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Abstract— This paper describes the multi-resolution frequency
domain ParFlow (MR-FDPF) approach for simulating radio wave
propagation in indoor environments. This method allows for a
better understanding of indoor propagation and hence greatly
assists the development of WiFi-like network planning tools. The
efficiency of such wireless design tools is strongly impacted by the
quality of the coverage predictions which have to be estimated
with a limited computational load. The usual approaches are
based either on an empirical modeling relying on measurement
campaigns or on geometrical optics leading to ray-tracing. While
the former approach suffers from a lack of accuracy, the
later one needs to balance accuracy with computational load
requirements. The new approach proposed herein is based on
a finite difference formalism, i.e. the transmission line matrix
(TLM). Once the problem is developed in the frequency domain,
the linear system thus obtained is solved in two steps: a pre-
processing step which consists of an adaptive multi-resolution
(multi-grid) pre-conditioning and a propagation step. The first
step computes a multi-resolution data structure represented as a
binary tree. In the second step the coverage of a point source is
obtained by up-and-down propagating through the binary tree.
This approach provides an exact solution for the linear system
whilst significantly reducing the computational complexity when
compared with the time domain approach.

Index Terms—indoor propagation, wave propagation, simula-
tion, ParFlow, frequency domain, wLAN planning, TLM.

I. INTRODUCTION

HE simulation of decimetric wave propagation in indoor

environments is an important task for wireless networks.
Although having been studied for more than fifteen years
[1]-[4], the problem of finding the right balance between
the computational load and accuracy remains an open issue.
New applications and technologies such as ad hoc or sensor
networking, multiple antennas transmission, etc., call for more
specific propagation models. Two kinds of propagation models
are widely used for indoor pico-cells, i.e. empirical and
deterministic models (see [1], [5] for a brief survey). Due
to the presence of multiple obstacles the simplest empirical
model (the one-slope model) fails to provide accurate pre-
dictions. The multi-wall model (MWM) [1] was proposed to
take walls into account but only along the direct path. Even
with the modified MWM later proposed [6], multiple paths
are not considered and the path-loss remains a function of
the transmitter-receiver distance. With respect to deterministic
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approaches, many works have been devoted to techniques
based on geometrical optics since the beginning of the nineties
[2], [4], [7]-[12]. These methods are very attractive but
accuracy is obtained at the price of a high computational
load. Indeed, this computational load is proportional to the
number of launched rays and increases exponentially with the
number of reflections each ray undergoes. The large bulk of
recent papers focused either on improving the accuracy [13]-
[15] or on reducing the computational complexity [16]-[20].
For computational purposes the number of reflections is often
limited to about five per ray. This is definitely not enough for
indoor environments because of some peculiar effects such
as wave guiding in corridors. Wolfe er. al. [16] overcame
this limit by introducing the dominant path model. As also
proposed for other modern ray-tracers [13], [17], [18], their
approach is based on the computation of a visibility graph
aiming at reducing the time-consuming search of rays and
walls intersections. The dominant path model is then obtained
by removing all paths excepted the one providing the most
power.

Hassan-Ali et. al. [21] have also proposed an empirical ap-
proach enhanced by exploiting geometric optics. An ellipsoid
having its centroids at the emitter and receiver locations is
traced (like the Fresnel ellipsoid). The probability of multi-
effects in each room having an intersection with this ellipsoid
is then used to compute a mean path-loss.

Compared to approaches based on empirical and geometric
optics, only few works tackled this problem using a finite
elements modeling [22]-[24]. The reason is of course, the
high computational load usually required by these approaches.
However Luthi et. al. [25], [26] have proposed in 1998 a new
discrete approach referred to as ParFlow, based on the cellular
automaton formalism, and applied to urban micro-cellular
GSM simulations. The main advantage of this approach is
that all propagation effects including reflection and diffraction
are naturally taken into account; however, the required spatial
resolution for this to work well is theoretically very high.
More details about ParFlow are presented and discussed in
Section 1L

This method appears to suit well the indoor environment.
Firstly, the computational load does not increase with the
number of reflections. Secondly, any shape of obstacle can
be easily handled. To reduce the computational load, the
ParFlow theory is firstly transposed in the frequency domain
leading to the Frequency Domain ParFlow (FDPF) approach
as described in [27]. In Section [IIIl an original way to solve
this type of problem is developed by exploiting a multi-



DRAFT : IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION

resolution structure. The main computational load is gathered
into a pre-processing stage happening before the placement of
the transmitters. Implementation choices and complexity are
discussed in Section IV. In Section [V|] applications and results
are discussed.

II. PARFLOW THEORY

This section presents an overview of the Frequency-Domain
ParFlow (FDPF) method. Although the theoretical background
is different, the ParFlow algorithm is similar to the Transmis-
sion Line Matrix method [28]-[30] used for circuit design.
The implementation in time-domain outlined in section II-A
leads to a cellular automaton modeling. In this approach, the
computational time can be kept as low as possible thanks
to grid computing but also to the use of an intermediate
frequency lower than the true RF frequency [25], [26]. In order
to reduce further the computational load we propose to exploit
a frequency domain formulation leading us to restrict the study
to a narrowband estimation around the carrier frequency. The
exact frequency domain formulation is provided in section 1I-
Bl This formulation is the starting point of the new multi-
resolution approach described in section III. Note that for the
sake of simplicity the problem is addressed in two dimensions
(2D) only.

A. Time domain ParFlow formulation

As a finite difference approach ParFlow (Partial Flows)
[25], [26] relies on the first order approximation of the wave
equation on a 2D regular grid according to

U(r,t —dt) —2-U(r,t) + U(r,t + dt)
B R U(r+d 1
__n%.dﬂ ' : Oﬁ?t)_zi: (T+ riat) ) ()

where W(r,t) is the electrical field in 7 at time ¢, ¢o the speed
of light and n,. the refraction index. dr and dt are respectively
the space and time steps. r+dr; refers to a neighbor pixel, i €
{E,W,S,N} and E,W,S, N relate to the flows’ directions
as described below.

The specificity of ParFlow relies on the decomposition of
the electrical field in flows: 4 directive outward flows and an
additional staii)onary flow [26] as depicted in Fig.1/ and named
respectively f, and fo. The stationary (or inner) flow is used
for modeling a dielectric media having a relative permittivity
e, # 1. The electrical field ¥(r,t) is expressed in terms of
the local flows as

W t) =n; 2 (Fo(rt) + T r ) + a(r,t)
R +Y D), @

where Y, = 4n? — 4 is the local admittance.

Outward flows (over right-arrows) of a given pixel are also
considered as inward flows (over left-arrows) for adjacent
pixels according to

—

fi(r+drit) = z(r,t);

i€ {E,W,S,N}. (3
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Fig. 1. Inward (a) and outward (b) flows are associated with each pixel.

At each pixel a local scattering equation describes the discrete
time evolution of the flows, i.e.
— “— —
F(r,t)=%X(r): F(r,t —dt)+ S (r,t), 4)
where ?(r, t) contains source flows (null if the source is not
in r) and where
—
(7

— — — < \?
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= - — = — o t
F( ) ) ( fE fW fs fN fO ) :
In this equation, the r and ¢ variables in flows are omitted

for the sake of clarity. To make W(r,¢) the exact solution of
(1), the local scattering matrix is defined by

F(rt) = s
r,t) =

Lo, 1 1Y,
1 ar 1 1 1Y,

5(r) =573 llan Y|, (6)
2n?2 1 1a 1Y,
111 16

where o, = 1 —2n2; Br = 2n2 — 4.

In [25], Eq. (4) is solved by a cellular automaton and the
instantaneous electric field is computed with (2). As pointed
out by Luthi himself [26] this approach is a generalization
of the usual TLM method used for electronic circuits and
antennas design [30]. The main drawback of Parflow is that it
is slow. Indeed, a high computational time is required to get
the radio coverage over a large space such as a building floor.
This high computational load is due to the high resolution
required to avoid simulation artifacts; e.g. in 2D, we have
[26]

dr = coV/2 - dt,
dr < A.

(7a)
(7b)

A resolution dr = A\/6 is suggested in [26] as a good trade-off
value. Moreover, the number of iterations should be at least
equal to several times the digital size of the simulated area in
order to take multi-path into account. However, the ParFlow
capability for modeling natural propagation compensates for
its high computational load. Moreover, the algorithm allowing
to implement this approach is very simple.

B. Frequency domain formulation

The transposition of TDPF into the frequency domain
simply relies on a Fourier transform of the local equation (4)
leading to

— — —

F(r,v)=%(r,v)- F(r,v)+ S (r,v), (8)
where (7, v) = X (r)-e 7724t and, for notational simplicity,
we attain the same notation for the frequency transformed
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flows.

As shown below, the set of local scattering equations (8)
for all pixels amounts to an inverse linear problem when
considering only the carrier frequency vy, thus providing the
narrow band response. This would be inappropriate for time-
dispersive environments. However, the time spreading of the
radio channel in indoor environments at 2.4GHz or 5GHz is
small enough compared to the duration of WiFi pulses most of
the time. The radio channel is therefore assumed not to be time
dispersive. However, this important limit may be relaxed by
computing the propagation at different frequencies regularly
spaced around the carrier. Based on these predictions, the time
response of the channel may be obtained by an inverse Fourier
transform. Although certainly of great interest to other type
of systems and more dispersive channels, this is out of the
scope of this paper. Note furthermore that in the time-domain,
Chopard et. al. [25] have also used harmonic sources to reduce
the complexity arising with a pulsed excitation.

An important consequence of the FD formulation is that the
local inner flows can be removed from the formulation. The
proof is easily obtained when (8) is written as

( Fofr) > 5. ( Fy(r) ) + Sun)

F(r) F(r)
where border flows and inner flows are respectively given by

o) Fa(r)
Ty = | | By = | L™
Fy(r) (JE(T) . Fy(r) &(T) , (10)
(1) NG
and 5 5
Fr) = fy(r): (an

In these equations and below, the variable 1 has been removed
for the sake of clarity.

Note that the inner flow, F(r), is not connected to any other
pixel and it is used in one local equation only. This local
equation can thus be solved with respect to it, leading to the
reduced FD formulation (see details in the Appendix):

Fy(r) = So(r) - Folr) + 8 u(r), (12)

where ¥¢(r) is detailed in the Appendix as a function of X (r).

To derive the frequency domain algorithm, let (12) be
written by using a global formulation concatenating all flows
into a unique vector F', leading to a linear system:

F=Q,-F+8, (13)

where ) is the propagation matrix involving both the local
scattering and neighborhood relationships. Equation (13) leads
to a linear inverse problem given by

(Ia =) - F =8S. (14)

Even with a fast algorithm dedicated to sparse matrices, the di-
rect inversion becomes rapidly unbearable as the environment
size increases. For instance an environment of 1000 x 1000
pixels, such as a floor of 100m x 100m at a resolution of 10cm
would require the inversion of a matrix of (5-10°)? elements.

Therefore, the development of a fast dedicated algorithm is
very challenging. A conjugate gradient or other usual iterative
techniques may be used, exploiting the sparse nature of the
propagation matrix. A more efficient approach exploits the
form of (I — ) in (14) seen as the inverse of the sum of a
matrix geometric series, leading to

F=)"(2)" S=8+9-S+(Q)* S+... (5)
k=0

For the purpose of computational efficiency, this equation is
solved by the use of the local scattering algorithm:

Frlr) = So(r) - Fr_a(r) + S (1),
F

(1) = S Fulr), (16
k

where Fk,l(r) is updated according to (3).

Note that there are only a few differences compared to the
initial TDPF algorithm; for both, computational optimizations
are possible. For instance, the outgoing flows can only be
computed for pixels having enough incoming energy. It is
furthermore possible with FDPF to keep and accumulate in
memory non-propagated flows until they accumulate enough
energy.

III. MULTI-RESOLUTION (MR) APPROACH

The proposed multi-resolution frequency domain ParFlow
(MR-FDPF) algorithm is described in this section. MR-FDPF
provides an efficient way for solving (with an exact solution)
the FDPF linear system given in (14) by recursively exploiting
the concept of inner and border flows outlined in the previous
section. This section is organized as follows. Section III-A
defines the concept of multi-resolution nodes (MR-node) with
their own flows and scattering matrix. Section III-B! defines
the concept of child MR-node and the relationships between
the scattering matrix of a node and those of its children are
derived. Section [III-C| describes how a binary tree is built with
a recursive division mechanism starting from the largest MR-
Node (referred to as the head node) and ending at pixel level.

A. MR-node definition

The MR-FDPF algorithm is based on the block concept
derived in [31]. A MR-node (see Fig.2) is defined as a
rectangular set of pixels, defined by its size (A,,A,) and
the position of its top-left hand corner pixel (p,,p,). The
entire environment is thus divided into X' MR-nodes, referred
to as b, in the following. The flows connecting two pixels
belonging to the same MR-node are called inner flows. The
flows connecting two pixels belonging to two adjacent MR-
nodes are called border flows. From an MR-node, the border
flows bringing energy to outside are called outward flows (as
illustrated in Fig.2)) while those importing energy from outside
are called inward flows. Note of course that outward flows of
a given MR-node are inward flows for its neighbors.
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Fig. 2. A MR-node is defined as a 2D rectangular set of unitary nodes.
The flows which connect two nodes inside the MR-node are inner flows. The
flows which connect an internal node with an external node are border flows.
Among the border flows, outward flows (herein illustrated) are those bringing
energy to the outside, while inward flows are those importing energy from
the outside.

The inward and outward flow vectors are given by

—
) fu(by)
—
Ll By = | O )
) fs (o)
pd
fN(bk‘) fN(b )
Let us now define the inner flow vector F(b,) as the vector
including all the inner flows for an MR-node b,. It is straight-
forward to show that gathering all the local equations (12)
of the pixels belonging to b, leads to a MR-node scattering

equation similar to (9) as:
Fyk) ) _ _ (k)
(F@>>‘EW ( >+<§@>>’“&

where herein and later £ stands for b, for the sake of clarity.

7ib(k)
F(k)

As done previously with the classical FD formulation, the
inner flows, which are used in only one local equation, can
be removed from the formulation. The equivalent scattering
matrix is obtained by solving (18) with respect to F(k:)
as detailed in the Appendix, leading to the local MR-node
equation:

=5 (k) - Fo(k) + Sy(k),

where X (k) is the scattering matrix involving border flows
only. The relationship between (k) and X (k) is provided in
the Appendix.

Fyk) (19)

It should be noted that Shlepnev has proposed in [32] a
similar concept based on the TLM formalism. In his work,
Shlepnev has studied the wave propagation inside rectangular
bricks using a continuous formulation providing the scattering
equations. We show, however, in the next section how we use
the discrete formulation to derive a multi-resolution structure
leading to a very efficient algorithm.

4
N N N PV W T
RN ["i’ ~ /'\” N “i’/;\ ~
b b b

Fig. 3. A father node is obtained from two child nodes. The exchange flows
between both child nodes are the inner flows for the father one (blue arrows).

B. Children MR-nodes

From the previous definition of MR-nodes, a forthcoming
question concerns the choice of the MR-node size. Complexity
indeed increases with i) the MR-nodes’ size and ii) the number
of MR-nodes needed to encompass the whole environment.
As a matter of fact, the use of larger MR-nodes reduces
the number of nodes but in turns increases the size of local
scattering matrices. Instead of trying to find an optimal MR-
node size, we herein develop a recursion embedding small
MR-nodes into larger ones.

As a starting point of the demonstration, let the environment
be divided into MR-nodes of a fixed given size. These MR-
nodes are referred to as (¢)-level MR-nodes, or simply (¢)-
nodes. It is assumed that the scattering matrices of these nodes
are known and the propagation can thus be computed over the
whole space with the recursive algorithm (16) using(19) for
each MR-node bgf).

However the final steady-state can be computed more effi-
ciently at level (¢ + 1). Let (¢)-nodes be merged to provide
(£ + 1)-nodes. Each (¢ + ) -node b(Hl) is thus made of two
adjacent child (£)-nodes bZ(- and bj , as illustrated in Fig/3.

To solve the (¢)-level equation at level (£+1), the results of
the Appendix can also be used. Let us first gather the scatterl?%
‘

equations (19) associated with both child nodes b and b
into a unique equation:
=4 . . = . = .
Foli) :<2m 0 ) o)\ [ S0
Fy(j) 0 %) Fy(j) S'o(7)
(20)

It constitutes the initial equation associated with the father
node b(ZH) The border flows of bl(-e) and b;e) belong to b,(fﬂ)
as elther inner or border flows. More precisely, the flows

connecting b(é) with b(z are considered as inner flows for
b,(fﬂ) since they are not located at the border of b (D) as

illustrated in Fig.3l In the case of an horizontal gathermg, the
exact relationships between (¢)- and (¢ + 1)-level flows are
easily derived. The inward flows relationships are

Folk) = Fo@),  Tu(k) = Fir(4),

= EOR T 7 )
s(k k) =[ 2 ,
o= (go) o (mo)

21
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Fig. 4. Bottom-up phase: (a) the source node 7 is gathered with node j into
node k. The inner steady-state (b) and the new source flows (c) are computed.

while the outward flows relationships are

Folk) = Foli)y  Fu(k) = Fi(d),

- A I (@)
k) =% . fae)y =% .
o (fg@)) h (m)

{+1
bk

(22)

The inner flows F(k) associated with are the flows

connected to both child nodes, as

Fik) (f_m)) _ (@)m) |
fu(9) o)
By use of (21)-(23), Eq. (20) expands as
(mk)) _ <zee<k> zei(m) _ (E<k>>+ (ﬁemuf))
F(k) Sie(k) Sai(k) )\ F(k) Sok) )
(24)
which can still be solved with respect to F(k) according to

the Appendix, providing the exact equivalence between the
(¢)-level and the (¢ + 1)-level formulations.

(23)

C. The multi-resolution algorithm: MR-FDPF

The MR-FDPF algorithm is derived directly from these
inter-level relationships. The first task is to build a binary
tree by successively gathering the MR-nodes, starting from
the pixels and ending at the head node, i.e. the MR-node
encompassing the whole environment. The manner this binary
tree can be efficiently built is discussed in the next Section
IV-A. Let us now assume that this binary tree exists and has
L levels. Thus, having the inter-level relationships defined, the
MR-FDPF algorithm is obtained by applying recursively these
relationships in two phases.

1) Bottom-up phase: The bottom-up phase aims at com-
puting the (¢ + 1)-level formulation from the (¢)-level one,
starting with / = 1 and ending with ¢ = L. When a source
node is associated with a neighbor providing a father source
node, two tasks are needed, as illustrated in Fig/4:

o inner steady-state computation: as flows are exchanged
between both child nodes, an inner steady-state can
be computed using the second right-hand term in (44),
leading to

F(k)=1(k)-

NN W N NN

—_— > —> o - —

> — o +—> o o—

- A

. > — —_— s> o -—
NONOXN NONON N
(a) (b)

Fig. 5. Top-down phase: (a) The inward flows of the father node import
energy toward inner flows. (b) Steady state inner flows are computed leading
to inward flows of each child node.

where

I(k) = (Id = Sy (k)" . (26)

is called the inner matrix and has to be computed prior
to the propagation for each potential source node. Note
that X;;(k) reflects the flow exchange between both
child nodes. The computation of this matrix is discussed
below in Section I-C.3!

o equivalent source flows computation: to transform the
father node into a source node, the outward source flows
have to be determined. Introducing (26) into (47) provides

So(k) = S eulk) + U (k) - F(k), @7)

where U (k) denotes the upward matrix associated with
node k and it is given by

U(k) = Zei(k). (28)

Yei(k) projects the steady-state inner flows towards bor-
der flows.

The recursion ends when the head-node is reached, having
its inner flows computed. At each level, the steady-state inner
flows F(b%) associated with the source node are stored.

2) Top-down phase: The top-down phase is also a recursion
but starting at the head-node (level L) down to level 0. For
each node, at each level, the steady-state inner flows are
computed as a function of inward flows according to (44) (see
the Appendix); this is illustrated in Fig. 5. Let the head node
be referred to as bf. L stands for the last level, and 0 is the
index ﬁﬁ the unique node of L'" level. At the beginning, inward
flows F,(b}) associated with the head node are set according
to the boundary conditions. Indeed, <Fb(bg) involves the flows
bringing energy from outside. To avoid boundary artifacts
and spurious reflections, the environment is surrounded by a
fake absorbing material allowing to reduce the amplitude of
boundary outer flows. Since b} contains the absorbing layer,
inward flows are set to 0. The inner flows of the head-node
computed during the bottom-up phase are thus unchanged and
have to be propagated towards the child nodes.

The computation is made recursively at each node based on
the values of the already processed inward flows. Then, the
inner flows are computed according to (44) :

F(k):{l(k)D(k);b(k) for k # s

. (29)
I(k)-D(k)- Fy(k) + F(k) fork=s,
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where D (k) is called the downward matrix, given by

D(k) = Sic(k). (30)

At the end of the recursion, the ParFlow linear system is solved
exactly, with no approximation, except for those due to the
numerical accuracy.

3) Preprocessing phase: In this approach, three propaga-
tion matrices are associated with each node (Upward, Down-
ward and Inner matrices). Because computing them does not
require the knowledge of the source position, this can be han-
dled separately in a preprocessing phase. This further allows
to reduce the overall computational load when many sources
have to be computed. Computing the matrices associated with
a given (¢)-node requires the knowledge of the scattering
matrix of each of its child nodes. The Upward and Downward
matrices are directly related to the exchange scattering matrix
of child nodes according to (28) and (30). The computational
load for these matrices is thus not significant.

The main computational load is due to the computation of
the exchange flows scattering matrix of each node which is
required by its father node to compute its own propagation
matrices. The exchange flows scattering matrix is given by
(46) as a function of the scattering matrices of the child
nodes. Starting from the ground level having the scattering
matrix of each (0)-node, all exchange scattering matrices can
be recursively computed.

The second part of the computational load involves the com-
putation of I (k) according to (26). An efficient computation
of this matrix is proposed in [33]. The MR-FDPF algorithm
is finally obtained according to

Algorithm 1
Preprocessing:
For/=1to L -1, Do
Compute Vk; (%), I(b%), U (bY,), D(b})
Initialization:
| SetVt ;Vk; F(by) =0
Upward phase:
For/{=1to L —1, Do
Update source flows: Sp(b571) = So(b’) 3 Ser(bY)
Compute inner flows: F(b%) = I(b%) - So(bt)
Compute source flows: Sy (b%) = Seq(b2) + U (bE) - F(bY)
Downward phase:
For ¢/ = L — 1 down to 0, Do
For k=0to K, — 1, Do
Compute: F(b.) = F(bf) + I(b) - D(b') - Fb(b@
Update child inward flows: ?(bf;) = <Fg;(bf_l) ; Fb(bg_l)

IV. IMPLEMENTATION

The general formulation of the MR-FDPF algorithm has
been detailed in the previous section. We detail in this section
implementation aspects of the method. Section TV-Al presents
the adaptive multi-resolution (MR)-FDPF algorithm which
modifies the regular multi-resolution tree described above to
save computational and memory loads. This algorithm is said
to be ’adaptive’ as the tree is built to fit to the geometry of
the environment. Next section IV-B! proposes a complexity

study of the algorithm and describes why the frequency
domain algorithm outperforms the more usual time-domain
formulation.

A. Adaptive binary tree

A regular binary tree is the easiest one that can be built
but is not optimal. The efficiency is considered with respect
to four criteria:

o The computational load of the pre-processing step dedi-
cated to computing the matrices > and [ associated with
each MR-node.

o The memory needed to store all matrices.

o The computational load needed to compute the coverage
of a source over the whole environment at the pixel
resolution.

o The computational load needed to compute the coverage
of a source but at a rough resolution.

This rough resolution is introduced to further reduce the
computational time by ending the downward propagation at
MR-nodes corresponding to free-space homogeneous nodes. A
free-space homogeneous MR-node refers to a node containing
only air cells. The mean received power can be evaluated
directly from the inward flows according to

__IF @)
R AY

The computational load is thus minimized because the down-
ward propagation is stopped in each branch as soon as a
homogeneous node is reached. The variability of predictions
due to short-time fading is also reduced since the received
power is spatially averaged.

Regarding the preprocessing step, it is obvious that the main
computational load and memory consumption are due to the
scattering matrices calculus. The case of two identical MR-
nodes is interesting. Two MR-nodes are said to be identical
if they have the same size and identical child nodes. In this
case, both have identical matrices and a unique reference
model can be computed and stored for both. Such a model
is called a node’s type. The node’s type refers itself to its two
children’s types (to compute the scattering matrices) and to
its scattering matrix. The aim of the preprocessing phase is
twofold: building the binary tree (very fast), and building the
database of MR-node types.

For building the binary tree, a top-down approach is used.
Starting from the head node, this approach recursively splits
MR-nodes into pairs of child MR-nodes. Several empirical
algorithms may be used therefore. A first approach would aim
at cutting each MR-node along a line in the middle of its
higher length. Another one would be to align cuts in MR-
nodes along main walls such as obtaining homogeneous MR-
nodes as soon as possible (see Fig. 6). The following rule may
be followed:

o Select the longer side of a MR-node, (N pixels).

o Compute the number of discontinuities D(i) for each
possible splitting line I;; Vi € [1; N — 1].

o Split the block at the index i,, to maximize D(i).

€1y
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Fig. 6. The test environment is made up of free space (light grey),
walls (black) and surrounding absorbing material (dark grey). The top-down
dividing procedure is illustrated for the fourth first levels on one branch: the
head-node is firstly divided along line 1, then the left-hand child along line
2, the top-child along line 3, and finally, left-hand child along line 4.

Such an approach based on pure discontinuity leads to a large
computational overhead when cutting a large node near the
border. A trade-off between both approaches is thus proposed
with

im = argmax {D(3) - C(|i — hol)},

i€[1;N—1]

and ho being the half-length of the MR-node and C(i) a
monotonic increasing function.

(32)

B. Complexity study

The preprocessing step is the most complex as it computes
the local scattering matrices. Fortunately, the preprocessing is
done only once. The upward step is very fast since it only
concerns source nodes. The downward step costs more as
being computed for each node of each level. For the sake
of simplicity, a square environment is only considered in
this complexity study, i.e. N, = N, = 2@ It should be
noted, however, that the adaptive tree allows to process any
rectangular environment.

1) Preprocessing load: The main computational load is
devoted to the calculus of I(b}) according to (26) and of
¥ (b%) according to (46). Taking the number of nodes into
account, the computational load of each level is given by

Clorep. ) O(19-N2-2%)  ift=2q, 33
rep, £) o .
prep O(27-N2.207Y) if0=2g+1.
The whole pre-processing load is thus given by
C(prep) < O (52 N2). (34)

The memory consumption can also be estimated for the storage
of the scattering and inner matrices. The memory consumption
for a (¢)-node is found to be

M(bY) =13 - 2° - mem, (35)

where mem is the memory required to store a complex variable
(e.g. 8 bytes for single float).

The memory associated with each level is a constant, given
by

M(£) =13 - N? - mem. (36)
The total memory then equals
M(prep) = 26 - loga(N,) - N2 - mem. 37)

Both estimations are in fact upper-bounds because they are
obtained when considering each MR-node independently. The
use of node’s types defined above improves the computational
time. A pure free-space would be the most favorable case
because all pixels would be identical and thus at each (¢)-
level, only one scattering matrix should be computedproviding
lower bounds. We thus have:

O (26- Ng) < M(prep)/mem < O (26 - loga(N,) - Nxz)
O(34-N2) <  C(prep) <O(52-N2). (38)

Note that the head-node (last level) consumes itself about 50%
of the computational load.

2) Upward load: Since the upward phase concerns only
source nodes, the associated computational load is negligible
and given by

C(up) x O (3-N2), (39)

where more than 50% is consumed for the two upper levels.

3) Downward load: Inward flows are down-propagated
inside each MR-node. The computational load associated with
one MR-node is 4 - 2¢ if £ =2¢+ 1 and 6 - 2 if £ = 2q. The
whole computational load associated with each level is then
constant, given by

O(6-N2) ift=2q,
C(down, £) o< ( 12) 1 ¢ (40)
O(4-Nw) ifl=2¢+1.
The whole computational load is
C(down) o< O (10 - loga(N,) - N2) . 41)

4) Standard TDPF load: Since the time-domain algorithm
is iterative, the exact computational load is difficult to assess
and depends on the desired accuracy. An estimation can be
found by approximating the number of iterations to few times
the environment size (i.e. Nz = k- N, (¢)). The parameter k
should be large enough to simulate multiple reflected waves.
Of course, the value of k depends on the expected accuracy
on one hand, and on the loss factor for the obstacles on the
other hand. A reference computational load is then estimated
as

C(ref) <O (16 - k- N2). (42)

This computational load is on the same order of magnitude
as that of the preprocessing phase of MR-FDPF. However the
computational load for computing the coverage of a source
is much lower with MR-FDPF, being in O(log,(N,) - N2). It
means that after preprocessing, the exact steady-state coverage
is obtained within a computational load equal to a few TDPF
iterations only.

5) Other algorithms: The complexity of the simple MWM
is roughly proportional to the number of receiving points. To
estimate the load of each point to point link budget, two com-
putational phases can be distinguished: the wall intersection
search and the path-loss computation. The former is often said
to be more consuming than the later, but in fact depends on the
number of walls to be processed. To obtain the full resolution,
the complexity of the second phase is obviously obtained as
C(MWM) x O (ky, - N2), where ki, is the mean cost of a
path-loss computation. Thus, a first outline exhibits that the
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Fig. 7. Field strength prediction for a 2.4GHz source at a resolution of 2cm
and a detailed area. Different effects such as reflection, diffraction, stationary
waves, corridor effect, are shown.

complexity of the MR-FDPF is comparable to the complexity
of a very simple MWM approach.

A comparison with ray-tracing based algorithms would also
be interesting but difficult to assess. Indeed, ray-tracing is
based on a vectorial formalism while MR-FDPF is full-space
based. The complexity of ray-tracing depends on the number
of rays and reflections and not directly on the environment
size. Ray-tracing is probably the fastest approach if only a
few receiving points are requested, but MR-FDPF certainly
outperforms ray-tracing for a full resolution study and when
the environment contains many obstacles. Indeed, ray-tracing
is known to be much more time consuming than the MWM
approach in this case [1], [5], [16].

V. RESULTS AND DISCUSSION

A. Fine Wave Propagation Simulations

In this section, our laboratory is used as a typical environ-
ment representing a building floor of about 100m x 25m in
which a WiFi LAN is deployed. Fig!7| shows the resulting
field strength prediction at a frequency of 2.4GHz, with a
resolution of dr = 2cm. The preprocessing lasted 30min
while the propagation lasted only 45s. As shown in Fig!7, the
narrow-band channel properties can be studied in depth. The
local analysis of the field (amplitude and phase) may yield the
spatial correlation of the channel response, providing a way
to obtain fine channel modeling (Rayleigh, Rice, etc.). DOA
algorithms could be furthermore applied to predict the local
channel angle spreading in each room.

An attractive field of application concerns networking sim-
ulations. For instance, the current craze for ad hoc networks
calls for accurate simulations of indoor propagation [34], [35].
MR-FDPF should be a good candidate because it allows to
quickly compute realistic radio links between nodes moving
in the environment. Another interesting application concerns
the simulation of multi-antennas mobile systems [36]. The
accurate nature of MR-FDPF based simulations permits the
computation of local field variations and therefore can easily
support MIMO channel simulations.

Fig. 8. Field strength prediction with an intermediate frequency of 480MHz,
at a resolution of 10cm: full resolution in (a) and homogeneous nodes
resolution in (b). The color scale of Fig.7|is still used.

B. wLAN planning

Many efforts have been recently devoted to the development
of efficient propagation tools in the context of wLAN planning
[37]. As discussed in the introduction, the standard approaches
face three challenging problems:

o Numerous diffractions and reflections make empirical
approaches not efficient and increase severely the com-
putational time of ray-tracing based approaches.

o The planning task implies dense field computation (many
potential receivers).

o The planning task implies also to test numerous potential
source locations.

The MR-FDPF approach addresses all of the above mentioned
problems. Firstly, the computational time does not depend
on the number of reflections. Secondly, all diffractions and
reflections are taken into account, as the inverse steady-state
problem is solved exactly. Finally, the most time-consuming
phase, i.e., the preprocessing, is done just once for all the pos-
sible sources, allowing to test efficiently many configurations.
Nevertheless, the fine resolution requirement still leads to a
computational time higher than expected. To further reduce
it, we propose the use of a simulation frequency lower than
the true frequency. This assumption was already introduced by
Chopard et. al. [25] for GSM network planning.

To choose the simulation frequency, the discretization step
is firstly set according to the desired resolution of field predic-
tions, involving the size of rooms and obstacles. Therefore, a
simulation frequency of 480MHz is chosen when a resolution
step of 10cm is targeted (7).

Fig.8(a) illustrates the field strength estimation at the pixel
level (10cm) for the previously described indoor environment.
It is obvious that exact positions of fading holes and peaks
are not realistic because of some approximations: the use
of the intermediate frequency, the 2D approximation, the
lack of knowledge about furniture, peoples, and the walls’
constitutive materials. This approach can however provide a
good estimation of the mean field strength if a calibration
process is used. Full details about the calibration process and
the measurement procedure are out of the scope of this paper.
The root mean square error (RMSE) was found to be of
about 5dB as described in [38]. The resulting coverage map is
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TABLE I
COMPUTATIONAL AND MEMORY LOADS

method
regular disc. optimal
mem (MO) 57.8 86.9 63.4
CPU time (s) 8.1 27 8.6
nb of nodes 1009 218 226
propag hom (ms) 361 288 203
propag pix (ms) 1650 1770 1640

provided in Fig:8| for both the fine (a) and the homogeneous
node (b) resolutions.

Computational and memory loads are summarized in Table I
for three binary trees: a regular one, a full discontinuity-based
tree, and the optimal trade-off between both approaches.

VI. CONCLUSIONS

In this paper, a novel method called MR-FDPF has been
proposed. This method is based on the ParFlow formalism
introduced by Luthi and Chopard [25], [26]. In their work,
a general flow equation modeling has been derived, which
is equivalent to the well-known TLM (Transmission Line
Matrix) [28]-[30] model in the context of electromagnetism.
In this paper, the ParFlow formalism is developed in the
frequency domain, leading to a large linear system. This
large linear system is solved herein by means of an original
approach exploiting the specific structure of the scattering
matrix connecting the flows. In a first step, a MR-node is
defined as a generalization of the usual TLM node. In a second
step, recursive relationships between MR-nodes are derived
using a child-father ties. Finally A recursive splitting method is
proposed, starting from the head-node, and providing a multi-
resolution structure: the binary tree.

With this approach, the large FDPF linear system is solved
without approximations by means of the MR-FDPF algorithm,
with a computational load equal to a few iterations of the initial
TDPF algorithm. This is a significant improvement, leading to
a 2D discrete approach that allows to compute a coverage of
more than 1000m? in a few hundreds of milliseconds. It should
be pointed out that MR-FDPF takes into account all reflections
and all diffractions. The counterpart, which is the narrow-band
estimation, may be overcome by estimating multiple spectrum
lines.

Although MR-FDPF appears promising, further experimen-
tal investigations need to be done to validate the simulations
for other environments. Future theoretical works will focus on
optimization of matrix based operations in the preprocessing
phase in order to permit the 3D generalization of such a
method. Indeed, although the theoretical development of the
3D approach is immediate, numerical constraints are difficult
to be dealt with and computational and memory requirements
increase drastically for this case.

APPENDIX
REMOVING INNER FLOWS

We show herein how to remove the inner flows. To this
end, remember that in this paper the formulation of the local

scattering is written in terms of inner and exchange variables.
Such a formulation allows to remove the inner variables by
partially solving the system. A general formulation is given

by
Fole) :<zee<z> Eem)). Fo@) )\, [ Seala)
F(z) Sie(r)  Tii(z) F(z) ?0(9213

wheg x stands gi}ther for r in section [II, or for k in section
L. F p(x) and Fp(x) refer to the exchange variables. While
F,(x) imports energy inside the node, F';(x) exports energy
towards the neighboring nodes. F (z) is an inner variable
which is not used elsewhere. The scattering matrix 3(z) is
herein divided into four blocks, where subscripts e and ¢ stand
respectively for exchange and inner.

Because F(m) is not used elsewhere, the system can be
solved with respect to this variable, providing the following
results:

(o) = (Id — Su(z) ™" (Eie(x) CFo(x) + ﬁo(x)) . (44)

The outward flows are then obtained according to

Fo(z) = So(@) - Fo(z) + Sola), (45)

with
Sp(r) = Bei(x) - (Id = Tii () - Die(w),  (46)

and
§y(2) = 5 eal@) + Sei(w) - (Id = Sys(2)) - Fo(a). @)
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