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Abstract—Wireless ad hoc networks are seldom characterized
by one single performance metric, yet the current literature
lacks a flexible framework to assist in characterizing the design
tradeoffs in such networks. The aim of this paper is not
to propose another routing strategy. Instead, we address this
problem by proposing a new modeling framework for routing
in ad hoc networks, which will result in a better understanding
of network behavior and performance when multiple criteria
are relevant. Our approach is to take a holistic view of the
network that captures the cross-interactions among interference
management techniques implemented at various layers of the
protocol stack. The resulting framework is a complex multiob-
jective optimization problem that can be solved through existing
multiobjective search techniques. In this contribution, we present
the Pareto optimal sets for an example sensor network when
delay, robustness and energy are considered.

I. INTRODUCTION

Wireless ad hoc and sensor networks are many times operat-
ing in difficult environments and require several performance
criteria to be satisfied, related to timely, reliable, and secure
information transfer. To ensure information transfer across the
network, one of the key elements is the routing protocol.
Various constraints related to transmission delay [8], energy
consumption [9] or fairness [10] are added on top of its
main design goal of reliable information transmission. As a
consequence, the assessment of routing protocols relies on
various criteria which may be evaluated analytically or through
network simulations.

To better understand the capabilities of routing on a given
network topology, a pre-requisite is to know the bounds that
can be achieved with respect to multiple performance criteria.
These bounds can highlight the interdependence and compro-
mises existing between the performance metrics considered.
As a consequence, defining a unified framework capable of
capturing the trade-offs existing between multiple performance
metrics of the routing problem becomes predominant.

Most of the works proposed in the literature on the perfor-
mance evaluation of wireless ad hoc networks usually consider
one or sometimes two objectives at a time. Characterizing
the performance of a wireless network for the sole metric
of capacity [3] [2] has triggered a comprehensive work in

the last decade, starting with the seminal work of Gupta and
Kumar [1]. The analysis of the trade-off between capacity and
delay has been investigated by Gamal et al. in [4]. Comaniciu
and Poor [5] proposed to account for delay as a constraint in
their capacity analysis. A tight hyperbolic bound on energy
and delay for wireless networks has been provided by Brand
and Molisch in [6]. Xue et al. also investigated the trade-off
between delay and latency for underwater sensor networks in
[7]. To the best of our knowledge, there is no work considering
more than two performance objectives at a time.

Obtaining bounds on multiple benchmark objectives re-
quires the definition of a multiobjective optimization problem
whose resolution provides a Pareto set of solutions. A solution
herein characterizes one possible route configuration with its
resource allocation in terms of transmission rate. The Pareto
set is composed of non-dominated solutions, i.e. solutions
of the search space that are never dominated by any other
one with respect to the evaluation criteria considered. This
multiobjective optimization problem is hard to solve since it
is the combination of a resource allocation problem and a
routing problem.

Understanding the tradeoffs involved with various routing
solutions will enable adaptive resource management across
layers and nodes, leading to a more accurate “local to global
performance mapping” for practical routing protocol design.
In this paper, we propose a novel framework capable of
providing a bound for multiple performance metrics at a time.
It is composed of both a probabilistic cross-layer network
model and a multiobjective optimization problem formulation.
The network model proposes a novel cross-layer definition of
interference where the interaction between routing decision
and resource allocations is accounted for precisely. With its
intrinsic probabilistic definition, it is capable of defining vari-
ous routing techniques such as multi-hop single path routing,
broadcast protocols or multi-path protocols. The multiobjective
optimization problem is solved using the PMOTS algorithm to
retrieve the set of Pareto-optimal solutions. This global cross-
layer multiobjective framework is applied herein to tackle
the problem of robust routing for wireless sensor networks.
The following three criteria are relevant in that context: (i)



robustness in terms of the probability of having a successful
packet transmission, (ii) delay in terms of the average delay
and (iii) the forwarding energy in terms of the energy spent
by the network in relaying.

Our aim is not to develop a new routing algorithm but
to provide a larger framework capable of capturing the per-
formance tradeoffs of a given network by computing the
set of Pareto-optimal routing strategies. This characterization
provides an efficient tool to:
• compare the performance of existing routing algorithms

to the bound provided by the set of Pareto-optimal
strategies, and

• foster the development of more efficient and flexible
routing strategies, depending on the requirements an end
user would put on the performance of the network.

The proposed framework encompasses various routing tech-
niques (e.g. multi-hop, probabilistic routing, etc.) since it is
based on a probabilistic network formulation.

Our main contributions in this work are two-fold:
• Propose a general cross-layer framework network model,

capable of capturing the impact and interaction of a
wide range of interference and resource management
techniques for various channel conditions;

• Formulate a multiobjective routing optimization problem
by defining appropriate evaluation functions for criteria
such as: robustness of information transfer, end-to-end
delay, and energy consumption.

The multiobjective routing optimization problem described
in the following can be solved using existing multiobjective
search techniques [11]. However, we will concentrate on the
model description and only give a short description of the
optimization heuristic considered for solving the problem.

The paper is organized as follows. In Section II we present
our cross-layer framework based on a probabilistic network
model. Section III formulates routing in an ad hoc network as
a multiobjective optimization problem and Section IV provides
a first formulation applied to sensor networks. Results for
a simple problem instance are then given in Section V to
illustrate our modeling framework and Section VI concludes
the paper.

II. A CROSS-LAYER FRAMEWORK FOR NETWORK
MODELING

A. Probabilistic network model

Our proposed model considers a probabilistic network
which is characterized by two probability measures: link and
node probability. These two parameters completely character-
ize the network and capture cross-layer interactions.

The node probability (χi) captures the availability of
node i for routing purposes, i.e. the probability that node
i re-broadcasts a received packet. The node probability has
two components (χi = ξi · xi), one that is determined by
the environment and protocol implementations at adjacent
layers, ξi, (e.g. congestion models, node failures, security
risks, energy levels), and one component xi that corresponds

Fig. 1. Node and link probabilities on a link (i, j).

to network routing choices, which we aim to optimize in the
multiobjective routing framework.

The link probability (pij) captures the link availability,
i.e., the probability of a successful transmission over a link
(i, j). Characterization of the link probability is impacted by
impairments and enhancements at various layers of the proto-
col stack such as fading at the physical layer or congestion at
the MAC layer. Both node and link probabilities are illustrated
in Fig. 1.

Both node and link probability measures are strongly related
due to the nature of the wireless channel. Hence, once the
node probabilities χi are set, the activity of every node of
the network is fixed and the interference distribution can be
completely determined given the activity of the nodes on the
wireless channel. As a consequence, the link probabilities can
be computed as a function of the signal to interference plus
noise ratio (SINR). Once link and node probabilities are avail-
able, various performance metrics such as delay, robustness or
energy consumption can be calculated for various transmission
schemes (unicast, multicast, broadcast, anycast, etc.).

In the following, we consider the set of node probabil-
ities as the variables of the network optimization problem.
Finding the best possible routing choices with respect to one
particular criterion reduces to the problem of selecting the set
of node probabilities that optimizes one particular objective
of the network. Within a multiobjective perspective, solving
the network optimization problem requires finding the set of
Pareto-optimal solutions that concurrently optimizes several
performance metrics of the network.

To illustrate our framework, we consider here a network
where the nodes are independent and randomly distributed
according to a random point process of density ρ over a disk
D. The communication between any two nodes is performed
in a half-duplex mode over a single to multi-hop path. The
bandwidth of the channel is divided into R resources (time
slots, frequencies or codes). For clarity purposes, we present
this model in the context of time-multiplexing.

This paper concentrates on a single flow but our framework
can be extended to multiple flows since the proposed interfer-
ence model accurately accounts for all the nodes transmitting
in the network. Hence, one source transmits a constant traffic
in one of the R time slots. A relay does not keep track of
the packets already transmitted and consequently may forward
the same packet several times. However, a node relays the
packets in the order they are received in one of its available
resources. If several packets are received in the same frame,
it can only transmit the proportion of packets its global
transmission probability xi allows. The packets that the node



cannot forward are dropped. The maximum number of hops
HM a packet can travel in the network is also fixed.

B. Link probabilities

A realistic link (i, j) in time slot r is characterized by
its transmission probability pij(r), which is a function of
the statistical distribution of the SINR at the location of the
destination node j. Such a computation captures the cross-
layer impact of the routing decision on the physical layer
performance since the activity of all the nodes of the network
are accounted for statistically in the model. The following are
some preliminary definitions and notations that are needed to
define the link probability:

Pathloss attenuation factor: aij reflects the attenuation
due to propagation effects between nodes i and j. In our simu-
lations, the simple isotropic propagation model is considered.

Interference: Since we consider time-multiplexed chan-
nels, interference only occurs between transmissions using
the same channel at the same time. Hence, the power of
interference Iij(r) on a link (i, j) using resource r and
computed at node j is defined by:

I ij(r) =

K∑
k=1

Pk akj for k 6= i (1)

where K is the number of interfering signals in resource r.
SINR: The SINR between any two nodes i and j in

resource r is given by:

γij(r) =
Pij

N0 + Iij(r)
(2)

where Pij is the power received in j, Iij(r) is the interference
power on the link and N0 the noise power density. We have
Pij = Pi aij for a fixed nominal transmission power Pi and
a pathloss attenuation factor aij .

Packet error rate (PER): For a specific value of SINR
γ, the packet error rate PER can be computed according to:

PER(γ) = 1− [1−BER(γ)]
Nb (3)

where Nb is the number of bits of a data packet and BER(γ)
is the bit error rate for the specified SINR per bit γ which
depends on the physical layer technology and the statistics
of the channel. Results are given for an AWGN channel
and a BPSK modulation without coding where BER(γ) =
Q
(√

2γ
)

= 0.5 ∗ erfc(
√
γ).

Transmission rate: The activity of a network node in a
channel r ∈ [1, .., R] is given by its transmission rate τi(r) ∈
[0, 1] in that particular channel. This rate is defined as the
percentage of time a node i transmits using resource r.

Additional Notations: A node i is said to be active in
the network if

∑
r τi(r) > 0, and

- M gives the number of active nodes of the network,
- An interfering set on a link (i, j) is a set of K ≤M − 1

active nodes,
- L−i refers to the set of all possible interfering sets and

has a cardinality of L =
∑M−1
k=1

(
M−1
k

)
+ 1.

The link probability: pij(r) depends on the distribution
of the SINR, and consequently on the distribution of the
corresponding packet error rates. It is defined by the equation:

pij(r) =

L∑
l=1

[1− PERl(r)] .Pl(r) (4)

where the index l represents one of the L interfering sets.
Consequently, γl(r) is the SINR experienced because of
the interfering set l on the link (i, j) for the resource r
and PERl(r) is the corresponding PER. The SINR can be
computed according to Eq. (2) considering the K interfering
links of l and the PER according to Eq. (3).

Pl(r) is the probability for the link (i, j) to experience the
interference distribution l in resource r, i.e. the probability that
the nodes of the interfering set l are transmitting concurrently
and the others are not. Hence, this probability for a link (i, j)
is given by:

Pl(r) =

K∏
k=1

τk(r) ·
M−K−1∏
m=1

(1− τm(r)) (5)

In Eq. (5),
∏K
k=1 τk(r) gives the probability that the K

active nodes of the interfering set l are transmitting and∏M−K−1
m=1 (1 − τm(r)) the probability that the M − K − 1

other active nodes are not.

C. Node probabilities and transmission rate

The variables of our model are the probability χi = ξi·xi for
each node i to re-transmit a received message. In the following,
we consider that ξi = 1 to simplify our model. Hence, the
main variable is the ‘forwarding probability’ xi. There is no
notion of routing paths herein and a packet sent by a source
may use one or more paths in parallel to reach the destination.
For xi = 1 each received packet by node i is forwarded. For
xi < 1 node i drops the packets with probability 1−xi. Values
of xi ∈]1, R] are not allowed yet as they imply that node i
transmits several copies of the same packet.

As stated earlier, the transmission rate τi(r) in resource
r is a function of the node probability xi but also depends
on the amount of traffic coming into node i, which is a
function of the activity of the other nodes of the network.
As a consequence, computing the values of τi(r) knowing the
xi values is intractable since determining the τi(r) requires
the knowledge of the link probabilities which are themselves
a function of the τi(r) values. However, the reverse approach
where the variables x are expressed as a function of the τi(r)
can be easily derived as stated below. Hence, such a reverse
approach leads to the use of the transmission rates as the
variables of our multiobjective optimization problem instead of
the forwarding probabilities. This reverse approach represents
an important contribution of our cross-layer model since it
captures an exact picture of the interference distribution at
the physical layer and determines the corresponding node
forwarding probability xi at the routing level.



Relationship between xi and the τi(r): Given the
values of τi(r),∀r ∈ [1..R], i ∈ [1..N ], we can define the
quantity of information coming from all the neighbors of node
i (except from the destination, D) by:

qi =
∑

k 6={i,D}

∑
r

pki(r).τk(r).vki (6)

where pki(r).τk(r).vki is the probability that a packet arrives
in node i from node k in resource r.

The variable vki is introduced to represent the usefulness
of the link (k,i) with respect to the maximum number of
hops constraint. Hence, if no data can arrive from neighbor
k because the hop count h for all the packets k received is
already equal to HM , we have vki = 0. On the contrary, we
have vki = 1 if k only receives packets with a number of
hops h < HM . If k receives packets with both h < HM

and h = HM , vki represents the proportion of packets being
retransmitted.

The quantity of information going out of i is given by
the sum of the τi(r) over all the time slots. Hence, we can
determine the global forwarding probability of i to be:

xi =

∑
r τi(r)∑

k 6={i,D}
∑
r pki(r).τk(r).vki

(7)

III. A MULTIOBJECTIVE OPTIMIZATION PROBLEM

The performance of most wireless networks can be assessed
with regards to various criteria such as throughput or capacity,
end-to-end transmission delay, overall energy consumption or
transmission robustness. The purpose of the multiobjective
framework presented in this work is to determine, given a
network and a communication pattern, what kind of trade-
offs arise between chosen performance metrics when varying
the routing strategies. It relies on the cross-layer probabilistic
network model presented in Section II.

A. Variables of the Multiobjective (MO) Framework

The routing strategies are the variables of our multiobjective
optimization problem and a solution is defined by:

Definition 1 A solution S of the MO framework is defined
by the set of transmission rates τi(r) ∈ [0, 1] used by each
node i on each resource r:

S = {τi(r)}i∈[1,..,N ],r∈[1..R] (8)

The set of node probabilities xi,i∈[1..N ] is derived according
to Eq.(7) and represents the routing strategy of the network.
Each variable τi(r) takes its values in a discrete set Γ of size
T = |Γ|. As a consequence, the solution space is derived as:

|S| =
N−2∑
m=0

(
N−2
m

)
TR.m (9)

In order to reduce the size of this very big search space,
we only consider solutions where at least one cumulative
time slot per node is available in the frame, i.e. s.t. ∀i ∈
[1, N ],

∑R
t=1 τi(r) ≤ R − 1. The solutions that do not meet

Fig. 2. PMOTS: Description of one search iteration.

this constraint are usually very bad solutions since at least one
of the nodes of the solution is transmitting in all its time slots
preventing a failure free packet reception.

Using this definition of a routing strategy, a solution may
reflect various features: it can be single-hop or multi-hop,
single path or multi-path, probabilistic or deterministic.

B. MO-Tabu: a multiobjective optimization heuristic

The aim of our MO framework is to obtain the set of Pareto-
optimal routing strategies of the MO problem. A Pareto-
optimal set is composed of all the non-dominated solutions
of the MO problem with respect to the performance metrics
considered. The definition of dominance is:

Definition 2 A solution A dominates a solution B for a
n−objective MO problem if A is at least as good as B for
all the objectives and A is strictly better than B for at least
one objective. Mathematically, we have for a minimization
problem:

∀i ∈ [1, n] : fi(A) ≤ fi(B),∃j ∈ [1, n] : fj(A) < fj(B)
(10)

The considered optimization problem is solved using a
multiobjective metaheuristic called PMOTS (Parallel Multi-
Objective Tabu Search) described in [11]. It is based on the
Tabu metaheuristic [12], a local search using a list of Tabu
solutions to reduce the occurrence of loops in the search.
PMOTS is a multiobjective extension of Tabu search where K
Tabu searches are performed in parallel. Its macro-algorithm is
given in Algorithm 1 and a graphical description is shown in
Fig. 2. The goal of this algorithm is to obtain the best possible
approximation of the Pareto-optimal set of solutions FP .

In a search iteration, the K parallel search paths are repre-
sented as a search set or search front Fc(i) of K solutions. The
first set of K solutions is randomly created. A set of neighbor
solutions V (Sk) for each solution Sk of the search front is
computed according to a set of rules. Further details on these
rules can be found in [11]. The pool of neighbor solutions
is added to the current Pareto-optimal front FP , and the new
front FP is extracted from it using a dominance criterion.

A new search front Fc(i+1) is selected by choosing promis-
ing non-Tabu solutions that are not always non-dominated to
avoid a premature convergence of the algorithm. Therefore
for a path k, each new solution is selected randomly in the set
of neighbor solutions of Sk which is limited to the solutions
having a Pareto rank R = Rmax. The rank of a solution x



is defined by R(x) = 1 + d(x), where d(x) is the number
of solutions by which x is dominated in the set of feasible
solutions S. The solutions of the Pareto-optimal set have a
rank R(x) = 1. In this algorithm, the Pareto ranking is local
to the set of neighbor solutions and does not include the current
estimated Pareto set FP . By not including FP and selecting
fairly good solutions with the Pareto rank constraint, diversity
is introduced within the search strategy. Once Fc(i + 1) is
chosen, the solutions of Fc(i) are stored in the corresponding
Tabu lists.

There is also a restart strategy that creates a new random
search front if no solutions have been added to or suppressed
from FP for a given number of search iterations. The algo-
rithm stops after a fixed number of iterations and provides an
estimate of the Pareto front FP .

Algorithm 1 Macro-Algorithm for PMOTS
1: Init K Tabu lists TLk = ∅, k ∈ [1, ..,K]; FP = ∅;
2: Randomly create K solutions and include them into the

search front Fc(0);
3: for i ∈ [0, .., Imax] do
4: Fc(i+ 1) = ∅;
5: for all Sk ∈ Fc(i) do
6: Compute and evaluate the neighborhood set

V (Sk);
7: Select from V (Sk) the solutions with Pareto

rank R(S) = Rmax and add them in PR(Sk);
8: Select randomly a solution of PR(Sk) and add

it into the new search front Fc(i+ 1);
9: Concatenate PR(Sk) with the Pareto front FP ;

10: Update the Tabu list TLk;
11: end for
12: Remove the solutions having a Pareto rank R(S) > 1

from FP ;
13: end for
14: Return FP ;

IV. A FIRST APPLICATION TO SENSOR NETWORKS

We propose in the following to assess the performance
of a wireless sensor network (WSN) by capturing the trade-
offs that arise between end-to-end robustness, overall energy
consumption and end-to-end delay. These criteria are most
relevant since providing a maximal network throughput is
usually not the main task of a WSN. The criteria are defined
for a single source-destination pair (S,D).

A. Robustness criterion

Robustness is defined as the probability that a message
emitted at S successfully arrives at D in at most HM hops.
The robustness criterion is given by:

fR = P(THM

SD ) (11)

For any two nodes i and j of the network, THij represents the
event that a message transmitted by i successfully arrives at j
in at most H hops. Our aim is to maximize P(THM

SD ).

Definition 2: Global link probability.
For a link (i, j), the global link probability pij is the

probability that a message arrives with success at node j. It
is given by:

pij =

R∑
r=1;τi(r)6=0

pij(r)
τi(r)∑
r τi(r)

(12)

where pij(r) is the link probability between i and j for
resource r (cf. Eq. (4)), and τi(r)/

∑
r τi(r) is the probability

for the packet to be sent using r.
Definition 3: Robustness probability.
P(THM

SD ) is the probability that the message arrives success-
fully at D in at most HM hops and is given by:

P(THM

SD ) = 1−
HM∏
h=1

(1− P(TSD|H = h)) (13)

where P(TSD|H = h) is the probability for a packet to
arrive in h hops at D. For h = 1, P(TSD|H = 1) = pSD,
the successful transmission probability on the link (S,D)
following Eq. (12). For h > 1, we have:

P(TSD|H = h) = 1−
NS∏
j=1

[1− pSj xj P(TjD|H = h− 1)]

(14)
with NS the number of possible first hop relays of S; pSj the
link probability between S and its neighbor j; P(TjD|H =
h− 1) the probability to reach D in (h− 1) hops and xj the
forwarding probability of j. The set of NS relays is given by
all the nodes different from S that are active in at least one of
the time slots in the current solution (i.e. having

∑R
t=1(xti) >

0, i 6= {j, S}).
To reduce the computational complexity of the robustness

probability, a restricted set NS of first hop relays may be
considered but the loss in terms of accuracy is hard to quantify.
Therefore, we rather introduce a link threshold value Pth
computed for each path made of h hops. While recursively
calculating P(TSD|H = h), if the probability of a path gets
lower than Pth, the recursion is stopped for that particular
path and its contribution to P(TSD|H = h) is set to zero.

B. Delay criterion

The end-to-end delay is the sum of the times spent at each
relay on a multi-hop path where each relay introduces a delay
of 1. The criterion fD is defined by:

fD = R ·

√√√√HM∑
h=1

(h− 1)2.Rh (15)

The quantity (h− 1) is the delay needed by a packet to arrive
in h hops using (h − 1) relay nodes. The scaling factor R
represents the delay induced by the R resources. Rh is the
probability that the packet arrived in exactly h hops and did



Transmission Power 151mW N0 -154dBm/Hz

Bandwidth 1Mbps f 2.4GHz

Pathloss exponent α 3 Channel Model AWGN
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Fig. 3. Propagation and physical layer parameter values.

not arrive in 1, or 2 or (h − 1) hops. For h = 1, we have
Rh = P (TSD|h = 1) and for h > 1:

Rh = P(TSD|H = h).

h−1∏
i=1

(1− P(TSD|H = i)) (16)

If no route exists between S and D then fD = +∞.

C. Energy criterion

The energy criterion fE is given by the total forwarding
energy needed for a packet sent by S to reach D. We do not
account for the energy spent by the initial transmission in S.
The reception (respectively transmission) of a packet at node j
in resource r consumes eRj (r) (resp. eTj (r)). Hence, the energy
criterion is defined as:

fE =

HM∑
h=1

E(TSD|H = h) (17)

where E(TSD|H = h) is the total energy needed by the h-hop
communications between S and D defined by:

E(TSD|H = h) =
NS∑
j=1

(
pSj .e

R
j + pSj .xj .

[
eTj + E(TjD|H = h− 1)

])
(18)

In Eq. (18), pSj .eRj is the energy consumed for a packet
reception by the neighbor j of S; pSj .xj .eTj is the energy
consumed for the packet transmitted by neighbor j and
pSj .xj .E(TjD|H = h − 1) is the total energy consumed by
the following possible paths made of (h − 1) hops between
neighbor j and the destination. For h = 1, E(TSD|H = 1) = 0
since the energy in S is not accounted for.

V. FIRST RESULTS

A. M -Relay problem

The results presented in this section are obtained for a
small problem instance for two reasons. First, we are able
to determine the whole Pareto-optimal set of solutions using
an exhaustive search. Secondly, such a problem can be easily
analyzed and provides a first illustration of our multiobjective
framework. Thirdly, it is used to assess the efficiency of
the multiobjective optimization metaheuristic we developed to
tackle bigger problem instances. [11].

In the following, the network is composed of N = 333
nodes uniformly distributed with density ρ = 0.004 over a disk
D of radius RD. The distance between S and D is of about
215 meters. To reduce border effects, S and D are selected
within a radius RC << RD which ensures that the power of

a node at distance RC is below the noise power for the nodes
located at distance RD. We consider R = 2 time slots and
use a probabilistic discrete variable space. A link robustness
threshold of Pth = 10−10 is set. Propagation and physical
layer parameters are summarized in Fig. 3.

The dimension of the search space can be modified by
setting a maximum number of forwarding nodes M in a
solution S. This sub-problem is addressed in the following
as the M -relay problem instance.

B. Pareto-optimal set for the 1-relay problem

In this problem instance, we set M = 1 and HM = 2. τi(r)
takes its values in the set Γ = {0, 0.05, 0.1, . . . 0.9, 0.95, 1.0}
of |Γ| = 21 elements. In that particular case, the search space
has a dimension of 76131 solutions and the Pareto-optimal set
is obtained with an exhaustive search.

For this instance, the direct link (S,D) is very weak. A
robustness of only P(THM

SD ) = 0.0003 is achieved with a delay
of fD = 0 and an energy of fE = 0. Only 24820 solutions
fulfill the constraint xi ≤ 1 that forbids a node to duplicate
packets. Among these solutions, 3855 solutions are Pareto-
optimal, representing respectively about 5% and 15% of the
whole and the constrained solution space. For all the Pareto-
optimal solutions the relay never transmits in the first time slot
concurrently with the source. The performance of the Pareto-
optimal set of solutions is represented in Fig. 4 in the space
defined by the three evaluation functions. For clarity purposes,
the projections of the Pareto set on the robustness-delay,
robustness-energy and the delay-energy planes are displayed.
The plots of Fig. 4 show that an improved robustness is
obtained at the price of an increase in delay and energy.
The trade-off between robustness and delay can be easily
understood since higher robustness is achieved when the relay
contributes with a higher forwarding probability xi, inducing
an increase in delay. Similarly, an increase of xi triggers
an accrued average energy consumption since the relay is
forwarding packets more often.

The energy consumption for all the Pareto-optimal solutions
belongs to a discrete set of 21 energy levels which is a direct
consequence of the 21 values of τi(r) defined in this problem
instance. Hence, the definition of a continuous transmission
rate variable τi(r) would provide the most precise description
of the Pareto set. However, tackling the continuous formulation
of our problem is much more challenging and for our study,
we will stick to the simpler discrete formulation which still
provides a fair representation of the Pareto set.

The Pareto set is composed of solutions where relays belong
to a set of 226 nodes, which represents about two thirds of the
number of nodes of the network. The location in the network of
these 226 nodes is presented in Fig. 5. We also highlighted on
this figure the relays that provide a near perfect transmission.
We can conclude that the relays located in an ellipse near the
middle of the (S,D) distance provide the best robustness at
the price of the highest delay and energy. The other relays
present in the Pareto set provide various trade-offs depending
on their values of τi(r).



Fig. 4. Representation of the projections of the Pareto-optimal set for the 1-relay problem.

Fig. 5. Location of the nodes that provide Pareto-optimal solutions in the
network (blue crosses) and of the nodes that provide a near quasi-perfect
robustness (full black dots), i.e. fR > 0.999.

C. Validation of PMOTS on the 1-Relay problem

This first simple study shows that the proposed multiob-
jective probabilistic network model provides a coherent and
complete view of the trade-offs that arise between robustness,
delay, and energy in our network. A more extensive analysis
of the performance of the model has to be performed next by
considering a solution space that considers all the possible
relaying strategies (i.e. no M-relay search space reduction)
and various network topologies. For such instances, our prob-
lem is solved using the multiobjective optimization algorithm
PMOTS as presented in Section III-B. Although this paper
does not concentrate on the description and the performance
analysis of PMOTS, Fig. 6 highlights the convergence prop-
erties of the algorithm for the 1-relay problem.

Three performance metrics measure the convergence of
PMOTS towards the Pareto-optimal set F ∗P obtained through
exhaustive search. The approximated Pareto sets FP obtained

by PMOTS are compared to F ∗P with respect to the number of
iterations the search has performed using the following metrics
[13]:
• The error ratio that measures the non-convergence of a

search method to F ∗P . It is given by:

ER =

∑n
i=1 ei
n

(19)

where ei = 0 if solution i of FP belongs to F ∗P and
ei = 1 otherwise, and n is the number of solutions in the
approximated Pareto front FP .

• The generational distance that measures the distance
between a set of n solutions and the theoretical Pareto
front F ∗P . It is defined by:

GD =
(
∑n
i=1 d

p
i )

1/p

n
(20)

where di is the smallest distance between a solution of
FP and F ∗P . Here, we use p = 2 and n the number of
solutions of the approximated Pareto front FP .

• The similarity ratio that measures the proportion of
solutions of F ∗P present in the approximated Pareto set
FP . It is given by:

SR =

∑n
i=1 fi
n∗

(21)

where fi = 1 if solution i of F ∗P belongs to FP and
fi = 0 otherwise, and n∗ the number of solutions of the
Pareto optimal front F ∗P .

The smaller the error ratio and the generational distance
metrics, the smaller in number and amplitude are the errors
between FP and F ∗P . The higher the value of the similarity
ratio, the more solutions of F ∗P are present in FP . These three
metrics have been calculated for the Pareto fronts obtained
with PMOTS every 20 iterations. Average and standard devi-
ation values are computed over 10 runs of PMOTS using the
same test environment.



Fig. 6. PMOTS performance: Error Ratio, Generational Distance and
Similarity Ratio statistics for the 1-Relay problem.

On Fig. 6, it can be seen that both ER and GD quickly
decrease with time while SR increases as more solutions are
added to the Pareto-optimal set. Iterations 40 and 80 have
been highlighted on Fig. 6 because they represent the times at
which PMOTS has evaluated the number of solutions equal to
half the search space and the entire search space, respectively.
At iteration 80, only about 6% of the solutions of FP do
not belong to F ∗P , and these solutions are really close to the
Pareto optimal front as shown by the GD measure of 5.10−5.
In iteration 40, we already have a good first picture of the
Pareto-optimal set since we have 60% of the solutions of
F ∗P and the erroneous solutions of FP are very close to F ∗P
having a generational distance value of GD = 8.10−5 value.
PMOTS performs well on this case and we will use it on
higher order problem instances. However, we are still working

on improving its performance in terms of convergence speed.

D. Pareto-optimal set for the 2-relay problem

In this problem instance, we set M = 2 such as each
solution is made of either one or two active relays. We set
HM = 3, meaning that we account for all the paths having
h ≤ 3 hops in the criteria computation. The precision of the
τi(r) variable is reduced and it takes its values in the set
Γ = {0, 0.1, . . . 0.9, 1.0} of |Γ| = 11 elements. The search
space has a cardinality of 230, 769, 891 solutions and hence,
the Pareto-optimal set presented in Fig. 7 has been obtained
with PMOTS, after 10 days, 4 hours of computing and having
evaluated 8, 446, 029 solutions. This estimated Pareto-optimal
set presented here is composed of 58799 solutions.

Even though the approximation of the Pareto-optimal set is
not the most accurate one, it is already possible to understand
the composition of the trade-offs between the three criteria.
As a matter of fact, it is already clear that the same trade-
off between robustness and delay exists as in the 1-relay
subproblem. On the robustness-energy projection and on the
delay-energy projection, we have highlighted the solutions
composed of only one relay using a red cross marker. It can
be seen that the solutions providing a quasi perfect robustness
(fR > 0.999)) are composed of single relay solutions. As for
the 1-relay case, most of the solutions in the front are divided
into various energy levels because of the discretization of the
τi(r) space.

So far, PMOTS has not yet found a solution made of
2 relays that outperforms the 1-relay performance in terms
of robustness. For this particular configuration and network,
it makes sense since the use of a single relay is the best
possible configuration to mitigate interference for a 2-time slot
system. For the 2-relay case, our model clearly accounts for
the interference created between the source node and one of
the two relays and impacts accordingly the performance of a
2-relay solution. From this basic illustration of our framework
for a simple case study, we can conclude (knowing the 1-
relay and 2-relay Pareto-optimal sets) that the best possible
robustness is achieved for a 1-relay configuration using nodes
located between the source and the destination. As shown in
Fig. 5, several central nodes provide similar performance and
hence, could be used for instance as opportunistic relays in
the transmission from S to D. From our first results, we
can conjecture that for this specific example network, using
a single relay provides better performance when robustness is
considered as a primary objective. We have also highlighted
the optimal trade-off between robustness and delay, and the
impact of the third objective, the energy, on the optimal
compromise surface.

VI. CONCLUSION

In this paper, we have proposed a novel multiobjective
optimization framework for network routing in wireless ad
hoc networks. Our proposed framework consists of a general
probabilistic network model capable of capturing the impact



Fig. 7. Representation of the projections of the estimated Pareto-optimal set for the 2-relay problem. The solutions are divided into two sets: the set of 1894
solutions using only one relay (red cross marker) and the set of 56905 solutions using two relays (blue dot marker).

and interaction of a wide range of resource/interference man-
agement techniques, various channel conditions, and network
scenarios. Used in conjunction with metaheuristic optimization
techniques, this framework provides an efficient tool to cap-
ture the trade-offs between different performance metrics and
obtain bounds on the achievable performance of routing for
a single source-destination transmission. Preliminary results
were obtained in characterizing the delay, robustness, and en-
ergy tradeoffs for a two time slot sensor network model. Future
work will extend the model to consider more complex network
scenarios, such as to account for various network topologies, to
consider multiple concurrent flows in the network, and to use
more refined cross-layer interactions and interference models.
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