. The RI elements all belong to the indoor parts of the building and create

a complete partition of its surface area. The M = 256 coverage maps of 2.5dBi omnidirectional antennas

with an emission power of 13 dBm are computed prior the search in about 6 minutes on a PC - PIV

2.4GHz with 1Go of RAM.

An 802.11b network is considered and the threshold values of Table II-C.1 are used for the coverage

criterion. The interference criterion is computed with h = 1 allowed interfering signal. The QoS criterion

assumes a uniform distribution of 200 users and the target throughput per user T l
∗ is set to 256 Kbits/s.

The multi-objective Tabu search has a search front Fc(i) of K = 15 solutions and each Tabu list has

a duration of [M/5 , M/2] (chosen empirically). A final set of Nopt = 15 solutions is selected and the

size of the sharing radius is of σsh = 0.5/ 3
√

Nopt = 0.20 in the normalized distance space. The planning

algorithm looks for both the number N and the locations of the APs.

C. Results

The results obtained with this multiobjective approach are summarized in Tab. II. For each of the

Nopt = 15 selected solutions, the following figures are given:

• the number N of APs,

• the values of the criteria fcov, fI , fQoS and f I
QoS ,

• the percentage pcov of covered area,

• the percentage pI of interfered area after channel allocation,

• the average throughput per user Tm.

Tm is obtained after channel assignment by averaging the throughput Tl of each region RIl computed

with the Markovian performance evaluation model of [11]. In this case, Tl is also estimated thanks the

complete SINR knowledge, as done for the modified QoS criterion f I
QoS . These results show that the

more APs are placed, the better the throughput per user is but the worse the interference level gets. But a

good channel allocation algorithm is able to strongly reduce the influence of interference on throughput.

With this set of solutions, the end user of the planning tool is able to choose a solution that either

guaranties high throughput with numerous APs or reduce network cost with a still good transmission

quality. Solution 4 suits well in the first case, while solution 9 looks competitive in the second onem

with only 7 deployed APs. Figure 4 shows the coverage map and the distribution of the service areas for

solution 9.
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Fig. 3. Test environment of 12600 m2: (a) Distribution of the M = 256 candidate AP locations. (b) Distribution of the

L = 499 regions of interest (blocks provided by the propagation tool).

VI. DISCUSSION

The automatic WLAN planning framework presented here relies on both realistic models for coverage,

interference and QoS estimations and a challenging multiobjective search approach. The main benefit of

such multiobjective approach is to provide the engineer the opportunity to choose a solution that balances

the network objectives according to his specific needs.

Based on existing work devoted to WLAN planning, three generic criteria dealing with coverage (or

radio link), interference limitation, and resource sharing have been used. It has been shown that the

optimization of such a problem is truly a multiobjective problem. Finding a good solution heavily relies

on the choice of the scaling parameters when performing a conventional mono-objective implementation.

In this work, recent results in multiobjective optimization have been used to provide a general framework
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Solution N fcov fI fQoS fI
QoS pcov pI Tm

1 15 0.0 12.5 0.0 0.3 100% 18% 261 Kbits/s

2 14 0.5 11.7 0.3 1.6 99 % 23% 298 Kbits/s

3 13 0.6 12 0.08 0.9 98 % 17% 260 Kbits/s

4 11 0.0 11.2 0.5 1.3 100 % 12.5% 259 Kbits/s

5 9 0.0 9.7 1.0 1.1 100 % 16% 219 Kbits/s

6 9 0.6 11 0.6 0.9 99 % 6 % 242 Kbits/s

7 8 0.0 7.6 1.6 1.6 99.5% 1.1% 198 Kbits/s

8 8 1.2 7.7 1.5 2.2 97 % 8.3% 178 Kbits/s

9 7 0.0 5.6 2.1 2.1 100 % 9.6% 172 Kbits/s

10 6 0.0 3.8 3.0 3.0 99.5% 0.0% 145 Kbits/s

11 6 0.9 2.1 3.5 3.5 96 % 0.0% 145 Kbits/s

12 5 1.5 0.8 4.8 4.8 93 % 0.0% 105 Kbits/s

13 5 0.2 2.7 3.5 3.5 99.5% 0.0% 117 Kbits/s

14 4 0.6 0.1 5.0 5.0 99 % 6.5% 78 Kbits/s

TABLE II

PLANNING RESULTS: THE K = 15 SELECTED SOLUTIONS.

for finding good deployment solutions. In this approach, channel allocation has been postponed to a

second stage for mainly two reasons. The first one concerns the computational load as including a channel

variable in the optimization problem leads to a strong computational overload. The second reason not

above mentioned is that the FAP can be introduced [10] as a dynamic process. Although few details are

only provided, some constructors provide now APs having the ability of choosing dynamically the proper

frequency. Such dynamic resource allocation are efficient only if cells does not overlap excessively. This

is precisely the aim of our model.

REFERENCES

[1] A. Jedidi, A. Caminada, and G. Finke, “2-objective optimization of cells overlap and geometry with evolutionary

algorithms,” in EvoWorkshops 2004, LCNS, Portugal, April 5-7 2004, pp. 130–139.

[2] H. Sherali, M. Pendyala, and T. Rappaport, “Optimal location of transmitters for micro-cellular radio communication

system design,” IEEE Journal on Selected Areas in Communications, vol. 14, no. 4, pp. 662–673, May 1996.

[3] J. He, A. Verstack, L. Watson, C. Stinson, N. Ramakrishnan, C. Shaffer, T. Rappaport, C. Anderson, K. Bae, J. Jiang, and

W. Tranter, “Globally optimal transmitter placement for indoor wireless communication systems,” IEEE Transactions on

wireless communications, vol. 3, no. 6, pp. 1906–1911, November 2004.

September 15, 2006 DRAFT



SUBMITTED TO IEEE WIRELESS COMMUNICATIONS : SPECIAL ISSUE 15

Fig. 4. Coverage map (top) and distribution of the service areas (bottom) of solution 9.

[4] Y. Lee, K. Kim, and Y. Choi, “Optimization of AP placement and channel assignment in wireless LANs,” in 27th Annual

IEEE Conference on Local Computer Networks (LCN’02), Tampa, Florida, USA, November 2002, pp. 831–836.

[5] E. Amaldi, A. Capone, M. Cesana, and F. Malucelli, “Algorithms for WLAN Coverage Planning,” Lecture Notes in

Computer Science, vol. 3427, pp. 52–65, February 2005.

[6] M. Unbehaun and M. Kamenetky, “On the deployment of picocellular wireless infrastructure,” Wireless Communications,

IEEE, vol. 10, no. 6, pp. 70–80, December 2003.

[7] O. M. Lopez and I. A. Gonzalez, “Automatic planning optimal quality-cost wireless networks, the indoor pareto oriented

ABSPAD approach.” in Proceedings of IEEE Personal and Indoor Mobile Radio Communications PIMRC, Barcelona,

Spain, September 2004.

[8] P. Wertz, M. Sauter, F. Landstorfer, G. Wlfle, and R. Hoppe, “Automatic optimization algorithms for the planning of wireless

local area networks.” in Proceedings of IEEE Vehicular Technology Conference VTC Fall, Los Angeles, California, USA,

September 2004.

[9] P. Reininger and A. Caminada, “Multicriteria design model for cellular network,” Annals of Operation Research, vol. 107,

no. 1-4, pp. 251–265, 2001.

September 15, 2006 DRAFT



SUBMITTED TO IEEE WIRELESS COMMUNICATIONS : SPECIAL ISSUE 16

[10] B. Kauffmann, A. Chaintreau, K. Papagiannaki, and C. Diot, “Self organization of interfering 802.11 wireless access

networks,” INRIA Research Technical, RR-5649, Tech. Rep., August 2005.

[11] J.-L. Lu and F. Valois, “Performance evaluation of 802.11 WLAN in a real indoor environment,” Proceedings of WiMob’06,

June 2006.

[12] Y. Collette and P. Siarry, Multiobjective Optimization. Principles and Case Studies. Springer, August 2003.

[13] F. Glover and M. Laguna, Tabu Search. Boston: Kluwer Academic Publisher, 1997, 408p.

[14] G. de la Roche, R. Rebeyrotte, K. Jaffres-Runser, and J.-M. Gorce, “Implementation of a qos based fap algorithm in an

indoor 802.11 propagation tool,” in Proceeding of the IEEE International Conference on Communications (ICC 2006),

Istanbul, Turkey, June 2006.

[15] K. Runser and J.-M. Gorce, “Assessment of a new indoor propagation prediction model based on a multi-resolution

algorithm,” in Proceedings of the Vehicular Technology Conference Spring 2005, Stockholm, Sweden, May 2005.

[16] J.-M. Gorce, K. Runser, and G. de la Roche, “The adaptive multi-resolution frequency-domain parflow (MR-FDPF) method

for indoor radio wave propagation simulations. Part I : theory and algorithms.” RR-5740, INRIA, France, Tech. Rep., 2005.

September 15, 2006 DRAFT


