54 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 1, JANUARY 2016

Spectral and Energy Efficiency Trade-offs
in Cellular Networks

Dimitrios Tsilimantos, Member, IEEE, Jean-Marie Gorce, Senior Member, IEEE,
Katia Jaffres-Runser, Member, IEEE, and H. Vincent Poor, Fellow, IEEE

Abstract—This paper presents a simple and effective method to
study the spectral and energy efficiency (SE-EE) trade-off in cellu-
lar networks, an issue that has attracted significant recent interest
in the wireless community. The proposed theoretical framework
is based on an optimal radio resource allocation of transmit
power and bandwidth for the downlink direction, applicable for
an orthogonal cellular network. The analysis is initially focused
on a single cell scenario, for which in addition to the solution of
the main SE-EE optimization problem, it is proved that a traffic
repartition scheme can also be adopted as a way to simplify this
approach. By exploiting this interesting result along with prop-
erties of stochastic geometry, this work is extended to a more
challenging multicell environment, where interference is shown
to play an essential role and for this reason several interference
reduction techniques are investigated. Special attention is also
given to the case of low signal-to-noise ratio (SNR) and a way to
evaluate the upper bound on EE in this regime is provided. This
methodology leads to tractable analytical results under certain
common channel properties, and thus allows the study of various
models without the need for demanding system-level simulations.

Index Terms—Green wireless networks, spectral and energy
efficiency, power and bandwidth allocation, stochastic geometry.

I. INTRODUCTION

HE EXPLOSION of data traffic in wireless networks in
recent years with billions of daily mobile users, along
with the corresponding exponential growth in infrastructure,
has led to the rapid increase in the energy consumed by wire-
less networks. Technological innovations that solely allow the

Manuscript received December 5, 2014; revised May 31, 2015; accepted
July 25, 2015. Date of publication August 11, 2015; date of current version
January 7, 2016. This work was produced in the framework of the Common
Research Laboratory between INRIA and Alcatel-Lucent Bell Labs and pre-
sented in the framework of the GreenTouch initiative [4]. The work of J.-M.
Gorce was supported by CMIRA 13 006396 01 Explora Pro, Region Rhone-
Alpes. The work of H. V. Poor was supported by the U. S. National Science
Foundation under Grant ECCS-1343210. The associate editor coordinating the
review of this paper and approving it for publication was Prof. Homayoun
Yousefi’zadeh.

D. Tsilimantos was with INRIA, University of Lyon, CITI-INRIA,
Villeurbanne F-69621, France. He is now with France Research Center,
Mathematical and Algorithmic Sciences Lab, Huawei Technologies, Paris
92100, France (e-mail: dimitrios.tsilimantos @huawei.com).

J.-M. Gorce was with Princeton University, Princeton, NJ, USA. He is now
with INRIA, University of Lyon, CITI-INRIA, Villeurbanne F-69621, France
(e-mail: jean-marie.gorce @insa-lyon.fr).

K. Jaffres-Runser is with the University of Toulouse, IRIT, INPT-
ENSEEIHT, Toulouse 31071, France (e-mail: katia.jaffres-runser @irit.fr).

H. V. Poor is with the Department of Electrical Engineering, Princeton
University, Princeton, NJ 08544 USA (e-mail: poor@princeton.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TWC.2015.2466541

system components to consume less power clearly cannot keep
pace with these changes. In this direction, although today’s sys-
tems are mainly designed for optimal capacity with high target
values for system throughput and spectral efficiency (SE), the
operators are now showing greater interest in improving their
energy efficiency (EE). The motivation behind this transition
is the need to limit the electricity costs that represent a large
portion of their operational expenditure (OPEX). Furthermore,
from an equally important perspective, the rising concerns
about global warming and environmental protection motivate
the design of systems with improved EE and lower greenhouse
gas emissions. This paradigm shift could directly benefit the
EE of other energy-intensive sectors as well, through so-called
smart technologies, including for instance smart energy grids,
buildings and transportation control.

For all these reasons, a holistic approach for green wireless
networks is widely envisaged and several significant actions
in both academia and industry are already committed to this
goal. For instance, the EARTH FP7 project investigated the
development of a new energy efficient wireless generation [1]
and the TREND FP7 Network of Excellence aimed to estab-
lish the integration of the European research community in
green networking with a long term perspective [2]. The Next
Generation Mobile Networks (NGMN) Alliance [3] brought
together partners with green activities and more recently, the
ambitious mission of the GreenTouch Initiative is to deliver the
roadmap in order to increase total network EE by a factor of
1000 compared to 2010 levels [4].

However, the EE improvement is hardly a straightforward
process when it is mainly based on green network manage-
ment rather than technology and hardware advancements, as
it can actually have a negative impact on other key perfor-
mance indicators and particularly on SE. The optimization of
both these metrics can lead to a challenging trade-off, since
they are usually inter-related and conflicting. A fundamental
insight is known from the well known Shannon formula for
channel capacity with additive white Gaussian noise (AWGN),
which shows that for a given data rate, transmitting with larger
bandwidth leads to higher EE. The study of this trade-off is
demanding for multi-user communications and becomes even
harder in cellular networks.

An interesting investigation of this issue, along with other
fundamental ones about green wireless networks is described
in [5]-[8]. Representative results on the SE-EE trade-off for
single cell Orthogonal Frequency-Division Multiple Access
(OFDMA) networks can also be found in [9]-[12], mainly
aiming at algorithms for optimal resource block allocation,
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while an overview of game-theoretic approaches is presented
in [13]. The extension to a multi-cell setup has so far not
been extensively studied and to the best of our knowledge
the respective publications are relatively limited. For instance,
more general studies focusing on the cell level SE for cellular
networks are described in [14] and [15], while an analysis for
interference-limited scenarios is presented in [16] and a simple
one-dimensional (1-D) multi-cell environment is analyzed in
[17] by introducing an asymptotic regime as the number of
users grows to infinity. Other studies investigate more advanced
architectures like distributed antenna systems (DAS) [18], [19],
multi-hop wireless networks [20], [21] or cognitive radio [22].
Most of these works require complex system level simulations
and are limited to scenarios with a fixed number of users.
While simulations are necessary in order to evaluate in detail
system performance, more tractable results are often desirable
to easily reveal useful insights. Tools from stochastic geometry
have been used in recent studies for this reason, as for example
in [23]-[26], but these works significantly differ from our
approach where the focus in on the SE-EE trade-off.

Along this line of thought, this paper presents a simple and
practical theoretical framework for the analysis of the SE-EE
relationship in cellular networks. To this end, a joint power-
bandwidth allocation scheme for the downlink is adopted ini-
tially for a single cell multi-user scenario, under the assumption
that only a statistical knowledge of the channel is available at
the base station (BS). A low complexity numerical solution is
achieved and at the same time we prove that the cell traffic can
be segmented into specific groups, allowing the study of vari-
ous models and traffic distributions. Moreover, the introduced
model can take into account both transmit and signal process-
ing power. Then, the special case of the low signal to noise
ratio (SNR) regime is presented, where an explicit theoretical
EE upper bound is defined. An extension of this framework to
a multi-cell scenario is performed by assuming that the ran-
dom locations of BSs form a Poisson point process (PPP). By
applying properties of stochastic geometry, key metrics such as
the interference and the signal to noise plus interference ratio
(SINR) are analyzed, leading to a formulation similar to the
one in the single cell case. Since interference plays a major role
in this scenario, frequency reuse and beamforming are studied
as potential interference reduction techniques, but our model
broadly applies to many other approaches. Finally, it should
be highlighted that the goal of this paper is to provide a way
to easily obtain SE-EE trade-off curves and thus, we do not
emphasize the comparison to other existing resource schemes.
Interested readers are encouraged to refer to our results in
[27]. We summarize the key contributions of this work in the
following points:

1) A simple approach for studying the SE-EE trade-off in the
downlink of a single cell, with the help of a novel joint
power-bandwidth allocation scheme.

2) A traffic repartition scheme that further reduces the com-
plexity of the previous problem.

3) An extension to a multi-cell scenario with a PPP, where
the SE-EE trade-off is still tractable.

The remainder of the paper is organized as follows: Section II

describes the single cell model, including the formulation of the
optimization problem and the approach of traffic repartition. In

Section III, the case of low SNR is presented and a represen-
tative example with uniform traffic is studied. The multi-cell
scenario is discussed in Section IV and then, extensive numer-
ical results are presented in Section V. Finally, our concluding
remarks are made in Section VI.

II. SINGLE CELL MODEL
A. System Model

A single cell scenario is considered here, where our inter-
est is focused on the downlink direction. The BS, located at
the center of the cell, is assumed to serve a set U of randomly
distributed users of cardinality Ny, while each user u € U
has a specific data rate demand 7). The total available trans-
mit power Py, and bandwidth W;,; are shared among the Ny
users according to the applied resource allocation policy. The
case of flat fading is addressed as a first step, but a similar
approach can be followed even in the more complex case of
frequency-selective fading, for example per OFDMA symbol,
under certain conditions for the user channels [17]. In addition,
since the formulation is based on the outage capacity, the chan-
nels are also assumed to be slowly-varying [28]. Orthogonal
multiple access in an AWGN channel is considered and for sim-
plicity we neglect the intra-cell interference. Thus, for a random
channel realization the achieved user capacity C, is given by
the Shannon formula for an AWGN channel

Cu = wy log, (1 + SNRM> (1)

Yeff
where w, is the bandwidth allocated to user u and y,ss is the
SNR gap that introduces the impact of practical modulation and
coding schemes. Moreover, the SNR level of the user can be
described in more detail by

Puhuly

SNR, =
wy No

(@)

where p, is the BS dedicated link transmit power, Ny is the
noise power spectral density, 4, is the random variable that
incorporates the effect of fading and finally, ¢, represents the
deterministic part of the signal attenuation in the form of a
proper path loss function.

B. Performance Metrics

Since we aim to study the SE-EE trade-off for different oper-
ational scenarios, the definitions of these key system perfor-
mance indicators are briefly reviewed in line with the adopted
system model.

Definition 1: The spectral or bandwidth efficiency is a mea-
sure that reflects the efficient utilization of the available spec-
trum in terms of throughput and it is commonly defined as the
amount of throughput that the BS can transmit over a given
bandwidth, expressed in bps/Hz.

Hence, according to the definition of the outage capacity,
by taking into account the probability that the channel gain is
strong enough to support the traffic demand, the SE is

Yower TP [Cy = T]
Zueu Wy

SE = 3)
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Definition 2: The energy efficiency on the other hand reflects
the data transmission efficiency in terms of power consumption
and it is defined as the amount of throughput that the BS can
transmit per unit of power, expressed in bps/W or bits/Joule.

It is worth mentioning that in some scenarios, especially
when coverage issues are studied, the area power consumption,
expressed in W/m?, is also practical as an alternative EE metric.
In this work, the commonly used throughput-oriented notion is
adopted which similarly to (3) leads to

Zueu TMP[CM = Tu]
Zue’u Pu

EE = 4

Both efficiency metrics are defined so far according to the
discrete set of cell users. These definitions can also be extended
to the case of continuous traffic distributions over the cell
coverage area by using surface integrals in (3)—(4).

C. Optimization Problem

Our objective is to maximize both efficiencies and at the
same time satisfy the traffic demands, by properly allocating
the BS resources among the users, i.e. both bandwidth w,, and
transmit power p,, in this model. As a nontrivial multi-objective
optimization problem, a single solution does not exist if no pref-
erence between the metrics is considered and for this reason we
choose to provide the Pareto front of the respective trade-off
curve. Since the resources are limited, the problem is subject to
the following constraints:

> Pu < P (5a)
uell
Z wy < Wigr (5b)
uell

The probability in the SE-EE definitions can be analyzed by
replacing C,, according to (1) and (2), which yields

N Ty
> YerrNoWu (2* - 1)} (6

PIC, = Ty] = P[hu
Puly

By setting a threshold 0 < ¢ < 1 for this probability, in the
general case where the fading follows an arbitrary distribution,
(6) leads to the minimum required power

VeffNowu ( TT”

Pu= Qi — 1) (7

L FTN -0

where Fh_l(.) is the inverse cumulative distribution function
(cdf) of h whose index u is omitted, since the fading distribution
is assumed to be the same for all users.

Remark 1: In the typical case of Rayleigh fading, i fol-
lows an exponential distribution and therefore for a mean value
E[h] = 1/7, we obtain F, '(1 —¢) = L In 1.

Then, according to (3) and since both demand 7,, and thresh-
old ¢ are specified, the SE becomes fixed for a given value of the
total allocated bandwidth W =", w, < W;,;. This remark
allows us to easily find the set of Pareto optimal solutions by
moving the effective trade-off point along the SE values. More

precisely, the problem is equivalent to the one we obtain by
maximizing EE for values of W within the interval (0, W;,;].
Obviously, there are uncountably many real numbers inside any
given interval and therefore we limit our analysis to a sufficient
number of points for W, and SE respectively, that capture the
Pareto front:

Problem 1: SE — EE optimization

max EE, YW € (0, W]
(puswu)
Now n
1 Lyl (1 —¢)
2. Y wy=W
uel

Notice that if the solution of (P;) does not satisfy (5a), then
there is no feasible solution and hence, this constraint is implic-
itly included. Several interesting conclusions can be derived
from the theoretical analysis of (P;). Our first result is stated
here, from which all the subsequent ones follow.

Theorem 1: Given the description of (Pj), the optimal allo-

cation (pr L opop t) to a user u is found for bandwidth:

T,1n2 1 [re, F(1—c
opt _ _TuMSihy a2 M—l )
LT ¢ Verr No
and power:
opt _ YeffNoTu In2 el*tWo» _

(€))

u

T LF -0 T+ W)

where W is the principal branch of the real-valued Lambert
function and A is the multiplier of the Lagrange function A:

A(wu,X)=ZPu+k<Zwu—W>.

ueld uell

(10)

Proof: Since the numerator in (4) is fixed for a specified
threshold ¢, in order to maximize EE it is sufficient to minimize
the allocated power while satisfying the problem constraints.
Hence, a practical method for finding the solution of (Pj) is to
introduce the Lagrange multiplier A, while the Lagrange func-
tion A that we want to minimize is then the one defined in (10).
The solution should be a stationary point of A, where its partial
derivatives are equal to zero, as follows:

oA oA
=0, — =0. (11
dwy, oA
The first condition of (11) yields
(T, In2 A (1 —
zwu(”“ —1)=—“h( 9
wy Yeff No

and with the help of the equivalence y = xe* < x = Wy(y)
that holds for the function Wy, we reach the expression of (8).
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Fig. 1. Traffic repartition for a simple path loss model on the left figure;
example of traffic volume as a function of attenuation on the right one.

Note that x > —1 in this case and only the single-valued prin-
cipal branch of the Lambert function is used. Then, substituting
the value of wg?" into (7) leads to (9). It is also straightforward
to see that the function A is convex by applying the second
derivative test in (10) and thus, the only critical point we get
from (8) leads by definition to the minimum required power
and the desired maximum EE. ]

In order to find the exact solution of (P;), the value A must
also be defined. A closed-form solution does not exist, but A
can easily be computed numerically according to:

Lemma 1: The Lagrange multiplier A that satisfies (11) for
(Py) lies within a closed interval and is the root of a monotonic
function.

Proof: See Appendix A. |

Therefore, a root-finding algorithm such as the bisection
method or more sophisticated ones can be applied, and then the
optimal resource allocation is given by (8) and (9).

D. Traffic Repartition

It is clear so far that in order to find the solution of (P;), the
continuous variables w, and p, need to be calculated for all
the cell users. However, the complexity can be reduced signif-
icantly with the help of Theorem 1, by grouping together users
who experience similar attenuation ¢,. Specifically, the total
cell traffic can be seen as a set K of Nk partitions, each one
characterized by a central attenuation £, with k € XK. Then, the
respective set of users Uy is formed by

uel, < |l, —L <e (13)

where g; is the interval size around ¢;. Notice that besides
equally spaced intervals g, alternative spacings can be used to
lead to more balanced traffic groups depending on the traffic
distribution. Furthermore, the total cell traffic T;,; is

Ta £ Tu=) ) Tu=) T

uel keX uely keX

(14)

where T} denotes the aggregated traffic demand from users of
group k. It is worth mentioning that this way the study of con-
tinuous traffic distributions is also simplified. An example of
this traffic repartition is illustrated on the left side of Fig. 1 for
the simple case of a path loss model that depends only on the
distance between the user and the BS. The shaded area repre-
sents the traffic partition of a specific group k. The right plot
further assumes a continuous uniform traffic distribution 7 and
shows the volume of this traffic as a function of the attenuation.

In this figure, ¢,, and £, refer respectively to the minimum and
maximum attenuation for users close to the BS and at the cell
edge respectively, with £,,, > £y;.

Conveniently, this approach allows us to allocate to each set
of users Uy an overall bandwidth Wy = >, el Wu and transmit
power P, = Zueuk pu in a similar way to (P;) and specifi-
cally by using (8) and (9) of Theorem 1. The new problem is
presented here for the sake of completeness.

Problem 2: SE-EE optimization with traffic repartition

max EE, VW € (0, Wipt], u € Up < €, — lr| < e

(P, Wi)
NoW, T
R ] L)
2 F (=0
2. Y Wie=W

keX

Besides this allocation scheme on a group level, a method
to derive the respective values for each individual user is
still needed. This proves to be quite simple, as stated in
the next theorem, and hence, justifies the traffic repartition
approach.

Theorem 2: The optimal resource allocation (w}, p}) for a
user u € Uy, given the solution (W, Py) of (P»), is achieved
for both bandwidth and transmit power proportional to traffic
T,, and specifically for w} = %Wk and p; = %Pk.

Proof: See Appendix B. |

Remark 2: With the help of Theorem 2, the number of
optimization variables is reduced from 2 x Ny to 2 x Ng.

At this point, one should notice that since the users are allo-
cated resources according to the central attenuation £; of their
group and not their individual ¢, the achieved performance is
expected to be lower compared to the optimal one without traf-
fic repartition. However, as we illustrate through our numerical
results, a small number K of groups is sufficient to reach simi-
lar performance even for a practical case of a large cell, where
the values of attenuation vary significantly within its coverage
area.

E. Signal Processing Power

The formulation of the problem is based until now on the
evaluation of EE from (4), where only the transmit power is
considered. A more accurate model could also take into account
other components that contribute to the overall BS power con-
sumption. For instance, the signal processing power can play an
important role due to various BS components in baseband pro-
cessing and radio frequency circuits that actually consume more
power as the allocated bandwidth W increases. A simplified
approach is to assume that this processing power is proportional
to W by a constant factor Pgp, expressed in W/Hz, as pro-
posed for example in [11]. As a consequence, a new problem
can be formed by modifying properly the optimization function
of (P1):
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Problem 3: SE-EE optimization with processing power

,P(Cy, =T,
g e B G210 gy gy,

Zueu Put PspW
the constraints of (P;)

(P3) (Pu>wu)

S.t.

The optimal solution in this case is the same as in (P7), as
the additional term Psp W that appears in (10) vanishes when
the first condition of (11) is applied. The only difference comes
from the evaluation of EE for each trade-off point along the SE
values. Note that the same model can be applied to (P>) as well.
The formulation of (P3) represents a more general case com-
pared to the previous problems that easily follow for Psp = 0.
However, it is intentionally presented last since most of our
results are related to the case in which only the transmit power is
considered. Finally, as readers more familiar with power models
may identify, another part of the BS power consumption break-
down could be included as well, describing the power figure
that is independent of the bandwidth, e.g. as a result of the main
power supply or the cooling system [29]. This model can be
addressed similarly to (P3).

III. Low SNR REGIME

A special case of interest is presented here in order to find
the theoretical EE upper bound without solving the previous
optimization problems. The adopted process is not new, as it
is quite standard how to simplify the problem in the wideband
regime [30]. However, we briefly present the achieved bound in
line with our formulation, as it complements the analysis.

A. EE Upper Bound

According to formula (1) for channel capacity, as the allo-
cated bandwidth increases, the capacity remains finite and
reaches an asymptotic limit. This is the low SNR regime of the
AWGN channel with only a power constraint and no limitation
on bandwidth. The needed transmit power in this case is the
lowest possible leading to the highest EE. This is described by
the following lemma:

Lemma 2: The achieved optimal EE of (P;) admits the
following explicit upper bound EE* as W — oo:

— cTror By 1 (1= 0)

YerfNoIn2 > ZT—:
uel

Proof: See Appendix C. |

This maximum value of EE is computed very easily if the

attenuation values ¢,, are known. One should keep in mind that

although operating in the low SNR regime is better in terms of

EE, this approach brings also new challenges. Besides the fact

that the bandwidth is in general limited, the design of appropri-

ate receivers that perform sufficiently in this region can become

a key issue, since in this case the performance of several tasks,

such as carrier and clock recovery and frame synchronization,
can decrease significantly.

(15)

B. Simple Case Study with Uniform Traffic

A simple theoretical model is studied here in order to derive
more specific results for the EE bound of (15). A single cell of
radius R is assumed for this purpose, along with a continuous
uniform traffic distribution with constant density Ty in bps/m?.
The attenuation is considered to be a result of a simple power
law path loss model, described by

with d =+ L2+ R?

where k > 0 is a scenario dependent constant, o > 2 is the path
loss exponent, L > % is the BS antenna height and R is the
horizontal distance between the user u and the BS. Notice that
this model, as proposed in our previous work in [29], is actually
a modified version of the commonly used power law model.
Specifically, the parameter L is introduced in order to avoid the
singularity for R = 0, which leads to invalid scenarios, since
the received power exceeds the transmitted one as the mobile
moves closer to a BS. An interesting study of the impact from
unbounded path loss models on network performance can be
found in [31]. Finally, by using polar coordinates, (15) becomes

by = (kd)™, (16)

— c(@+2)RAF, (1 -0
2oy Noe In2 [ (L2 + RE)™* - a2

a7

The EE upper bound in this case no longer depends on the traf-
fic demand, but only on the cell size and the path loss model
parameters. We will return to this expression in the section on
numerical results.

IV. MULTI-CELL SCENARIO

It is well known that the impact of interference is crucial for
the performance of wireless networks. This effect is neglected
in the previous analysis where a single cell scenario is inves-
tigated and the user capacity is defined as a function of the
achieved SNR. This section presents an extension of the theo-
retical approach, based on stochastic geometry properties, that
allows us to characterize key system metrics, such as the SINR
distribution, and eventually form an optimization problem sim-
ilar to (P») to which our solution process still applies. To this
end, firstly the multi-cell system model is described, following
a similar process as in [29] and [32]-[34].

A. System Model

A large-scale cellular network is considered here, where the
random distribution of BSs forms a two-dimensional (2-D)
homogeneous PPP ®p with intensity Ag. This is a very use-
ful choice among other stochastic models due to its well known
properties and, from a practical point of view, it leads to a topol-
ogy of various cell shapes and sizes that usually approximates
the actual deployment in large wireless networks. Our interest is
still focused on the downlink direction without intra-cell inter-
ference, where specifically the mobile users are assumed to be
served by their nearest BS. Unlike the model in [29], where the
resources are equally shared among the users, here the anal-
ysis of the optimal bandwidth and power allocation (w,, p,)
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7

Ps
— Serving BS
— = Interfering BSs

Fig. 2. Example of multi-cell topology with a PPP &g of 10 cells. The shaded
polygon shows the serving area of BS b.

is performed for the set of users U, of one randomly selected
BS b. All the other BSs have total available bandwidth W; and
transmit power P, serve at least one user and are assumed to
be at full load with constant transmit power spectral density, i.e.
the allocated transmit power p; from BS i that interferes with a

user u € Uy is proportional to the bandwidth w, according to
Py .
pi = wy—— Vi € {Pp\b}. (18)

Wi

An example of this topology is shown in Fig. 2 for a random
realization of ®p. It should be mentioned that power control
schemes can also be studied, as for example in the case of gen-
eral fading for interfering signals. Further details on this follow
in the respective part of this section. Thereby, unless other-
wise stated, a scenario with full resource utilization is obtained,
where each mobile in U; receives interference from all the
points of ®p besides the serving BS b. Even though this model
is not a full multi-cell scenario, which is known to be hard to
deal with, as shown for example in [35], it still plays a sig-
nificant role as it can serve as a worst case scenario in terms
of interference. The gains from interference management and
resource allocation for all the BSs is a subject for future study.

B. SINR Analysis

By using the Shannon capacity formula with interference
treated as noise, the achieved user capacity of a user u € U,
from (1) can now be replaced by

C. = wy log, (1 + SINR,,) . (19)

Yeff

The generic expression for the SINR level measured at this user
u is given by

S

SINR, = ———
wyNo + 1

(20)
where S is the desired dedicated signal and [ is the received
interference. Both of these signals are subject to the stochastic
nature of the PPP. Considering the attenuation as in the case

of the single cell model, the signal S can be described in more
detail according to

S = puhuty(R) ey

where £, is now written as a function of the distance R between
the user u and the serving BS 4. On the other hand, the received
interference / from all interfering BSs is given by

Py
I = Z pigu,ieu(ri):wu_

> guitulr)  (22)
ie{®p\b) Wi

ie{®p\b}

with the right-hand equation simply derived by using (18). The
summation is performed over any interfering BS i with respec-
tive distance r; from user « and fading gain g, ;. By substituting
the last expressions into (20), we obtain

hyty, (R
SINR, = Lo Tultu(R) e Puy 3
Wu No+ 3 2 Suilu(ri)  Wu
ie{®p\b}

where Y, is a random variable with a distribution independent
from the resource allocation (w,,, p,) and expressed in Hz/W.
Conditioning on the distance R, the probability that the SINR is
higher than a specific threshold p, i.e. the coverage probability,
is then

p (wyNo + I)
Pulu(R)

For a randomly located user, the cdf of the distance R to
the nearest BS, i.e. to the closest point of the PPP, is given by

P[SINR, > p|R] =P [hu > R]. 24)

P[R<x]=1- e_’”\B)‘2 and as a result, the expression for the
coverage probability Pc averaged over the plane becomes

o0
Pc(p) = ZnAB/IP’[SINRu > o|R]e™ ™R’ RAR. (25
0

At this point there are several different techniques that can
be used to advance the analysis. An interesting survey of the
related literature is presented in [36]. In the remainder of this
section we focus on two of the most widely adopted approaches,
the assumption of Rayleigh fading and the approximation of the
interference by a known distribution.

1) Rayleigh Fading on the Desired Link: This technique is
extensively used in the literature due to its simplicity and ana-
Iytical tractability. Specifically, for Rayleigh fading on the link
of the desired signal S with E [#] = 1/7, (24) leads to

0

Pulu(R)
(26)

P[SINR, > p|R] = e *W«No L (s), withs £

Moreover, with the help of the probability generating func-
tional (PGFL) [37], the introduced Laplace transform of the
interference £;(s) £ E [e‘” ] is given by

L1(s) = exp | —27ip /OO (1 ~E, [e*wg‘u“)])dr 27)
R
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where the expectation is performed over the fading gain of the
interfering links whose index u is dropped hereafter, since g, ;
is assumed to follow the same distribution for all (u, i) links.
Notice also that the index i for the discrete set of interferers is
omitted in the case of the continuous variable r. Moreover, the
integration limits are [R, 00), as the user is connected to the
nearest BS b and all the interfering BSs cannot be closer.

One should note that the cdf of the variable Y, is equal

0 Fy()=Pl¥, <yl =1~ Pc (%)

< 0 according to (23)
and (25). Then, following the lines of [34] for the further
analysis of £;(s) and Pc(p), we finally reach the expression

e ¢]

FY(y) =1—-m / e”)‘BLZ[Jl(X’y)-i-Jz(x,y)] dx .

ApL?

(28)

In the case in which interference experiences general fading,
the additional functions in (28) are defined as

%
Ji(x, y) = —yT Nok® (%) (292)

2
2nx (yTPr\« 2 2 ytgP
JZ(xvy)=T< W11> ]Eg|:g“7/<—&7 W11>i| (29b)

where the path loss model of (16) is used, the interfering
power p and the argument s are replaced from (18) and (26)
respectively and y (s, x) = [y r*"'e™ dr is the lower incom-
plete gamma function. This result can also include the scenario
of power control schemes where g is assumed to capture this
variation, since from an interference point of view, it does not
matter if the randomness is a result of the power p; or the fad-
ing g or their product that appears in our model. Finally, in the
special case where Rayleigh fading is considered for the inter-
fering signals as well with the same mean value E[g] = 1/7,
only (29b) changes and becomes

P
JR(x,y) = —7x [1 +1, (%)] , with

1

o0
I,(x) 2 Y oge= P (11222
@(¥) = X 4 z%/2 Z_05—221 o —&,—x
1
(30)

where , F is the Gaussian hyper-geometric function, available
in many numerical computing packages (e.g. hypergeom in
Matlab). Finally, it should be mentioned that the results of this
subsection for Rayleigh fading in the desired link are similar
to the respective ones in [34], with the few differences stem-
ming from the adopted non-singular path loss model and the
expression for the interfering power.

2) Approximation Using the Gamma Distribution: The sec-
ond technique is based on the idea of approximating the aggre-
gate interference by a known distribution. In our case, both the
desired signal S and the interference I are considered to be
drawn from a gamma distribution and second order moment
matching is performed. Besides its simplicity in the achieved
results, this technique allows the modeling of several fading
distributions, e.g. Rayleigh and Nakagami fading, and differ-
ent transmission modes with diversity, including maximum

ratio combining and multiuser multiple-input multiple-output
(MIMO). Interested readers can refer to [38] for further details.
Our analysis follows the approach in [38], but a different
network topology is studied.

In order to begin the analysis, the fading /4 is considered to
follow a gamma distribution I [ky, 6], where kj, and 6, are
the shape and scale parameters respectively. Then, due to the
scaling property of the gamma distribution it is easily seen that
S ~ T [ks, 651, where kg = kj, 65 = p, €y (R)0, and S is still
given by (21). Regarding the interference of (22), it is further
assumed that I ~ I" [k, 0;], where the distribution parameters
are found below. Notice that the interference moments exist
since the non-singular path loss model of (16) is used. By using
Campbell’s theorem, the first moment of 7 is

2mippElgld* ™

K% (a0 — 2) 3D

E[7l] = 2nAgE[g] / ply(r)rdr =
R

and the second moment is

® rppPE[g2]d>
— 2 2,2 _ TABPTIE(E
Vi) = 2anE[g ]/p Ginrdr = =20
R

(32)

Then, according to second order moment matching, the param-
eters ky and 0 are equal to

_ EB2[I1 _ 4mapd? (@ — 1) E?[g]

k; = = 33a
T v (@—-2? E[g?] (332)

VI -2) E[g?
o - YUl _ _p@=2 E[g] (33b)

E[I] 2k%d® (¢ — 1) E[g]

Moreover, the coverage probability is now expressed as
P[SINR, > p|R] =1 —E; [Fs(p (I +wuNo))]
[ (34)
=1~ [ Foto G wa o) fi (0
0

where Fs is the cdf of S and f7 is the probability density func-
tion (pdf) of /. Both these functions are known for the gamma
distribution and specifically

y (ks, x/65) xki=le=x/61

FS(X) = F(k;) s f](x) = 9;( F(k[)

(35)

with I'(r) = fooo x'~le™* dx denoting the gamma function. A
simplification that leads to more tractable results is to neglect
the noise [38], i.e. SINR, — SIR, = S/I that leads to

I (ks + ko) (0_5>"'
(k)T Gy + 1) \ ooy

7]
-2 F (kl,k1+ks;k1+1;— d )
PO
(36)

P[SIR, > p|R] =

Therefore, combining (25) with (34) or (36), and replacing
the values of kg, 6,, k; and 67, the cdf of the variable Y,, can still
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be found as Fy(y) =1 — Pc (%) As a final remark on the

gamma approximation technique, it should be mentioned that
although it is very helpful when the Rayleigh fading approach
is not appropriate, its main drawback is that simulations are
needed to validate the achieved approximation.

C. Optimization Problem

Given the cdf Fy(y), it is now possible to follow a similar
approach as in (P,) with Nk groups of cellular traffic. The
difference here is that each group Uy is characterized by a cen-
tral value of Y, denoted by y, instead of the attenuation ¢y.
The corresponding optimization problem for an interval size ¢y
around yy is presented below:

Problem 4: SE — EE optimization in the multi-cell scenario

max EE, VW € (0, W], u € Up & Yy — 3l < &y

(Prs Wi)
Wi (LT
b st 1. Pk=m<2w —1>
( 4) Vk

2. ZWk=W

keX

From this point, the optimal allocation (W, Py) is found by
following the process of solving (P>). Even though the pro-
vided SE-EE trade-off is based on average values due to the
random nature of the PPP, the respective numerical results can
be very useful in order to additionally assess the impact of
interference and evaluate the gains from possible interference
mitigation techniques. One should also notice that in this case,
instead of setting a value for the probability P (C,, > T,,) as for
the single cell scenario, the users with SINR below a specific
threshold are assumed to be in outage.

Remark 3: For uniform traffic density 7p, the respective
mean cell traffic for BS b is equal to AT—g, and the traffic demand
for each group 7} can be found from the distribution of Y, as
follows:

Tt
T, = A—“P[m —nl <&]
B

P (37)

[FY()’k +ey) — Fy(y — Sy)] .

D. Interference Reduction Techniques

The presented multi-cell theoretical analysis allows us to
examine interesting techniques for interference reduction and
performance improvement by slightly modifying the adopted
mathematical model. In this context, the impact of frequency
reuse and beamforming are investigated in this section. For sim-
plicity, we limit our study to the first technique with Rayleigh
fading on both the desired link and on the interfering signals.

1) Frequency Reuse: A typical way to reduce interference
in wireless networks is to control the number of interfering
BSs. In OFDMA based systems such as Long Term Evolution

(LTE), it is possible to configure several different frequency
patterns [39]. A simple frequency reuse pattern is studied here
by introducing a factor f, > 1 for the number of BSs that can
use the same frequency for transmission. Specifically, each cell
can allocate a set of frequency channels that correspond to a
total bandwidth W/ f.. In the case of a PPP, this procedure is
described by the PPP thinning property that leads to a new PPP
with intensity Ap/f,. Thus, by replacing the intensity of the
interfering BSs and adjusting the available BS bandwidth, (29a)
remains the same while (29b) becomes

1 P
I, y) = —nx [1 + (yw,l)}

(38)

and the second constraint of (Py) isnow Y Wg = W/f,.
keX
2) Beamforming: Another approach towards interference

mitigation is the utilization of advanced antenna techniques.
The conventional delay and sum beamformer is considered as a
first step in our model, where the BSs are equipped with a uni-
form linear array of N; antenna elements and spacing of half
wavelength. For simplicity, the array axis is set in a way that
a served mobile is always in boresight direction, as in [40]. In
order to have a fair comparison, the gain of a single antenna
element is set equal to one. Hence, the radiation pattern of the
beamformer is given by

2
1 |sin (% cos 9)

— if0<6 <m,
AB) =13 N,

sin (% cos 9) (39)

—Grp else

for an arbitrary azimuthal direction 8 measured with respect to
array axis, while Grp is the front-to-back power ratio. In this
case, the modified expressions of (29a) and (29b) are

Nok® [ x 3
JPF e,y = SO (. "
L(x,y) N, P (40a)
i A6)P
TBF (e y) = —mx | 1 —/1 YR ) a0 | 40b
y (X, y) X +27T a( NoW, (40Db)
0

where the interference is evaluated over the continuous interval
6 € [0, 2r].

V. NUMERICAL RESULTS

Numerical results illustrating the proposed theoretical frame-
work are presented in this section. Regarding the adopted path
loss model from (16), different values of the exponent « that
reflect various propagation conditions are examined and the
BS antenna height is assumed to be L = 30 m. The respec-
tive path loss constant is ¥ = 8.38 m~!, defined in such a way
that for o = 3.5 the obtained path losses are similar to the
ones from the propagation prediction COST-Hata model for a
medium sized city [41]. Furthermore, a uniform traffic distribu-
tion with density Ty = 10 Mbps/km? is considered, but other
traffic profiles can easily be studied as well. The SNR gap is set
equal to yerr = 1, the inverse cdf of fading is Fh_1 (1—-¢)=1,
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H..,Rc=1000m

0 2 4 6 8 10 12 14
SE (bps/Hz)

Fig. 3. Single cell SE-EE trade-oft from (P,) as a function of the path loss
exponent and the cell radius.
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Fig. 4. Single cell SE-EE trade-off from (P3) as a function of the processing
power factor and the cell radius, (Pgp in W/MHz).

the noise density is No = —174 ‘jﬁ—;“ and unless otherwise
stated, Nx = 10 user groups are considered, where the differ-
ent groups are formed by dividing the cell radius into equally
spaced intervals.

A. Single Cell

Firstly, Fig. 3 presents the SE-EE trade-off from (P») as
a function of the path loss exponent o and the cell radius
Rc. Similar behavior is observed for all the curves, where EE
is a monotonically decreasing function of SE. This result is
obviously expected, since SE receives higher values for less
total bandwidth W, but at the same time, the needed transmit
power becomes higher leading to inferior EE. Moreover, one
can observe that EE is higher for better propagation conditions,
i.e. lower values of the exponent «, and it also increases for
smaller cells. For example, looking at the case of « = 3.5 and
SE = 6bps/Hz, the EE is almost 19 Mbps/W for Rc = 500 m
and drops to 1.7 Mbps/W for Rc = 1000 m.

The shape of the SE-EE trade-off is significantly changed
and the relation is no longer monotonic when the signal pro-
cessing power is taken into account in (P3), as Fig. 4 shows
for @ = 3.5. Specifically, since the processing power increases

EE (Mbps/W)

4 : 2 25 3 35 4
SE (bps/Hz)

Fig. 5. Convergence of SE-EE trade-off from (P,) with respect to the total
number of user groups.

for higher bandwidth, it gradually becomes dominant in terms
of consumed energy and after a critical point, EE starts to
decrease by further bandwidth expansion. For instance, for pro-
cessing power factor Psp = 1 W/MHz and R¢c = 500 m, EE is
equal to {1.8,4.6,2.0,0.93} Mbps/W for decreasing SE with
respective values {10, 6,2, 1} bps/Hz. Eventually, the curves
for different cell sizes become identical, indicating that at
this extreme region the total power is mainly consumed by
the signal processing and not the transmission. Note that for
Psp > 0, the remaining part of the curves left from each critical
point does not represent Pareto optimal solutions.

The next numerical results concern another important aspect
of the traffic repartitioning approach. Due to the fact that the BS
resources are allocated to users according to the central atten-
uation of their group and not their individual ones, there is an
inevitable approximation error in this process. In this context,
the convergence of the SE-EE curves from (P,) with respect
to the number of traffic partitions Nk is illustrated in Fig. 5,
for parameters « = 3.5 and R¢c = 1000 m. One can see from
this figure that the curves converge rapidly for the case of uni-
form traffic distribution and for the adopted value of Nx = 10,
the relative difference from Nx = 100 that approaches the dis-
crete case is negligible. Nevertheless, if a scenario with specific
user locations is studied instead of a continuous distribution, the
optimal resource allocation from (P;) can be used to provide
the exact SE-EE trade-off curves.

Concluding the results for the single cell scenario, the
explicit EE upper bound EE* from (17), achieved in the low
SNR regime for W — o0, is presented in Fig. 6 as a function
of the path loss exponent and the cell radius. The values in
this figure actually represent the starting points of the curves
in Fig. 3, i.e. the highest EE as SE tends to zero. As expected,
the EE upper bound is higher for better propagation condi-
tions and smaller cells, where the needed transmit power is
lower. It should be pointed out here that the range of values
for EE* is very large. In particular, for Rc = 500 m, EE*
is equal to 206.1 Mbps/W for o = 3.5, dropping by a factor
of approximately 3553 times to 58 Kbps/W for o« =4.5. In
such environments of high path loss exponents, smaller cells
along with other techniques should be investigated as potential
solutions for an energy efficient network.
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Fig. 6. EE upper bound EE* from (17) in the low SNR regime as a function
of the path loss exponent and the cell radius.
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Fig. 7. SINR cdf as a function of the path loss exponent for a user u with
Pu/wy = 2W/MHz.

B. Multi-Cell Scenario

We now consider the extension of the previous framework
to a multi-cell scenario. The provided results are focused on
the most tractable case with Rayleigh fading on both signal
and interfering links, but can easily be extended to all the other
presented mathematical models. Specifically, the resource allo-
cation is performed according to the solution of (P4), where the
distribution of Y, is given from (28) and the traffic groups are
formed following Remark 3 and (37) therein. Besides the pre-
viously adopted parameters, the fading mean value is equal to
1/7 = 1 and the interfering BSs are assumed to have total avail-
able bandwidth W; = 10 MHz and total transmit power P; =
20 W. The BS density, unless treated as a variable, is set equal
to A = 1 point/km?, while the users with SINR < —15 dB are
assumed to be in outage.

Before the obtained SE-EE curves are depicted, it is help-
ful to firstly examine the achieved SINR distribution. For this
reason, Fig. 7 presents the SINR cdf for different values of
the exponent o and Fig. 8 shows its average value, given by
E[SINR,] = [;° P[SINR, > p] dp, as a function of « for dif-
ferent ratios of allocated resources (wy, p,). It is interesting to
notice from both figures that, as described in [29], the SINR

—_— pulwu =01

351 —n—p =1

Average SINR of user u (dB)

I |

25 3 35 4 45 5
Pathloss Exponent o

Fig. 8. Average SINR as a function of the path loss exponent for a user u with
allocated resources (wy,, py) (ratio p, /w, in W/MHz).

EE (Kbps/W)
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1 2 3 5 6 7 8
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Fig. 9. Multi-cell SE-EE trade-off from (P4) as a function of the path loss
exponent and the BS density (Ag in points/km2).

is not a monotonic function of «. Indeed, for all the curves
in Fig. 8, it initially increases until a certain point and then
decreases for higher values of «. This behavior is based on the
nature of (28) and specifically on the two functions J (x, y) and
Jo(x, y) inside the integral. When o« admits lower values, both
the signal and the interference levels are increased, but even-
tually interference becomes dominant and J,(x, y) determines
the result. On the other hand, if « is higher, even though the
received interference is reduced, after a certain point the level
of the desired signal starts to drop quickly and Ji(x, y) turns
out to be responsible for the degradation of SINR. Obviously,
an optimal value of « lies between the two extremes, which in
our case is around o = 3.8 for all the curves.

The respective SE-EE trade-off from (P4) as a function of
the exponent o and BS density is shown in Fig. 9. Similarly
to the single cell case, EE is a monotonically decreasing func-
tion of SE where for the reasons already explained, the best
performance is achieved for the intermediate value of o = 3.8.
As expected, EE is better for smaller cells, i.e. higher val-
ues of Ag, but this trend is not followed for o = 2.5 where
EE remains almost the same. The reason behind this result is
that the function J>(x, y), which is dominant for o« = 2.5, does
not depend on Ap according to (30), due to the fact that the
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EE (Kbps/W)

Fig. 10. Multi-cell SE-EE trade-off from (P4) as a function of the path loss
exponent and the frequency reuse factor.
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Fig. 11. Multi-cell SE-EE trade-off from (P4) as a function of the path loss
exponent and the number of BS transmit antennas.

variation of the required signal power for different cell sizes
is counter-balanced by the respective variation of the received
interference. One should also observe that the estimated EE is
quite low, indicating for example a value of 147.6 Kbps/W for
SE = 2bps/Hz, = 3.8 and Az = 1 point/km?. Although this
is a quite pessimistic value, since the currently adopted theoret-
ical model does not incorporate the gain of directional antennas
and the reduced interference due to the BS sectors, the signif-
icant difference from the respective results of the single cell
scenario highlights the importance of interference management
in multi-cell environments in terms of EE.

Along this line of thought, the impact of the interference
mitigation techniques on the SE-EE trade-off is examined in
the next two figures. Firstly, the utilization of the frequency
reuse factor is studied and illustrated in Fig. 10, where perhaps
counter-intuitively, one can see that EE is a decreasing func-
tion of factor f,. For instance, for SE = 2bps/Hz and ¢ = 3.8,
EE is equal to {147.6, 113.8, 100} Kbps/W for increasing f
with respective values 1, 3, 7. The reason for this result is that
although the SINR is improved for higher values of f, due to
the reduced received interference, the BS bandwidth resources
are less, since Zkex Wk = W/f, and the needed transmit

power must be increased, leading to an overall deterioration of
EE. This conclusion comes into agreement with a similar find-
ing in [34], where the optimal user mean rate is achieved for
fr=1

Finally, the impact of beamforming on the SE-EE trade-off is
presented in Fig. 11 for different values of the exponent « and
the number N; of antennas, while G g = 20 dB. In this case,
the received interference is reduced and at the same time EE
is significantly increased for all curves, especially in the region
where « is not too high and the function J>(x, y) is dominant.
Using the same numerical example of SE = 2bps/Hz and
o = 3.8, EE is equal to {147.6,421.1, 740.5, 1329} Kbps/W
for a number of antennas N; = {1, 2, 4, 8} respectively. This
verifies the critical role that advanced antenna techniques can
play in order to achieve network performance enhancements.

VI. CONCLUSION

This paper has introduced a simple theoretical framework
for studying the achieved SE-EE trade-off in cellular networks,
leading to tractable analytical results. An optimal resource
allocation formalism has been presented for both single and
multi-cell environments and the complexity of the underlying
optimization problem has been significantly reduced by apply-
ing a proposed traffic repartition scheme that limits the task
of resource allocation to group of users with similar channel
conditions. Moreover, a theoretical EE upper bound has been
provided for the special case of low SNR and an extension of
the theoretical model has been examined by taking into account
the signal processing power.

Our results have shown that in the case of a single cell, as
expected, EE is higher for smaller cells and lower path loss
exponent and that EE is no longer a monotonically decreasing
function of SE when the signal processing power is included in
the evaluation of the total power consumption. The traffic repar-
tition approach also proves to be very accurate with a small
number of user groups. EE is substantially lower in the multi-
cell scenario, where an optimal value of the path loss exponent
exists. The small cells are still preferred in terms of EE,
especially for environments with higher path loss exponents.
Regarding the interference mitigation methods, beamforming
proves to be a useful technique to improve EE, but on the other
hand, frequency reuse fails to achieve the same goal due to the
reduction of the available bandwidth.

This work encourages further research towards more sophis-
ticated power, channel and traffic models that will lead to more
accurate numerical results. Also of interest are more advanced
multi-cell scenarios and emerging deployment concepts such as
heterogeneous networks, a promising approach to cope with the
challenging issue of developing green cellular networks.

APPENDIX A
PROOF OF LEMMA 1

Summing (8) over u € U allows us to use the second condi-
tion of (11) and form the following function:

T,1n2
f)=w— § A: Py )
1 ul’y —C
vt 1+ Wo (z [W—ID

(41)
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First, one should notice that the desired value of A is the solu-
tion of the equation f(A) = 0. Moreover, since the real-valued
Lambert function Wy is monotonic, it is easily seen that the
function f is also monotonic. Finally, a way to bound A from
both sides is to assume that all users experience the same atten-
uation equal to the minimum ¢, or the maximum £,;, with
£y > Ly, and then solve f(X) = 0. As a result, A should lie
between these two values, and specifically

re [i, i}, with
Zm eM
No (ze¥t! + 1 In2
Fh (1 —=c¢) el
APPENDIX B
PROOF OF THEOREM 2
According to Theorem 1, for any user u € Uy
In2
wi=cTy, c1 = ; (43a)
1 [ar a0
14+ Wy <e |: Ver7 Mo 1:|)
of £ IN 1
py=caly ep 2 —TH0 (2 - 1) o (43b)
LG F, (1 =0

where ¢; and ¢ are the constants defined here and ¢ is the
common attenuation of the set U from (13). Summing both
sides of (43a)—(43b) over u € Uy leads to

@), Ty

Wi =c1Th — w, = TWk (44a)
k
(43b) T,

Py =Ty — p, = FPk (44b)
k

and this completes the proof.

APPENDIX C
PROOF OF LEMMA 2

A common approach to simplify the problem is to linearize
it by approximating the natural logarithm with the help of the
Taylor series, which yields

x2 x3

In(l+x)=x——+——--->x Vix|Kl1.

2 3 (45)

By writing the first constraint of (Pj) as a function of 7, and
applying this property, we obtain

puluFy ' (1=0)\ _ puluFy ' (1=0)
Yeff Nowy "~ YesfNoIn2
(46)

T, =w,log, | 1+

which is linear in the received power and as expected insensi-
tive to the bandwidth. The required total transmit power is then
found by solving (46) with respect to p, and summing over
u € U. Finally, the expression for EE from (4) gives the upper
bound (15), as stated in Lemma 2.
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