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Abstract—This paper concentrates on characterizing energy,
latency and capacity trade-offs in multi-hop wireless ad-hoc
networks. Therefore, a multiobjective framework is proposed
to derive the Pareto-optimal set of solutions with respect to
these three criteria. The work presented in this paper assumes a
linear network where transmission powers and relay positions are
optimization variables. We study the asymptotic state where the
distance between source and destination is very high such that
the number of hops tends to infinite. Two types of traffic are
considered in the following. First, low rate traffic is analyzed
by characterizing the multiobjective performance of a single
packet transmission using an interference free multi-hop relaying
strategy. Second, a continuous flow of packets from a unique
source is considered. In the first case, we show an important
theorem which states that all Pareto optimal solutions with
respect to delay and energy metrics provide the same target
SNR at the receiver side. In the second case, our analytical
results highlight how the energy/delay Pareto front moves when
considering a capacity constraint and the optimal re-use factor
is derived.

I. INTRODUCTION

Evaluating the capacity of wireless ad hoc networks is an
important issue that has triggered a comprehensive research ef-
fort under various conditions since the seminal work of Gupta
and Kumar [1]. Several works provided ways for increasing
the asymptotic capacity bound of O(n log(n)) [1], [2] by for
instance accounting for mobility [3] or introducing multi-user
detection techniques [4]. Globally optimizing capacity for two-
dimensional networks where routing and resource allocation
(i.e. frequency, time or power assignment) are performed
concurrently is a very hard problem. Toumpis et al. [5]
have proposed an interesting model to derive the capacity by
properly scheduling transmissions and hence accounting for
a temporal multiplexing directly in a 2 dimensional network
model. While the model is appealing, the computation of
optimal solutions for large networks is intractable due to the
size of the search space.

A more tractable way to optimize multi-hop schemes is to
consider a unique path in the network which can be assimilated
to a linear network [6]–[10]. This leads to an optimization
problem where the main variables are the transmission powers
and locations of the relays. Common optimization objectives
are energy minimization, latency minimization and capacity
maximization.

Such a linear network model offers an important frame-
work to derive a comprehensive analytical study of multihop
transmission and has been investigated in the following works.

In [7], the authors have proposed to adapt the selection of
the relays and their relative transmission powers to optimize
power limited or bandwidth limited systems. Capacity and
radiated energy are optimized but solutions using a high
number of relays are favored since circuit energy is not
accounted for. Further, no latency criterion is addressed. In
[6] a circuit energy model is introduced for a direct single
hop transmission. The same model is applied in [8] to evaluate
multi-hop strategies but for fixed relay nodes. In their latest
paper [10], the authors search for the multi-hop strategies
maximizing the total throughput that also minimize the energy
consumption. However, they do not account for interference
in their model. They have extended their work to a spatial
multiplexing context [9] but for a fixed set of relay nodes and
the problem still concentrates on finding optimal powers.

The work presented in this paper pursues the same ob-
jectives and our contribution resides in the derivation of a
multiobjective framework to optimize concurrently energy,
delay and capacity. Results are here derived for a system where
not only transmission powers are variable but also locations of
relays can be adjusted. Analytical results rely on an asymptotic
model where relays can be regularly positioned on a quasi-
infinite line. In the first part of this work, we focus on the
optimization of a single packet transmission when no spatial
multiplexing is considered as in [10]. We derive the analytical
Pareto front for the energy/latency trade-off, extending our
previous work [11] which concentrated on computing these
bounds only for specific modulations and coding techniques.
In this paper, we provide a more general formulation where
the achievable bound is characterized for any monotonically
increasing capacity function. A specific derivation using the
Shannon capacity illustrates the framework. We exhibit an
important theorem which states that any Pareto optimal solu-
tion verifies the unique condition that the SNR at the receiver
side is equal to an optimal SNR γ̂r. Our model is further
extended to the case where a continuous flow is transmitted
in the network. In this case, a channel re-use distance is
introduced and interference is modeled as an additive Gaussian
noise as in [7]. We first prove that the previous optimal
SNR γ̂r still holds as a bound but can be relaxed to target
a specific capacity constraint. More specifically, the Pareto
optimal set of solutions with respect to capacity maximization
and energy/latency minimization is assessed by setting the
received SNR in the range γr ∈ [γ̂r;∞].

Section II introduces the model, assumptions and param-
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eters. The energy-per-bit and delay-per-bit objectives are de-
fined. In Section III, the classical Shannon limit is revisited for
a single hop transmission providing the latency/energy Pareto
bound. In Section IV, the multi-hop transmission problem for
a single packet transmission is addressed. The corresponding
continuous flow problem is studied in Section V and Section
VI concludes the paper.

II. MODEL AND PARAMETERS

A point to point transmission is being considered first. The
transmission power density normalized with respect to the
receiver noise power is denoted by γe = PE/W

N0
, with PE

the transmission power and W the frequency bandwidth. On
the receiver side, the normalized power density is the classical
SNR denoted γr and in the rest of the paper, all power and
energy densities are normalized with respect to N0.

The propagation environment is assumed homogenous, i.e.
γr = A(e, r) · γe with:

A(e, r) = A0 · d−ner (1)

where n is the pathloss coefficient, der the emitter-receiver
distance. The radio link capacity is:

C = W · c(γr) (2)

where the capacity per Hertz function c(x) is supposed con-
tinuously derivable and monotonic. This function is noted
cg(x) = log(1 + x) for the Gaussian channel.

For a given information quantity Qi, the direct transmission
delay Di is given by Di = Qi/C, which can be expressed as
a delay-per-bit (latency):

Db = Di/Qi = C−1 (3)

The normalized radiated energy for transmitting Qi is:

Ei = γe ·W ·Di (4)

An additive component Ec is introduced which stands for
circuit energy and losses at both transmitter and receiver sides
[6], [11]: Et = Ei + Ec. This energy can also be normalized
as an energy-per-bit quantity:

Eb = Et/Qi (5)

III. SINGLE HOP TRANSMISSION OPTIMIZATION

In this section, Shannon’s classical limit is revisited to
express the energy/latency trade-off for transmitting Qi infor-
mation bits. Capacity can be omitted because in a single hop
transmission, capacity and latency are directly related to each
other by (3). Thus, the following problem is considered: having
a transmitter and a receiver at distance der, what would be the
optimal transmission power to concurrently reduce latency and
energy consumption?

A. Optimization for ideal transceivers
Let’s first consider a null circuit energy (i.e. Ec = 0), thus:

Eb = γe ·Di ·W/Qi (6)

Introducing (3) and (2), leads to:

Eb = γe ·W/C =
γe

c(A(e, r) · γe)
(7)

Besides, introducing (2) into (3) provides the delay per bit
expression:

Db =
1

W · c(A(e, r) · γe)
(8)

Equations (7) and (8) give together the closed-form expression
of the energy-latency Pareto front. The Pareto front represents
the solutions that provide the best possible compromises
between the considered performance metrics. In our case,
it represents the optimal lower bound on the energy-latency
trade-off. The compromise between both constraints is ad-
justed by setting the transmission power.

The inversion of (8) allows to express γe as a function of
a given delay constraint Db:

Eb =
W ·Db · c−1(1/W.Db)

A(e, r)
(9)

In the Gaussian case, the Shannon’s limit is obtained:

Eb =
W ·Db · (21/W.Db − 1)

A(e, r)
(10)

This curve delimits the achievable region (above the curve)
as represented in Fig.1 for A(e, r) = 1. Any solution on this
curve is Pareto optimal with respect to energy and latency.

B. Effect of circuit energy
For the case of non perfect transceivers, an additional circuit

energy is consumed (10):

Eb =
W ·Db · c−1(1/W.Db)

A(e, r)
+
Ec
Qi

(11)

The circuit energy can be approximated [10] by:

Ec = Ec0 ·Qi + Eδ ·Di ·W (12)

where Ec0 stands for the normalized digital circuit energy-
per-bit related to data processing and Eδ ·Di ·W for the RF
normalized per-bit-energy. Substituting (12) into (11) we get:

Eb =
W ·Db · c−1(1/W.Db)

A(e, r)
+ Ec0 + Eδ ·Db ·W

= W ·Db ·
(
c−1(1/W.Db)

A(e, r)
+ Eδ

)
+ Ec0

(13)

The constant circuit energy Ec0 only shifts the curve along the
energy axis and will be discarded in the rest of the paper. On
the opposite, the component Eδ strongly affects the Pareto
bound in the low power region, as illustrated in Fig.1 for
A(e, r) = 1. The plot of Fig.1 clearly shows that the RF
energy-per-bit affects the right part of the curve and therefore
reduces the achievable region. This figure exhibits the exis-
tence of a unique minimal energy solution, which limits the
Pareto set to solutions with higher energy consumption.
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Fig. 1. Shannon’s theoretical bound delimits the achievable region (above
the curve) and represents the evaluation of the set of Pareto optimal solutions
for energy/latency minimization. The RF energy consumption Eδ strongly
affects the low energy region, and reveals an energy optimum point.

IV. LOW RATE MULTI-HOP OPTIMIZATION

The previous section just revisited Shannon’s well-known
limit which is hereafter extended to the case of a multi-hop
transmission. The problem is now to find what are the relay
positions and their respective transmission powers achieving
a Pareto optimal efficiency with respect to latency and energy
criteria. This problem has been partially studied in [11] but
only for specific transmission conditions where a link is char-
acterized by its packet error rate and not its capacity. We here
broaden the proposed formulation to a more general channel
capacity model, allowing to derive an analytic expression of
the optimal SNR. A similar problem has also been studied
in [10] but the authors studied the case of fixed relays where
only transmission powers can be optimized. They also consider
the problem of energy minimization but without accounting
for any latency constraint. Further, their optimal solutions are
derived for specific scenarios while we concentrate on giving
an asymptotic optimal solution.

A. Theoretical Pareto front

Let’s consider that an information quantity Qi has to be
transmitted over a very long distance and that we are free to
choose the number and the location of the relays in order to
optimize the transmission. The objective is to increase as much
as possible the energy/delay feasible region, when compared to
a direct transmission. In a homogeneous environment where
the attenuation is just a function of the transmitter-receiver
distance, the optimal solution corresponds to a regular distri-
bution of the relays [7], [11], [12], providing all relays with
the same power. Therefore, the optimization problem relies
on finding the couple (dh, γe) where dh is the inter-node
distance, and γe the transmission power density. In this section,
the transmission is interference free since the relays do not
transmit simultaneously and a single packet is considered (see
Fig.2).

Energy and latency constraints are now differentiated with
respect to the distance, to obtain an asymptotic model, as

proposed in [12]:

∂Eb(dh, γe) = Eb/dh =
γe + Eδ

dh · c(A0 · d−nh · γe)

∂Db(dh, γe) = Db/dh =
1

dh ·W · c(A0 · d−nh · γe)

(14)

These parametric equations represent respectively the energy
and delay needed to transmit one bit over one meter referred to
as the per-bit-per-meter energy, and the per-meter bit latency,
as a function of (dh, γe). The total latency and per-bit energy
are derived after multiplying with the total distance dtot.

Fig. 2. The first scenario concerns the transmission of a single packet along
a line, with a regular multi-hop approach

The achievable region bound can be assessed from (14).
The problem relies on finding the couples (dh, γe) that are
Pareto optimal. We now change (14) thanks to the attenuation
model given in (1) to work with (γr, γe) instead of (dh, γe).
This simple variable change allows to draw very interesting
conclusions as stated now.

(14) can be rewritten as such:

δEb(γe, γr) =
γe + Eδ

(A0 · γe)1/n
· γ

1/n
r

c(γr)

δDb(γe, γr) =
1

W · (A0 · γe)1/n
· γ

1/n
r

c(γr)

(15)

These equations turn out to be separable with respect to γe
and γr, i.e. δEb(γe, γr) = fE(γe) · gE(γr) and δDb(γe, γr) =
fD(γe) ·gD(γr). Further, highlighting that gE and gR are both
equal to g(γ) = γ1/n

c(γ) , leads to the following theorem:
Theorem 1: In a homogeneous environment characterized

by a power-law attenuation (1) and a capacity function c(γr)
monotonically increasing, a regular linear network is Pareto
optimal with respect to energy and latency if and only if :

γ̂r = arg min g(γ) (16)

γ̂e ≥
Eδ
n− 1

(17)

If c(γr)/c′(γr) is monotonous, the solution of (16) is unique.
Proof: First, the cost functions are separable with respect

to γr and γe. Second, γr and γe are independent because the
inter-node distance is not fixed. Since gE() and gR() are equal,
the joint minimization of (15) with respect to γr is achieved
only when g(γr) is minimal, which prooves (16).

Concerning (17), the achievable bound varies with different
parameters (e.g. Eδ, n, ...) but always looks like the curve in
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Fig.1. Thus, due to circuit energy, a minimal energy point
exists. Therefore, the Pareto optimal set corresponds to the part
of the achievable bound that is on the left of the minima, since
on the right, both energy and latency increase. The minima
correspond to γ̂e = arg min fE(γe).

This result asserts that any solution on the Pareto front is
obtained by jointly tuning γe and dh to maintain γ̂r constant.
Therefore, the inter-node distance dh can be used as a tunable
parameter to fit with transmitter and receiver SNR constraints.
Energy and latency are then balanced thanks to γe. A corollary
of the previous theorem follows:

Theorem 2: In a homogeneous environment characterized
by (1) and a capacity function c(γr) monotonously increasing,
a regular linear relaying network is Pareto optimal with respect
to energy and delay if and only if γe and dh are related by:

dnh =
A0

γ̂r
· γe;∀γe ≥

Eδ
n− 1

(18)

Proof: Since γr is constrained by theorem 1, theorem 2
follows from (1).

B. Energy minimization

The minimal per-bit-per-meter energy corresponding to γ̂e
is given by :

∂Eb =
n · g0

(n− 1)(n−1)/n
·
E

(n−1)/n
δ

A
1/n
0

(19)

where g0 = g(γ̂r). One can highlight that the minimal per-bit
energy depends only on the pathloss coefficient and the circuit
energy. The corresponding per-meter bit latency is :

∂Db =
(n− 1)1/n · g0
W · (A0)1/n

· E−1/nδ (20)

Fig. 3. Optimal SNR γ̂r as a function of the pathloss coefficient, and
computed with the fixed point method which converges in a few iterations.

C. Application to Gaussian channels

Results can be evaluated for an ideal Gaussian chan-
nel.Solving (16) leads to:

nγr = (1 + γr) · log(1 + γr) (21)

The solution exists, is unique and is only a function of the
pathloss coefficient n as shown in Fig.3. For instance, n = 3,
γ̂r = 6.5dB corresponds to g0 = g(γ̂r) = 0.67. The minimal
energy is ∂Eb = 1.266 ·E2/3

δ /A
1/3
0 . The achievable region is

depicted in Fig.4.

Fig. 4. The Shannon’s based frontier for the achievable region is represented
for A0 = 1, n = 3 and for different circuit energy values

V. HIGH RATE MULTI-HOP OPTIMIZATION

In the previous scenario, a relay transmits only one after
the other and thus the capacity tends to 0 for an infinite linear
network. Now, a continuous data flow transmission (see Fig.5)
is studied thanks to a spatial re-use policy. We here aim at
getting a picture of the compromises existing between the per-
bit-per-meter energy, the per-meter bit latency and the capacity
of the system.

Fig. 5. The second scenario corresponds to a transmission of a continuous
flow along an infinite linear network using a regular spatial multiplexing

A. Problem formulation

Without loss of generality, let’s consider a TDMA multi-
plexing scheme using k slots. The new optimization problem
relies on finding the set of triplets (k, γe and γr) that achieves
a Pareto optimal solution with respect to energy, latency and
capacity.

For the link capacity, SINR ΓI now replaces γr:

ΓI =
γr

1 + I(k) · γr
, (22)

where I(k) is the relative received interference (see Fig.6)
given by [7]: I(k) =

∑∞
i=−∞ βi(k). From simple geometric

rules, one have:

I(k) =

∞∑
i=1

(
(i · k − 1)−n + (i · k + 1)−n

)
(23)
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The first and second terms in the sum correspond respectively
to the forward and backward interference. A coarse approx-
imation of (23) will be used for the sake of simplicity by
considering only the first k interfering signal, i.e. I(k) >
(k − 1)−n. The link capacity as a function of γr is obtained
by putting (22) in c(x):

c(k)(γr) = c(
γr

1 + I(k) · γr
) (24)

The system of equations (15) of Section IV still holds
for the energy/latency trade-off and when there is no capac-
ity constraint, the Pareto bound is achieved when γ̂

(k)
r =

arg min g(k)(γr).
The multi-hop capacity of the system is:

Cmh(γr, k) =
c(k)(γr)

k
(25)

The maximal capacity is obtained for an infinite power:

C∞(k) = lim
γr→∞

Cmh(γr, k) = c(I(k)−1) (26)

which can be bounded by C∞(k) < c(1+(k−1)n)
k , thanks to

the first order approximation of I(k).

Fig. 6. The interference strength relies on the re-use factor in a periodic
structure.

B. Optimization with a constant re-use factor

Let’s now study how to trade between capacity, latency and
energy for a specific re-use factor k.

Theorem 3: In a homogeneous environment characterized
by (1) and a capacity function c(γr), the Pareto optimal
solutions with respect to capacity, energy and latency for
a given re-use factor k > 1 are defined by the following
constraints :
• the received SNR verifies: γ̂(k)r < γr <∞,

with γ̂(k)r = arg min g(k)(x) = x1/n/c(k)(x)
• the transmitted power density γe verifies : γe ≥ Eδ/(n−

1).
Proof: First, note that capacity only depends on the

received SINR ΓI and is not affected by the couple (dh, γe) if
(18) is fulfilled. Obviously, the higher γr, the higher ΓI and the
higher the capacity. On the contrary, γr should be kept close to
γ̂r to cope with energy/latency constraints. Thus, γr allows to
balance between capacity and energy/latency. For γr < γ̂r the
solution is not Pareto optimal since capacity decreases while
energy and latency increase.
Second, (γe, dh) values do not affect the capacity and can be
used to balance latency and energy only. Note that the receive
SINR ΓI is bounded by γ̂r/ (1 + (k − 1)−n · γ̂r) < ΓI <
(k − 1)n

Note that the optimization problem was shown separable with
respect to γe and γr. Besides, without latency constraint,
the optimal transmitted power and inter-node distance are

respectively γ̃e = Eδ
n−1 and d̂h =

(
A0·γ̃e
γ̃r

)1/n
Thus, all

energy/capacity optimal solutions are achieved with the same
transmission power which means that adapting the node den-
sity instead of the transmission powers is the optimal strategy.

The two extrem cases corresponding to the minimal energy
solution and to the maximal capacity are:

a) minimal energy solution: The minimal per-bit-per-
meter energy is obtained for γr = γ̂

(k)
r and is proportional

to g(k)0 :

∂Eb =
n · g(k)0

(n− 1)(n−1)/n
·
E

(n−1)/n
δ

A
1/n
0

(27)

The corresponding capacity is Cmh(γ̂
(k)
r , k).

b) maximal capacity solution: The maximal capacity
C∞ (as defined in (26)) is achieved for an infinite SINR, and
corresponds to an infinite per-meter-per-bit energy.

Fig. 7. Maximal capacity in bit/Hz in a Gaussian channel as a function of
the attenuation factor n and the re-use factor k

C. Re-use factor optimization for Gaussian channels

The optimal re-use factor is the one corresponding to the
maximal capacity under a given energy/latency constraint. We
first consider the capacity bound C∞(k) < c(1+(k−1)n)

k which
is a ratio of two mononitically increasing functions and the
optimal value depends on the capacity function ( see Fig. 7 ).
This plot represents the maximal capacity that can be achieved
with a non-limited transmission power. In a Gaussian channel,
the optimal solution is k ∈ {4, 5}. Now the capacity objective
has to be balanced with the energy/latency objectives.

From our previous analysis, the minimal SINR that allows
to reach the energy/latency Pareto front is known but leads
to a sub-optimal capacity Cmh(γ̂

(k)
r , k). This trade-off is

illustrated on Fig.8 for a pathloss exponent n = 3. The
achievable region bound between energy/latency and capacity
is represented through g(γr) and Cmh(γr, k). The highest
capacity is achieved for k = 5 but for a high SNR. We see
on this figure how increasing k allows to decrease g

(k)
0 at

the price of a reduced capacity. From k = 2 up to k = 5,
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the achievable region increases significantly. For higher k
values, the achievable region shifts to the left and thus favors
energy/latency upon capacity. As a conclusion, we show that
for n = 3, the smaller re-use factor is k = 5. When the energy
constraint is very strong, k can be increased up to 10, but leads
to a capacity loss of about 60%. Note that the minimal per-
bit-per-meter energy is equal to the one computed with no
multiplexing.

Fig. 8. The achievable region in terms of capacity vs energy/latency is given
for different re-use factors. The highest capacity is achieved for k = 5.

VI. CONCLUSION AND DISCUSSIONS

In this paper, we derived a general approach to analyze
how energy, latency and capacity are linked together. We have
first evaluated the energy/latency trade-off for a single packet
transmission over a regular linear network and derived optimal
transmission power and inter-node distance accordingly.

From a practical point of view, we have proved that all
optimal solutions with respect to latency and energy are
achieved for a constant received SNR γ̂r that is related to the
capacity function and the path-loss coefficient only. On the
other side, the optimal transmission power is obtained as a
function of the circuit energy. The inter-node distance is then
chosen to comply with the transmitting and receiving SNR
constraints.

We have also extended this framework for a continuous
flow by introducing a re-use factor. We have obtained the
optimal re-use factor and derived the Pareto bound with respect
to the three constraints of energy, latency and capacity. We
proved that Pareto optimal solutions with respect to energy
and capacity are obtained for a constant transmission power
that is related to the circuit energy and the pathloss coefficient
only. Then, the received SNR and the re-use factor k are
set to fulfill a target capacity constraint, and the inter-nodfe
distance is again used to comply with both sides constraints.
The knowledge of the optimal inter-node distance can be
exploited in real deployments, to optimize the nodes’ density
and thus to ensure a good probability of having some nodes
at a right distance, or to define a good wake-up policy for a
dense network.

These results claim that an optimal routing approach in
a wireless sensor network, whatever the optimization con-
straints, should be rather based on selecting the relays located
at the optimal inter-node distance, instead of changing the
transmission powers if the environement is homogeneous.
Further, it seems that controlling the received SINR to be con-
stant is probably very efficient to comply with inhomogeneous
environments.

These results are very complementary to those obtained
previously in [7] and offer a very comprehensive framework
to represent the performance of relaying approaches. Future
works could propose to evaluate other relaying strategies
within the same multi-objective framework such as:
• Interference mitigation or avoidance techniques can be

evaluated by removing the forward interference in 23 [7].
• Amplify-and-Forward could be introduced in the model

to allow several nodes on the line to cooperate.
• virtual MIMO techniques could be considered.
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