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ABSTRACT
In this paper, we argue that the ability to accurately spot random
and social relationships in dynamic networks is essential to net-
work applications that rely on human routines, such as, e.g., op-
portunistic routing. We thus propose a strategy to analyze users’
interactions in mobile networks where users act according to their
interests and activity dynamics. Our strategy, namedRandom rE-
lationship ClASsifier sTrategy (RECAST), allows classifying users’
wireless interactions, separating random interactions from differ-
ent kinds of social ties. To that end, RECAST observes how the
real system differs from an equivalent one where entities’ decisions
are completely random. We evaluate the effectiveness of the RE-
CAST classification on real-world user contact datasets collected in
diverse networking contexts. Our analysis unveils significant dif-
ferences among the dynamics of users’ wireless interactions in the
datasets, which we leverage to unveil the impact of social ties on
opportunistic routing.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data
Mining; I.6.4 [Simulation and Modeling]: Model Validation and
Analysis

Keywords
dynamic social networks; edge classification

1. INTRODUCTION
Recent studies have analyzed data generated from mobile in-

dividuals in urban regions, such as cab drivers in San Francisco
(USA) [1] or students in large campuses [2, 3]. Particular attention
has been paid to the dynamics of user movement, whose real-world
complexity cannot be fully captured through synthetic models. In-
deed, understanding user mobility is of fundamental importance
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when designing new communication protocols that exploit oppor-
tunistic encounters among users. In this case, the problem mainly
lies in correctly forecasting future contacts. To that end, the regu-
larity of daily activities comes in handy, as it enforces periodic (and
thus predictable) space-time patterns in human mobility [4]. Build-
ing on such a feature, protocols have been designed to estimate the
potential of mobile users to act as data forwarders, mainly leverag-
ing complex network analysis metrics such as centrality measures.

Although human behavior is characterized by an elevated rate of
regularity, random events are always possible in the routines of in-
dividuals. Those are hardly predictable situations that deviate from
the regular pattern and are unlikely to repeat in the future; they
originate from the fact that users are reasonable beings, whose con-
nections represent decisions they take based on their personal mo-
tivations [5], which may also change over time. We refer to contact
networks deriving from systems where users are reasonable beings
asDynamic Complex Wireless Networks (DCWN). For instance, a
contact network composed of wireless hand-held devices is a clear
example of DCWN, since the user mobility creates neither purely
regular nor purely random connections among the entities compos-
ing the network.

The random events in DCWNs veil the ordinary patterns by in-
troducing a significant amount of noise, thus making the process
of knowledge discovery in such datasets a complex task. There-
fore, the ability to accurately identify random and social events in
DCWNs is essential to social analysis and to applications that rely
on a precise description of human routines, such as recommenda-
tion systems, forwarding strategies and opportunistic dissemination
protocols.

In this paper, we propose aRandom rElationship ClASsifier
sTrategy (RECAST)to classify relationships among users so as to
spot contacts due to random events in DCWNs. To that end, RE-
CAST examines how the real system would evolve if users’ deci-
sions were random. More precisely, we use the temporal graph
originated from the real network dataset and a random counter-
part of the same to tell apart edges representing random events
from those created by actual social relationships, such as friend-
ship or professional interactions. RECAST has a single and intu-
itive parameter, which makes it preferable to conventional methods
for filtering and cleaning social network data that require arbitrary
thresholds, many parameters, and often a deep knowledge of the
system.

In summary, the contribution of this paper is threefold:



• We introduce RECAST, a simple yet very effective way of
classifying wireless contacts by leveraging metrics that re-
flect two major features of social networks: frequent user
encounters and shared acquaintances.

• We unveil the large differences among contact datasets, and
claim that conclusions drawn from evaluating a single dataset
should not be generalized; rather, the validation of network-
ing protocols or services has to consider different types of
datasets.

• We show that the knowledge of the wireless relationship a
pair of users share can be leveraged for the design of oppor-
tunistic routing schemes.

The paper is organized as follows. Section 2 discusses the re-
lated work. Section 3 details the design behind RECAST. Section 4
shows how we model real-world network traces into complex tem-
poral networks. Section 5 details the RECAST implementation.
Section 6 shows how RECAST can improve opportunistic routing
solutions. Finally, conclusions are drawn in Section 7.

2. RELATED WORK
Social network analysis builds on the high predictability of hu-

man behaviors [6], which are mostly driven by regular, routine
activities. As a consequence, connections among social network
nodes can be modeled by mechanisms such as preferential attach-
ment [7] and triangle formation [5], that leverages the existence of
communities or highly connected hubs [8] in the network. This
makes social networks different from random ones, such as the
Erdős and Rényi network [9], where node connections are purely
stochastic, being determined by a constant probability.

Given this predictability, social ties have been widely exploited
in opportunistic mobile networks so as to favor network services.
The considered problems range from multi-hop message forward-
ing [10] and multicasting [11], to network security [12]. To the
best of our knowledge, the works of Miklas et al. [13] and Zyba et
al. [14] are those most closely related to ours. These studies differ
in that they classify eitherusersor their interactions(i.e., vertices
and edges in the social graph), respectively. Zyba et al. distinguish
social and vagabond users according to their social mobility behav-
ior. They analyze regularity of appearance and duration of visits in
a given area of traces to sort out users. Hence, the resulting classi-
fication only works on a per-individual per-area basis. Miklas et al.
classify links between friends and strangers. They assume that fre-
quent pairwise node encounters represent friendship interactions,
and empirically decide that pairs of users meeting 10 days or more
out of 101 days are friends, whereas others are strangers.

Overall, our work extends the investigations in [13, 14] in the
following ways. First, we propose a finer grained classifier, able not
only to clearly characterize random interactions, but also to identify
different kinds of social interactions:Friends, Acquaintancesand
Bridges. As such, we go a step further than [13] as we are able to
identify edges corresponding to, e.g.,familiar strangers, as defined
by Milgram [15]: indeed, the users sharing a bridge interaction
repeatedly encounter but may never experience an explicit social
relationship. In addition, unlike the proposal by Zyba et al. [14],
our strategy has no geographical dependency, i.e., it is of general
validity.

3. RATIONALE
We consider social networks composed of individuals who are

wirelessly connected over time. Such wireless encounters in these

networks are driven by behaviors that tend: (i) to be regular and to
repeat periodically; (ii) to build persistent communities of individu-
als or to generate commons acquaintances between them. The clas-
sification strategy we present in this paper leverages these two be-
haviors to efficiently distinguish social from random encounters in
DCWNs. In the following, we detail our methodology and present
the real world datasets considered in our analysis.
Social vs. random interactions: In DCWNs, interactions among
the system entities are usually a consequence of semi-rational deci-
sions. We say “usually” and “semi-rational” decisions because any
system is subject to random events and irrational choices. Never-
theless, because most of the interactions still arise from conscious
decisions made by their entities, the evolution of DCWNs is sig-
nificantly different from the evolution of random networks, e.g.,
Erdős and Rényi networks [9]. Indeed, while in DCWNs the edges
are created from semi-rational decisions, which tend to be regular
and to repeat over time, in arandom network the edges are cre-
ated independently of the attributes of the network entities, i.e., the
probability of connecting any two entities is always the same.

More formally, an individual may execute asocial decision, or
a random decision. Intuitively, if its probability of performing a
social decision is greater than its probability of a random one, the
network evolves to a well-structured social network. If the opposite
it true, the network evolves as a random network, such as the Erdös
and Rényi one.
Differentiating social from random network : The second ma-
jor feature of DCWNs that we exploit in our study is the presence
of communities, i.e., groups of individuals who are strongly con-
nected to each other because they share the same interests or ac-
tivity dynamics [5]. In contrast, communities can not be found
in random networks where, as previously stated, edges are created
stochastically and independently of the attributes of each node.

The network clustering coefficient has been widely used to dis-
criminate random from social networks. Given an undirected graph
G(V,E) (whereV represents the set of network graph nodes, e.g.,
individuals, andE is the set of links describing relationships among
entities, e.g., contacts among individuals), the clustering coeffi-
cient cci measures the probability that two neighbors of a node
i are also connected among them. Formally, it is calculated as
cci = 2|Ei|/|Ni|(|Ni| − 1), whereNi is the set of neighbors ofi,
Ei is the set of edges between nodes inNi and| · | is the cardinality
of the included set. The clustering coefficientcc of the whole net-
work is the average of all node clustering coefficientscci, ∀i ∈ V .

By introducing the equivalent random networkGR as the ran-
dom network constructed with the same number of nodes, edges
and empirical degree distribution of its real world counterpartG,
Watts and Strogatz [16] show that the clustering coefficient of a
social networkG is one order of magnitude higher than the clus-
tering coefficient ofGR. Thus, when a given networkG exhibits
a clustering coefficient that is significantly (i.e., orders of magni-
tude) higher than that of its random equivalentGR, then we can
state that (part of) the decisions made by the entities that compose
the network graphG are non-random.
Real-world DCWN datasets: Our evaluations are performed on
three real-world datasets (also referred to astracesin the following)
that describe movements of entities in campus and city scenarios.
The Dartmouth dataset [3] is a mobility trace of more than1, 000
individuals in the university campus, recorded over eight weeks us-
ing WiFi network access information. The USC dataset [2] is also
a mobility trace in a campus scenario, comprising movement infor-
mation of more than4, 000 individuals over eight weeks, again col-
lected through WiFi access. Finally, the San Francisco dataset [1]
contains records of the mobility of551 taxis in San Francisco, CA,



USA, over one month, gathered through GPS logging at each cab in
the urban area. For both the Dartmouth and USC traces, two indi-
viduals are assumed to generate a contact if they are using the same
WiFi access point to connect to the wireless network on campus. In
the San Francisco trace, two taxis are in contact if their distance is
lower than250 meters. Extensive experimental analysis in [17]
shows that a distance of250m grants a50% packet delivery ratio
in urban environments, under common power levels (15-20 dBm)
and with robust modulations (3-Mbps BPSK and 6-Mbps QPSK).
In all cases, the contact events between two individuals are traced
using start date of contact and its duration. Table 1 summarizes the
features of the different datasets.

4. MODELING
This section introduces the basic operations performed on the

dataset before RECAST is executed. Section 4.1 shows how we
model the dynamic DCWN as a temporal aggregation graph. Sec-
tion 4.2 details the algorithm we employ to obtain the equivalent
random graph of a given temporal aggregation graph, and discusses
how these two graphs compare in terms of clustering coefficient.

4.1 Temporal Aggregation Graph
As previously discussed, the datasets we employ list contacts

among individuals or vehicles, and associate to each encounter a
start time and a duration. In order to generate the temporal graph,
we discretize time into steps of durationδ 1, and represent all the
encounters occurring at time stepk as a graphGk(Vk, Ek). The set
of verticesVk is composed of all network nodes (i.e., individuals
or vehicles) involved in a contact during thek-th time step, while
the edges in the setEk represent the pairwise contacts during the
same time step. Therefore, an edge between two nodesi and j,
with i, j ∈ Vk, exists inEk if i andj have met during time stepk.

We can then define a time varying representation of the DCWN
using a temporal accumulation graphGt = (Vt, Et). Formally,
Gt = {G1 ∪ G2 ∪ ... ∪ Gt}. As such,Vt (respectivelyEt) is
the set of all vertices (edges) that appeared in the dataset between
time 0 and time stept included. Note thatGt evolves over time
and aggregates all the contacts in the dataset, thus comprising both
social encounters and random encounters between network entities.

4.2 Comparison with Random Graphs
The first step to analyze the mobility patterns of the temporal

accumulation graphGt is to build its random versionGR
t . The

latter must feature similar topological characteristics as the original
Gt graph, i.e., the same number of nodes, edges, and empirical
degree distribution. That way, the only difference betweenGt and
GR

t lies in the way nodes are connected to each other. While inGt

the nodes connect in a “semi-rational” way, inGR
t the connections

happen in a purely random fashion. As we will show later, this
difference can be leveraged to accurately determine the extent of
randomness in the mobility of individuals in DCWNs.

We use two algorithms to to generateGR
t from Gt. The first

algorithm, which we will callRND, is well known in the net-
work science community [18]. The algorithmGR=RND (G) re-
ceives a graphG(V,E) as a parameter and returns a random graph
GR(V,ER) with the same topological characteristics asG, i.e.,
the same number of nodes, number of edges and degree distribu-
tion. In this way, we guarantee that the only difference between
the real graphG andGR is to whom each node connects, that is
the focus of our analysis. Thus, given the degree distributionD =

1In our study, we considered a duration ofδ = 1 day, since the data
sets originate from human activities that feature daily routines.

(d1, d2, . . . , dn) of G with n nodes, this algorithm assigns an edge
between nodesi andj with probabilitypij = (di×dj)/

∑|V |
k=1 dk.

The second algorithm, which we callT-RND, is an extension
of RND and is able to generate random graphs from a temporal
networkGt. As mentioned in Section 4.1, the temporal aggre-
gation graphGt = {G1 ∪ G2 ∪ . . . ∪ Gt} is the union of event
graphsGt. Thus, the algorithmGR

t =T-RND (G1,G2, . . . ,Gt) re-
ceives as parameters a set of consecutive event graphsGt and re-
turns a random temporal graphGR

t . It constructsGR
t by executing

RND in each event graphGt and then aggregating it in a way that
GR

t = {RND(G1)∪RND(G2)∪ . . .∪RND(Gt)}. In summary, both
RND andT-RND randomly replicate the total number of contacts
with distinct persons each individual had in a given time snapshot.

We first demonstrate the analytical power of random comparison
in Figure 1, where we show the behavior of the clustering coeffi-
cient for graphsGt andGR

t over time for the three analyzed net-
works. As we have previously mentioned, the clustering coefficient
is a good metric to differentiate social networks from random net-
works. As we observe in Figure 1-a, for the Dartmouth dataset,
the clustering coefficient ofGt andGR

t are different in orders of
magnitude over the first days. However, as time goes by, their val-
ues get closer, as random encounters grow in number and tend to
veil the social network structure. On the other hand, as we see in
Figure 1-b, the clustering coefficients ofGt andGR

t for the USC
dataset are almost constant over time. However, the difference be-
tween them is not exceedingly high, since they have the same order
of magnitude. We discuss these differences in detail later on.

Finally, as we observe in Figure 1-c, the clustering coefficients
of the San Francisco networks are practically the same, being close
to 1. In fact, after a few hours, the network becomes similar to
a clique, indicating a global high mobility, allowing each individ-
ual taxi encountering most of the other taxis at some point of the
day. Formally, this indicates thatGt andGR

t are very similar for
the San Francisco dataset, i.e., the probability of random encoun-
ters is much higher than the probability of social contacts, what
makes the San Francisco network similar to a random mobile net-
work. This makes sense since taxis’ decisions depend on occa-
sional customers’ requests rather than on routine mobility patterns
of the driver.

5. CLASSIFIER
In this section, we describe theRandom rElationship ClASsi-

fier sTrategy (RECAST)we propose to differentiate relationships
among individuals in a social network. More precisely, the purpose
of RECAST is to tell apart random interactions from social-driven
ones. To that end, Section 5.1 presents the DCWN features used
by RECAST. Then, Section 5.2 introduces the RECAST algorithm
and, finally, Section 5.3 discusses the results obtained by applying
RECAST to the previously introduced datasets.

5.1 Social Networks Features
In order to identify social relationships, we must point out which

features distinguish a social relationship from a random one. In-
deed, two characteristics are always present in social relation-
ships [19]:

1. Regularity. It is well known that social relationships are
regular, in that they repeat over time. If two individuals are,
for example, friends, co-workers, or daily commuters, they
see each other regularly.

2. Similarity . It is expected that two individuals who share
a social relationship have common acquaintances between



Table 1: Datasets used in the presented investigations.
Dataset Local Number of entities Duration Entities type Avg. # encounters/node/day

Dartmouth [3] University campus 1156 2 months Individuals 145.6
USC [2] University campus 4558 2 months Individuals 23.8

San Francisco [1] City 551 1 month Cabs 834.7
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Figure 1: Evolution of the clustering coefficient in theGt of the three datasets, and in their random equivalentsGR
t .

them. As an example, two individuals who share a large
number of friends will most probably know each other as
well.

Regularity andSimilarity can be mapped into DCWN features
that, in turn, can be computed from a contact dataset so as to iden-
tify what kind of relationship two individuals share. In the follow-
ing, we discuss such features.

5.1.1 Edge Persistence
A complex network metric mapping of theRegularity of a re-

lationship is the edge persistence. Basically, considering the set of
event graphs{G1, . . . ,Gt}2, the edge persistencepert(i, j) mea-
sures the percentage of times the edge(i, j) occurred over the
past discrete time steps1, 2, . . . , t. Formally, it is defined as
pert(i, j) = 1

t

∑t

k=1 [(i,j)∈Ek], where [(i,j)∈Ek] is an indica-
tor function that assumes value1 if the edge(i, j) exists inEk at
timek, and0 otherwise.

For instance, assuming that each day of the week is a time step, if
Smith and Johnson met each other twice in a week, their edge per-
sistence is the number of times they encountered, i.e., 2, divided by
the total number of time steps, i.e., 7, orpert=7(Smith, Johnson) =
2/7. The edge persistence allows spotting regular relationships be-
tween two entities.

We show in Figure 2 (first column) the edge persistence as
measured in the three datasets. Considering the set of event
graphs{G1, ...,Gt} of all three real networks and theirRND-
generated random counterparts3 {RND(G1), ...,RND(Gt)}, we por-
tray the complementary cumulative distribution function (CCDF)
F per(i,j)(x) = P [pert(i, j) > x]. There, the time step is one day
and each curve is obtained by analyzing four weeks of contacts,
sincet = 28 corresponds to the length of the shortest considered
dataset, i.e., the San Francisco one. From Figures 2-a and 2-c, we
observe that the Dartmouth and USC networks have edge persis-
tence distributions that significantly differ from those computed in
their random equivalents. More precisely, while the CCDFs of ran-
dom networks show an exponential decay, the individuals in the

2Note that edge persistence is computed over the set of graphsGt
and not over the temporal accumulation graphGt.
3We generated five instances for every random graph and the cu-
mulative distribution considers all of them.

real network tend to see each other regularly, i.e., for reasons be-
yond pure randomness, leading to a heavy-tailed distribution. Con-
versely, as from Figure 2-e, the encounters in the San Francisco
dataset show an edge persistence similar to that obtained in the ran-
dom equivalent graphs.

5.1.2 Topological Overlap
The Similarity of contacts can be mapped to the topological

overlap feature of a complex network. This metric is extracted
from the aggregated temporal graphGt. The topological overlap
tot(i, j) of a pair of nodesi andj is defined as the ratio of neigh-
bors shared by two nodes, or, formally,

tot(i, j) =
|{k | (i, k) ∈ Et} ∩ {k | (j, k) ∈ Et}|

|{k | (i, k) ∈ Et} ∪ {k | (j, k) ∈ Et}|
.

In Figure 2 (second column), we show the CCDFF to(i,j)(x) =
P [tot(i, j) > x] of the topological overlap of the edges of the
real networksGt and their respective random networksGR

t , gen-
erated by theT-RND mechanism4. Again, we pick one day as the
time step and consider four weeks of contacts (i.e.,t = 28 days).
Similar to what occurred to the edge persistence, we note that the
Dartmouth and USC network CCDFs significantly differ from their
random counterparts, in Figures 2-b and 2-d. Indeed, pairs of indi-
viduals in these datasets share common neighbors in a way that
could not happen randomly. Conversely, in Figure 2-f, the San
Francisco network again behaves like a random contact network.
Since all results indicate that the San Francisco network is random
by nature, in the remainder of this work we will focus on the Dart-
mouth and the USC datasets.

5.2 The RECAST algorithm
We have seen that both the edge persistence and the topological

overlap behave differently in contact graphs generated from real-
world social networks and in their random equivalent graphs. We
exploit such a diversity to identify which edges are consequences
of random or social events. In particular, we propose a classifica-
tion of relationships among network entities into four categories,
depending on whether the edge corresponding to the relationship
features random-like persistence and topological overlap. The four

4Again, we generated five instances for every random graph and
the cumulative distribution considers all of them.
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Figure 2: The complementary cumulative distribution function
of the edge persistence (a)(c)(e) and topological overlap (b)(d)(f)
for the Gt of the three datasets and for their random correspon-
dentsGR

t after four weeks.

classes of relationships are described in Table 2. A feature value
is called “social” if there is an almost zero probability of this value
being generated randomly. On the other hand, a feature value is
called “random” if there is a significant probability of this value be
generated randomly. In fact, as we explain in the following para-
graphs, the unique parameterprnd of RECAST defines if a given
feature value is social or random.

Table 2: RECAST relationships classes.
Class Edge persistence Topological overlap

Friends social social
Acquaintance random social

Bridges social random
Random random random

Relationships classified asFriendscharacterize pairs of individ-
uals whose connection shows social edge persistence and topolog-
ical overlap, i.e., who meet each other regularly and also tend to
know the same people5. TheAcquaintanceclass includes relation-
ships among individuals sharing many common encounters, but not
meeting often. As an example, friends of friends who see each

5It is worth mentioning that, although thefriend terminology im-
plies attachment among two individuals by affection or personal
regard, we use it here to describe strong social ties in terms of reg-
ularity and similarity.

other once in a while, in occasions such as birthday parties, gradua-
tion ceremonies or weddings, would be classified asAcquaintance.
The last social class is that ofBridges, characterizing pairs of in-
dividuals who see each other regularly, but do not share a large
number of common acquaintances. E.g., the so-called familiar
strangers, people who meet every day but do not really know each
other (e.g., because they just commute between common home and
work areas) are very likely to be classified asBridges. Finally,
when an edge is neither persistent nor characterized by topologi-
cal overlap, it is considered the result of a random contact, and we
classify it asRandom.

In order to distinguish “social” from “random” values of the
DCWN’s features, we resort to the distributions we previously dis-
cussed. More precisely, we define a valueprnd, the only param-
eter in RECAST, and we identify the feature valuex̄ for which
F (x̄) = prnd for the random networkGR

t . The valuēx represents
then a threshold, such that feature values higher thanx̄ occur with
a probability lower thanprnd in a random network. If we setprnd

to some small value, we can finally state that feature values higher
than x̄ are very unlikely to occur in a random network, i.e., they
are most probably due to actual social relationships. The parameter
prnd can also be seen as the expected classification error percent-
age. For instance, in Figure 2-a, considerprnd = 10−3. This gives
a threshold̄x = 0.17, then all values higher than̄x = 0.17 will be
classified as social. However, there is aprnd = 10−3 probability of
randomly generating values that RECAST classified as social edges
(i.e., false positives). In other words, we expect that10−3 = 0.1%
of the edges classified as social to be, in fact, random. The full RE-
CAST mechanism is described in Algorithm 1, where the criteria
used in each classification are detailed. In this algorithm, indext is
omitted forper andto metrics for clarity purposes.

Algorithm 1 RECAST: classify edges ofGt

Require: prnd ≥ 0
return class(i, j) ∀(i, j) ∈ ∪tEt

ConstructGR
t and set{RND(G1), ...,RND(Gt)} usingT-RND

GetF to(x) andF per(x) fromGR
t

Getx̄to | F to(x̄to) = prnd andx̄per | F per(x̄per) = prnd

for all edges(i, j) ∈ Et do
if per(i, j) > x̄per andto(i, j) > x̄to then

class(i, j)← Friends
else ifper(i, j) > x̄per andto(i, j) ≤ x̄to then

class(i, j)← Bridges
else ifper(i, j) ≤ x̄per andto(i, j) > x̄to then

class(i, j)← Acquaintance
else

class(i, j)← Random
end if

end for

The complexity of RECAST is upper bounded by the construc-
tion of GR

t using T-RND, which is O(t × (|Vt| + |E
R
t |)), i.e.,

the minimum complexity for the generation of a degree sequence-
based random graph available to date [18]. After the construc-
tion of GR

t , the complexity of the classification mechanism is
O(|ER

t | × |Vt|), whereO(|Vt|) is the cost of computing the topo-
logical overlap of an edge.

5.3 Classification results
We apply RECAST to the Dartmouth and the USC networks.

We are omitting the results for the San Francisco dataset, since,
as previously stated, the random-like nature of taxi routes makes
the analysis uninteresting, with all edges classified asRandom. In
Figure 3, we show the number of edges per class as a function of
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Figure 3: The number of edges (a)(b) and percentage of en-
counters (c)(d) of a given class that appears in the first four
weeks of data versusprnd.

theprnd value. An initial and quite surprising observation is that,
by varyingprnd through four orders of magnitude, the number of
edges per class stays in the same magnitude. This shows that RE-
CAST is robust with respect toprnd, i.e., it does not need a fine
calibration of the parameter to return a consistent edge classifica-
tion.

Secondly, in both datasets, the number ofBridges is orders of
magnitude lower than the other classes, a clear indication that in the
analyzed social networks regular connections among different com-
munities are rare. Also the number ofFriendsedges is similar in
the two networks, implying similar dynamics in tight relationships
among individuals in the two campuses. This also agrees with the
biological constraint on a social interaction that limits human so-
cial networks’ size, i.e., the number ofFriendsrelationships [20].
However, the two datasets differ when looking at the number of
edges classified asAcquaintancesandRandom, that are one order
of magnitude larger in USC than in Dartmouth. This is the result of
the actual size of the two campuses, USC accounting for a popula-
tion around ten times larger than that of Dartmouth. This aspect is
also reflected by the size of the traces in Table 1 that clearly leads,
in the USC network, to (i) many moreRandomcontacts among in-
dividuals who do not actually know each other, but just happen to
cross each other while strolling on campus, and (ii) an increased
presence of strangers who happen to know the same people, lead-
ing to moreAcquaintancesedges.

The observations above are even more evident when observing
the percentage of individual encounters of each type in the Dart-
mouth and USC networks. In Figure 3, we show the percentage of
encounters of a given class that appear in the first four weeks of
data for a given value ofprnd. The percentage ofRandomencoun-
ters in the Dartmouth network is close to zero, varying from1.7%
to 3.6% asprnd decreases. On the other hand, in the USC network,
this percentage varies from16% to 29%. In fact, the proportion of
Randomencounters provides a good estimate of the probability of
random decisions mentioned in Section 4. Thus, the USC network
has a significantly higher tendency to evolve to a random topology
than the Dartmouth network.
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Figure 5: Evolution of the clustering coefficient ofGt when only
Random edges are present, compared to their random corre-
spondentsGR

t .

The analysis is confirmed by Figure 4, portraying the snapshots
of the Dartmouth and USC networks after two weeks of interac-
tions, when considering only social edges (i.e., those classified as
Friends, AcquaintancesandBridges) or only edges tagged asRan-
dom. Edges of the former networks in Figures 4-a and 4-c are dis-
tinguished by colors, according to the same code used in Figure 3
(Friendsedges are in blue,Bridgesin red,Acquaintancesin gray,
and Randomin orange). The difference between the social-only
networks and the random-only ones is striking. Social networks
are characterized by a complex structure ofFriendscommunities,
linked to each other byBridgesand Acquaintances. More pre-
cisely, when comparing the Dartmouth and USC social networks,
the former appears to be dominated byFriendsinteractions, while
the sheer number ofAcquaintancesin the latter drives its graph
structure.

Conversely, networks containing onlyRandomedges do not
show any structure and look like random graphs. A rigorous way to
verify the randomness of such networks, and thus validate the effi-
ciency of the RECAST classification, is to perform a clustering co-
efficient analysis. Figure 5 compares the clustering coefficients of
the Dartmouth and USC networksGt when only Random edges are
presentagainst the same metric computed in their random counter-
partsGR

t . The clustering coefficient, commonly employed to deter-
mine the actual randomness of a network, has very similar evolu-
tions inGt andGR

t : this proves that the network of contacts tagged
asRandomby RECAST is actually a random network. Therefore,
RECAST is able to extract from a real-world contact dataset edges
that correspond to random encounters.

6. RECAST APPLICATION
In this section, we use the Dartmouth and USC contact traces

to simulate an epidemic dissemination. We consider that the users
communicate with each other in an opportunistic fashion, i.e., with-
out any infrastructure and exchanging messages only when they are
within physical proximity. Thus, if useri wants to send a message
to userj, he (she) has to deliver it personally toj or has to ask
other users to relay it for him (her), through a multi-hop carry-and-
forward path. Also, we consider the transfer to be epidemic, i.e., in
order to reachj, useri sends a message to all other users he (she)
is in contact with at a given timet. The latter forward it to all of
the users they later meet and so on, until userj is reached. Such an
epidemic approach allows us characterizing the lower bound on the
delay required by the opportunistic transfer.

For both Dartmouth and USC contact traces, we use RECAST to
classify the relationships between users over one month of contact
data, which we refer to as theclassifying stage. Then, we simulate
the opportunistic transfer scenario above during the two following
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Figure 4: Snapshots of the Dartmouth and USC networks after two weeks of interactions, considering only the social edges and only
the random edges.Friends edges are painted in blue,Bridges in red, Acquaintances in gray and Random in orange. This figure is best
viewed in colors.

weeks, termed therouting stage, containing only future encounters,
not known previously by RECAST. For each useri, we randomly
pick a timet0,i within the first week of therouting stagefor him/her
to start the epidemic transfer process, and a destination userj. We
leave one week for the message to reach its destination: if the mes-
sage is not delivered by then, the transfer is deemed failed and the
data lost.

In Figure 6, we show the overall forwarding efficiency. Fig-
ures 6-a and 6-b show the percentage of messages that were suc-
cessfully delivered to their destinations in the Dartmouth and in
the USC scenarios, respectively. Each bar represents one relation-
ship shared by the message source and destination, and within each
bar we depict the fraction of edges of a given class of relationship
that was used to deliver the message. First, we observe that all the
messages reached their destinations in the Dartmouth scenario, a
consequence of the limited network size. Moreover, the edges clas-
sified asFriendswere the most used to deliver the messages and
theRandomones the least used. In fact, considering all the paths
directed toFriends, less than2% of the hops in these paths were
given by users who share aRandomrelationship.

Different from the Dartmouth scenario, not all messages are de-
livered in the USC scenario. The lower delivery ratio is partially
due to the larger network that is harder to navigate. However, that is
not the only reason, and the social relationship between the source
and destination significantly affects the probability of success. So-
cially connected pairs (tagged asFriends, Bridgesand Acquain-
tances) can actually exchange data:90% of the messages were
successfully delivered toFriends, 92% to Bridgesand 77% Ac-
quaintances. If one wants to send a message to aRandomcontact
in the USC scenario, there is only44% of chances that this mes-
sage will arrive successfully. Moreover, although the majority of
the classified edges in the USC scenario areRandom(see Figure 3),
the majority of the hops in the paths are between users who share
a social relationship. Considering all the paths directed toFriends,
less than13% of the hops in these paths were given by users who
share aRandomrelationship.

In Figure 7, we show how much time it was necessary for the
messages to reach their destinations. We grouped together all the
routings from source useri to destination userj by the class of re-
lationshipcthat i andj share. Then, we cumulatively count how
many destinations of the classc are reached per each hour, con-
sidering the total number of routings that were performed between
sources and destinations of classc. Observe that the expected time
to reach aRandomcontact is significantly higher than the time
needed to reach a social contact. Moreover, observe that the ma-
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Figure 6: The forwarding efficiency when useri sends a mes-
sage to userj in the opportunistic network, and i and j share
a specific RECAST relationship. Within each bar we also show
the fraction of edges of a given class of relationship that was
used to deliver the message.
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Figure 7: The% of users who were reached over the time.

jority of the messages sent toFriendsarrive in the first hours for
both scenarios.

It is not only the time it takes for a message to arrive at its des-
tination that is relevant to the design of forwarding solutions for
opportunistic networks. Another fundamental aspect is the number
of hops required to reach the destination. In Figure 7, we show
the cumulative distribution function (CDF) of the path lengths of
messages between usersi andj who share a determined class of
relationship. Observe that the expected number of hops for a mes-
sage to arrive at aRandomcontact is significantly higher than to ar-
rive at a social contact. For the USC scenario,89%, 92% and81%
of the routes toFriend, BridgeandAcquaintancedestinations, re-
spectively, have path lengths lower or equal to3. In the meanwhile,
only 65% of the routes toRandomdestinations have path lengths



10
0

10
1

10
−2

10
−1

10
0

x [path length]

P
r(

X
≤ 

x)

 

 

Friends
Bridges
Acqua.
Random

(a) Dartmouth

10
0

10
1

10
−1

10
0

x [path length]

P
r(

X
≤ 

x)

 

 

Friends
Bridges
Acqua.
Random

(b) USC

Figure 8: The histogram of the path lengths of messages be-
tween usersi and j who share a determined class of relation-
ship.

lower or equal to3. This difference is even more striking for the
Dartmouth scenario, where65%, 57% and28% of the routes to
Friend, Bridge andAcquaintancedestinations, respectively, have
path lengths lower or equal to3, and only6% to Randomdestina-
tions have path lengths lower o equal to3.

Overall, our results show how the RECAST classification allows
identifying those who share social relationships with the sender,
whose opportunistic paths are usually short and reliable. In fact,
such paths usually pass through a few number of hops, mostly us-
ing social ties among users, and rarely leverage random encounters.
As an intuitive corollary, reaching users that share some social re-
lationship is significantly easier than attaining users one does not
know, especially in large systems. These results may serve to lever-
age the performance of various routing solutions for opportunistic
networks. If we previously know the class of relationship the des-
tination share with the source, we also know the chances and the
probable time the message will take to arrive.

7. CONCLUSIONS
The contribution of this paper is threefold. First, we modeled

three real-world mobile user encounter datasets as temporal con-
tact graphs and we proposed the use of random equivalent graphs to
outline their hidden social structure. Our original approach shows
that different mobility traces can yield completely different social
structures, determined by diverse behaviors of the entities partici-
pating in the system. These results let us speculate that researchers
should not generalize their results based on the analysis of a single
dataset. Second, we proposed the RECAST strategy to lazily clas-
sify random and social relationships in temporal social networks,
and demonstrate its simplicity and effectiveness. Third, we em-
ployed the RECAST classification to the case of epidemic oppor-
tunistic transfers, and showed its relevance towards the identifica-
tion of faster, reliable paths leveraging social ties among users.

As future work, we plan to analyze other mobility scenarios,
both real and synthetic. Moreover, it would be interesting to ap-
ply the RECAST to other social networks, such as communication
networks from phone calls or SMSs.
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