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Abstract: A new approach for predicting coverage of wireless LAN at 2.4GH z is pre-
sented. Coverage prediction is one of the core parts of indoor wireless LAN planning
tools. The main concern it has to deal with is providing a good trade-off between pre-
diction accuracy and computational load. Usual approaches belong to either empirical
or deterministic methods. A new perspective has recently been offered that exploits
a discrete formalism based on the TLM formulation. It is referred to as MR-FDPF
(Multi-Resolution Frequency Domain ParFlow). While ray-tracing handles computa-
tional load by restricting the number of considered paths, the proposed approach acts
by adapting the spatial resolution. This paper presents the straight lines of MR-FDPF
and details the conditions for efficient in-building coverage prediction at 2.4GHz. In
a second part the paper tackles the calibration problem and claims for an automatic
calibration process to improve the fit between predictions and measurements. A couple
of experiments are presented.
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INTRODUCTION

multiple systems sharing the same ISM band, many efforts

are devoted to optimizing the deployment of interfering

WiFi and other new wireless technologies for LANs are
spreading out everywhere, from private houses, corporate
buildings to public areas, in both indoor and outdoor envi-
ronments. To face the mostly uncontrolled development of

networks (Sherali et al., 1996; Aguado Agelet et al., 2002;
Unbehaun and Kamenetky, 2003; He et al., 2004; Amaldi
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et al., 2005; Bahri and Chamberland, 2005; Jaffres-Runser
et al., 2006). Such a task relies on simulation tools having
the ability of predicting the behavior of solutions before
deployment. Such tools need accurate but fast coverage
predictions. Even if research has been performed in this
area for over fifteen years, simulation of radio wave prop-
agation is still a hard task for highly complex indoor en-
vironments. Now the main concern is to get a compet-
itive trade-off between computational load and accuracy
where small processing times does not affect too much the
prediction quality. New applications are also longing for
efficient coverage prediction like ad hoc, sensor networks
(Zhou et al., 2006) or MIMO systems simulations (Oh and
Myung, 2004).

As for micro-cell planning in urban areas, there are two
kinds of propagation modellings that are widely used for
indoor pico-cells: empirical and deterministic approaches
(COST 231, 1996; Neskovic et al., 2000). Indoor environ-
ments however strongly differ from urban ones: although
dealing with smaller areas, the propagation is more com-
plex because of the existence of much more reflection and
diffraction effects on each path. It is one of the main rea-
sons why empirical models struggle to provide accurate
results. Thus, the simplest one-slope model (1SM) was en-
hanced in COST 231 (1996) and also by (Cheung et al.,
1998) who proposed the multi-wall model (MWM). MWM
takes wall effects along the direct path into account but
neglects multiple lateral paths. Hassan-Ali and Pahlavan
(2002) proposed an enhanced empirical approach account-
ing for statistically distributed multi-path in an ellipsoid
located around the main path.

Many works have been developed under the UTD for-
malism since the beginning of the nineties, providing many
variations around ray-tracing (McKnown and Hamilton,
1991; Honcharenko et al., 1993; Seidel et al., 1993). The
large bulk of recent papers focused either on improving
the accuracy (Suzuki and Mohan, 2000; Athanasiadou and
Nix, 2000b,a) or on reducing the computational complex-
ity (Wolfle et al., 2004; Aguado Agelet et al., 2000; Imai
and Fujii, 2002; Ji et al., 2001; Chen et al., 2004). These
approaches converge to really accurate solutions when a
high number of rays are launched. Although very attrac-
tive these methods are strongly affected by the trade-off
between computational load and accuracy. Indeed, accu-
racy calls for a fine angular sampling and the manage-
ment of numerous reflections, while both are widely time-
consuming. Suzuki and Mohan (2000) overcome the first
shortcoming by introducing the beam-tracing technique.
Reducing the computational load is often achieved by lim-
iting reflections or diffractions. This may not be appro-
priate for indoor prediction due to peculiar effects such as
wave guiding in corridors. Wolfle et al. (2004) faced the
computational load issue by introducing the concept of the
dominant path model (DPM). DPM is firstly based on a
visibility graph calculus to avoid the highly time consum-
ing search of rays and walls intersections, as also proposed
by Suzuki and Mohan (2000). DPM is then derived by
removing all paths except the one providing the most part

of power, i.e. the dominant path. It should be noticed
however that the dominant path does not correspond to a
unique physical path but rather to a combination of main
multi-paths. Hence, the still high computational load of
propagation prediction is the main limit for the efficient
use of simulation tools in common engineering tasks. This
is due to the fact that a planning process requires hundreds
or even thousands of coverage estimations.

In this framework, the use of a discrete based method
may appear senseless at first sight. This may be why only
few works tackled this problem with exact finite element
approaches Zygiridis et al. (2006); Lee and Lai (1998);
Talbi (1996). ParFlow introduced by Chopard et al. (1997)
is probably the only one that efficiently implements a dis-
crete method for cellular network planning. More recently
ParFlow has been proposed for indoor propagation pre-
diction by Gorce et al. (2003) using a frequency domain
formulation. Assuming that the single harmonic response
is significant, this formulation lead to a linear inverse
problem. Its exact resolution was performed by an algo-
rithm called MR-FDPF (Multi-Resolution Frequency Do-
main ParFlow) fully detailed in Gorce et al. (2005, 2007).
Implementing this algorithm in the 2.4GHz band is the
scope of this paper. It is shown that a drastic reduction of
the computational complexity is achieved using reasonable
approximations.

The second focus of this paper concerns the calibration
process. For lots of roll-out situations, it is not possible
to have the complete knowledge of the environment (wall’s
material, precise dimensions, furniture, ...). This concern
matters for any propagation method. The calibration pro-
cess herein proposed allows the designer for introducing a
bit of realism in the simulations and to further compen-
sate for the approximations associated with the prediction
method.

2 MR-FDPF THEORY

This section gives a general outline of the 2D Frequency-
Domain ParFlow (FDPF) method. The reader is referred
to Gorce et al. (2005, 2007) for a complete description.
Although the ParFlow theory and its frequency domain
formulation is proposed by de la Roche and Gorce (2006)
in three dimensions, this paper focuses only on the 2D im-
plementation for the purpose of computational efficiency.
A 25D extension is detailed in section 3.

2.1 The frequency domain ParFlow (FDPF)

Like other finite difference approaches, ParFlow (Partial
Flows) is based on the Maxwell’s equations. In two dimen-
sions (2D), the electrical field ¥(r, t) is assumed scalar (i.e.
vertical TE). When compared to other FDTD approaches,
ParFlow, as TLM, gets its originality from the fact that the
electrical field is divided into 4 directive flows (see Fig.1a),
each one carrying energy to a cardinal direction (Gorce
et al., 2005). These flows are driven by a local transition
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Figure 1: The TLM principle is illustrated at the pixel level
(a) and at a block level (b). The east incoming flow from
west neighbor is scattered in the 4 directions according to
the scattering matrix.

matrix derived from the discrete Maxwell’s wave equations
and are referred to as (f_d and fd) respectively for inward
and outward flows. The index d, (d € {E, W, S, N}) indi-
cates the flow’s direction (East, West, South, North). In
the frequency domain (FD) steady-state neighbor flows are
bound by the FD scattering equation
— — —
F(m) =3%(m)- F(m)+ S (m) (1)
— — —
F(m), F(m) and S (m) are respectively inward, outward
and source vectors according to
F=(fys fw fs Ix)"
Ys(m) is the local scattering matrix at pixel m : {3, j}
and frequency f, having its own coefficients according to
the material (air, concrete, ...) located in m. Gathering
all flows into a unique vector I’ leads to a linear inverse
problem:

(I.-Q)-F=35 2)

where 2 is a wide sparse penta-diagonal matrix that
gathers all the relations between the nodes of the environ-
—
ment. The main concern is to determine completely F .

2.2 MR-node definition

The MR-node is the first element of the MR-FDPF ap-
proach. A MR-node (multi-resolution node) b, refers to a
rectangular set of pixels. For each MR-node b,,, inward and

outward ezchange flow vectors resp. E(bk) and ?‘e(bk) are
associated with each side, according to Fig.1b. Compared
to the usual ParFlow scattering matrix, the only difference

relies on the vectorial nature of the flows. They are still
bound by a local scattering equation:

— «—

Fo(by) = Se(by) - Folby,) + S e(by) (3)

2.3 Multi-resolution tree

Secondly, the MR-FDPF algorithm relies on the definition
of a multi-resolution binary tree binding conventional TLM
nodes (i.e. unitary MR-nodes) into a unique head node as
depicted in Fig.2. The tree is built in a recursive way start-
ing from the head node: each MR-node is divided along
its main discontinuity line (i.e. along a wall), providing
two child MR-nodes. The division along each branch of
the tree is firstly stopped when a homogeneous MR-node
is reached. A MR-~node is said homogeneous if it contains
a single material as for instance air or concrete. Each ho-
mogeneous MR-node is then itself split into children nodes
along the median line. This process is repeated for its chil-
dren nodes, until unitary nodes i.e. pixels size nodes are
obtained.

2.4 Computing the scattering matrices

To exploit the binary tree, relationships between the flows
of father and child MR-nodes are needed. For the sake of
clarity, let be considered the case of a node b, having two
child nodes b; and b; gathered horizontally (b; on the left
hand side and b; on the right hand side). Children’s flows

bringing energy from one child to the other (i.e.]TE}(bi) and
—
fuw(b;)) are referred to as the father node’s inner flows:

2 (0) )

Flb) @

fo(bk) = (

The scattering matrix of b, is obtained by computing the
steady-state of inner flows as a function of inward flows.
This calculus requires the knowledge of children’s scatter-
ing matrices only. Then, starting from those of unitary
MR-nodes, the scattering matrices of all MR-nodes in the
binary tree are computed involving successive matrix in-
versions. Computation details are provided in Gorce et al.
(2005). The overall complexity is evaluated in O (N?), for
an environment of N x N pixels.

2.5 Coverage computation

2.5.1 Source propagation

The binary tree is then used to compute the field generated
by a point source located anywhere in the building, in two
successive steps: the bottom-up computation of equivalent
sources and the top-down computation of inward flows.

o The bottom-up phase starts at the elementary source
node. Outward flows of its father node are firstly com-
puted changing the father node into a new source MR-
node. This process is repeated until the outward flows



1

/ P
0y
=S

|

Bottom-Up phase

Top-Down phase

Figure 2: The binary tree is built starting from the head node (top). The division recursion acts on each node along
the main discontinuity line. Terminal nodes are the usual ParFlow nodes (pixel nodes). The propagation of a source is
computed in two phases: (i) The bottom-up phase exploits the sources’ path in the tree and computes outward flows
of equivalent sources. (ii) The top-down phase explores all branches and computes inner flows for each node.

of the head node are computed. All these nodes con-
stitute the set of source MR-nodes. During this phase,
inner source flows are stored (see Fig.2).

e The top-down phase starts by computing the steady-
state inner flows for each MR-node from the values of
their inward exchange flows and the previously stored
inner source flows. Starting from the head node hav-
ing null inward flows (boundary conditions), the com-
putation is recursively done down to pixels nodes.

These calculus exploit the MR-nodes’ scattering matrices
and the complexity of the whole source propagation step
is in O (N?-log(N)). This result outlines how the main
computational load is really carried over to the preprocess-
ing phase.

2.5.2 Mean field computation

The top-down propagation process can either stop at pixel
nodes (all the pixel flows are computed) or more efficiently

at any intermediate MR-node (preferably a homogeneous
one) to directly compute the mean field from the inward
flows according to :

where A, (b,) and Ay (b;,) denote the size of b,. For cov-
erage and mean receiving power predictions, such an av-
eraging over large enough regions allows to compensate
for fast fading. A spatially averaged power estimation ap-
pears being more robust than an exact field computation.
A good trade-off is obtained when averaging is made over
MR-nodes a bit larger than the simulation wavelength.



3 APPROXIMATIONS FOR INDOOR ROLL-OUT

3.1 Harmonic approximation

As the formalism is stated in the frequency domain, the
study is limited to a harmonic mode and thus for a spe-
cific frequency. Such a harmonic steady-state study should
be considered unappropriate because of time spreading and
at a first glance, this points out a limit of the MR-FDPF
model. However, the full channel impulse response can be
easily assessed by processing coverage predictions for sev-
eral frequencies around the carrier. Time spreading issue
is kept out of the scope of this paper, focusing on mean
power coverage prediction. This choice is argued by the
fact that the time spreading of the radio channel in indoor
environments at 2.4GHz (or 5GH z) is small compared to
the symbol duration in WiFi frames.

3.2 Radiation pattern synthesis

Although omnidirectional antennas like dipoles or whips
are widely used for APs, directional antennas are some-
times preferred to increase the AP’s range. Including a
radiation pattern in ray-tracers is easier than in the FDPF
approach where point sources are essentially omnidirec-
tional. This issue can be overcome by radiation pattern
synthesis exploiting arrays of point sources, in both re-
ceiving and transmitting modes. This approach is detailed
in Villemaud et al. (2006).

3.3 2D approximations

The MR-FDPF algorithm is herein studied in 2D only be-
cause the 3D derivation exhibits a strong computational
load. The first fundamental limit of the 2D modelling
holds in the fact that the natural 2D free-space pathloss
increases in PL(r) = r™ having n = 1 instead of n = 2 for
3D. It is worth noting however that in a confined environ-
ment, the ceiling and the floor act as a waveguide where
multiple reflections lead to n < 2. To compensate for the
possible inaccuracy of the 2D modelling, an attenuation
coefficient ay;, is introduced in the propagation matrix of
air-made pixels, modifying the pathloss model according

to:
(6)

This model fits the 3D free-space model, in a finite range
of at least one decade, with an error lower than 2dB, as
illustrated in Fig.3.

To estimate the coverage of multi-floored buildings, an
ad hoc extension of the 2D algorithm is proposed. For the
sake of clarity, let be considered the simplest case of an AP
located on floor n while the coverage is estimated on floor
n+ 1.

PL(r)=r-expla-7)

e Direct Field Projection: the simplest approach
firstly computes the coverage at the source floor n,
only accounting for the obstacles of floor n. The cov-
erage at the n + 1 floor is then directly inferred by
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Figure 3: Example of attenuation models. The dispersive
model is obtained thanks to the additive attenuation co-
efficient chosen to fit the 3D free-space model with a 2D
modelling. Note that a different scaling factor is used for
each model. The meaning of the scaling factor is discussed
in next section.

applying a mean attenuation factor representative of
the ceiling attenuation.

e Equivalent Source: Another simple approach is to
compute an equivalent attenuated source at floor n+1.
The virtual source is propagated in its own floor and
does not further depend on floor n arrangement.

e Combined Source-Field: Because both previous
approaches cannot deal simultaneously with the ge-
ometry of both floors, a combined approach seems at-
tractive. The propagation is firstly computed at the
transmitter’s floor. All flows are then stored and used
as source flows at the receiver floor, after applying a
ceiling attenuation factor. Thus, all pixel’s flows com-
puted at level n, act as source flows at level n+1 after
proper weighting. All of these source flows are propa-
gated at the receiver floor, leading to a new coverage
map.

At first glance the combined approach could appear time-
consuming since each pixel is considered as a source at the
receiver floor. Nevertheless, an efficient implementation is
used: the bottom-up phase of the MR-FDPF algorithm
can propagate simultaneously all sources, while keeping
unchanged the top-down phase. The overall complexity
is therefore only twice as much as the one of the initial
method.

3.4 Simulation frequency and spatial resolution

In discrete approaches, the spatial resolution Ag is con-
strained by the wavelength. Luthi (1998) suggests the em-
pirical limit A < As/6 to prevent from anisotropy errors.



The resolution step Ag should thus be lower than 2c¢m at
2.4GHz (i.e. for 802.11b/g). Such a resolution appears
very low when compared to the resolution at which cover-
age values are reasonably expected: a prediction returning
one value for each square meter seems reasonable. Further-
more, working at such a resolution is unrealistic as exact
position of walls, furniture and people is not known with
such a level of details. Because the computational load
heavily depends on the environment size, WLAN planning
would benefit from a better trade-off between computa-
tional load and accuracy. The simulation frequency is thus
chosen lower than the operational frequency.

Only few mismatch effects ensue. First of all, the in-
herent free-space path-loss shift is easily compensated for
by the use of an appropriate calibration constant (see next
section). Secondly, walls’ reflection and transmission co-
efficients, usually depending on the frequency, can be set
according to the actual frequency.

A first uncompensated discrepancy follows from diffrac-
tion at corners: rays are not exactly positioned. We believe
however that in terms of amplitude, the mismatch remains
marginal. Last but not least, the main effect of changing
the frequency rests on flat fading due to multipath (af-
ter both reflection and diffraction) occurring everywhere
in indoor. Indeed, phase combination in multipath envi-
ronment is very sensible to the simulation frequency, and
leads to matchless fading patterns. However, it is claimed
that a mean power prediction remains significant after a
spatial averaging. Thus, a mean field estimation over large
enough MR-nodes is used.

The simulation frequency is finally chosen as a trade-
off between realism (short wavelength) and computational
load. To permit a robust mean field estimation for MR-
nodes of 1m? surface area, the wavelength has to be lower
than 1m. In the following, the reference simulation param-
eters are set to

Ap =10cm and vy =480MHz=z (7)

while the real frequency is of 2.4GHz. Notice that the
simulation wavelength has been chosen as a multiple of
the operational wavelength to reduce the discrepancy due
to diffraction.

4 CALIBRATION PROCESS

Whatever the modelling approach is, binding simulations
to real values is always a delicate problem due to the lack
of exact conditions knowledge: exact antenna gain, radia-
tion pattern, transmission power, material properties, fur-
niture, etc. In this work a blind approach is proposed
exploiting a calibration process based on a set of measure-
ments.

4.1 Calibration offset

Real field predictions W,,.q are obtained from simulated
values ¥, thanks to a calibration offset Cy:

Ureq(dBm) = U, (dB) + Cy (dBm) 8)

The numerical source could here be bound formally to an
ideal current source Gorce et al. (2005). This relationship
is however corrupted by previously stated approximations
making senseless any formal calibration offset determina-
tion.

This process requires as input a set of experimental mea-
surements. The calibration offset is chosen to minimize the
root mean square error (RMSE) between M experimental
values W,,05(7), i € [1..M] and corresponding predictions,
leading to the following optimal calibration offset

- , .
C\II = M ; (\I’mes(l) - \I/s(z)) (9)

providing a null mean error e(i) = Uye5(i) — Upreali) = 0.
The adequacy of the calibrated prediction model can be
assessed thanks to the resulting RMSE;, itself equal to the

variance: (é(i)?) = o2.

4.2 Material parameters n and «

As previously mentioned, the free-space attenuation coef-
ficient has to be determined. Each material in ParFlow
is defined by two parameter: the refraction index n and
the electrical permittivity on which the attenuation coef-
ficient « relies. Both are used in the scattering matrix of
TLM nodes. Although experimental values can be found
in literature, their dependency to the actual composition
of materials makes a default setting senseless. That is why
the couples (n, a) associated with each material are relaxed
too. These parameters constitute the set of unknowns as-
sociated with a peculiar environment referred to as w € €.
The optimal set of parameters and the calibration offset
are jointly estimated according to

M
5 1 . .
Cy (W) = M Z (\Ilmes (Z) - \IIS(Z/W))
i=1 (10)
~ . 2/ .5
w = arg g}c_lg (Ue (C\II (w)a w))
Thus, Cy sets the mean error to zero while & minimizes
the standard deviation.

4.3 Minimization algorithm

The resulting minimization problem is a hard optimization
problem. Firstly, the problem is not convex and presents
several local minima. Secondly, the computational load to
evaluate one set of parameters is high as the preprocessing
stage of MR-FDPF has to be run for each set indepen-
dently. Since an exhaustive search of all possible settings
is not affordable, a heuristic approach adapted to this prob-
lem is proposed. Because the search space is continuous
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Figure 4: Experimental configuration. The test building is made of three floors. The source is located in room E7 at
intermediate level. Measurement points are indicated by red crosses.

and the derivatives of the cost function can not be analyt-
ically assessed, gradient based methods are excluded and
the direct search algorithm proposed by Jones et al. (1993)
is chosen. This method alternates global and local search
and aims at realizing an exhaustive search at infinity. The
process stops when an acceptable solution is reached.

4.4 Efficiency evaluation

Of course, the results may heavily rely on the quality and
the representativeness of the measurements. The optimal
solution is optimal only for the environment under test
and for the configuration used for calibration. It is in fact
more robust to use measurements from numerous regularly
spaced locations and for several APs. Note that the cal-
ibration computational load associated to the simulations
does not depend on the number of test points and APs as
preprocessing represents the main load.

The quality of the final solution can be assessed by an-
swering these three questions:

e What is the efficiency of the predictions for the present
test set? The answer is provided by the final error
variance.

e Is the calibration efficient for other APs’ locations in
the same environment? The answer is obtained by
performing calibration for several experimental sub-
sets. This question is crucial for the use of the predic-
tions in a WLAN planning tool.

Is the calibration efficient for other environments?
The answer is based on the predictions’ accuracy es-
timation for several test environments. The answer
allows to know if calibration results are portable.

5 RESULTS

5.1 Harmonic mode
5.1.1 VSA base measurements

The method has been firstly assessed with calibrated ra-
dio measurements in harmonic mode. The measurement
platform consisted of an arbitrary waveform generator
(ESG4438C of Agilent Technology (©) and a vector sig-
nal analyzer (VSA 89641 of Agilent Technology (©), both
equipped with 2.4GHz, 4dBi, omnidirectional antennas.
A pure sinusoidal waveform was generated and the span
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of the receiver was fixed at 2kH z allowing measurements
from —40dBm down to —110dBm. For each referred po-
sition (cf. red crosses on Fig.4), about 200 measurement
samples were collected during 60s with slow displacements
and rotations to obtain a mean value compensated for flat
fading. The source was located at floor 2, in room E7.
Measurements were taken at 80 locations at the source
floor and respectively at 11 and 15 locations for the upper
and lower floors.

5.1.2 Calibration

Each floor is made of three different types of walls:
e concrete walls for the main load-bearing walls.

e plaster walls corresponding to standard walls between
rooms.

e glazed walls corresponding to the external walls made
of windows.

So 3 couples (n,«a) are optimized during the calibra-
tion process. The previously described calibration algo-
rithm is used at 4 resolution steps (5¢m, 10cm, 20em and
50cm) with respectively the following simulation frequen-
cies: 960M H z, 480M H z, 240 M H z and 96 M H z. Calibra-
tion results show that the attenuation coefficient of walls
has a low impact on the simulations. This result can be
assigned to the thin thickness of walls in comparison to

the simulation wavelength. On the contrary, the air atten-
uation factor impacts strongly the predictions because it
modifies the attenuation law. However, the best predic-
tions are obtained with aq;- = 1.0. This corresponds to a
logarithmic attenuation slope proportional to d~!, corre-
sponding to a 2D free-space propagation model. This can
be charged to the fact that the transmitter was situated in
a regular multi-floor building in which waves are bounded
by the floor and the ceiling.

After calibration, we found the following values for pa-
rameter n: 5.4 for concrete walls, 2.4 for plaster walls and
1.3 for glazed walls. Only slight variations are observed as
a function of the resolution step. These values are eventu-
ally close to experimental values provided in the literature.

5.1.3 Results

The theoretical computational load relies on the resolution
step as we have O (dr=3) and O (dr—?2) for preprocessing
and propagation phase respectively. Experimental results
are summarized in table 1. While computational load be-
haves according to theory, the RMSE appears roughly con-
stant for a resolution step lower than 20cm.

The RMSE increases rapidly for a resolution higher than
20cm. Coverage areas at bem are shown in Fig.5. Simula-
tion and measurements for the previously described points
are compared on Fig.6. On this figure most of the measure-
ment points are located between two dotted lines bounding
the area where the error between prediction and measure-



Table 1: Computational time achieved on a Pentium IV,
2.4GHz, with 3Gb RAM

step RMSE | preprocess  block pixel
size propag  propag
5cm | 3.88dB 53 s 0.8s 6.5 s
10cm | 4.07dB 8s 0.2 s 1.6s
20cm | 4.06dB 28 0.08 s 04s
50cm | 7.2dB 0.05 ms 0.04s 0.06s

ment is less than 5dB.

5.2 WiFi coverage predictions
5.2.1 Experimental setup

Harmonic measurements don’t rely exactly on the real
WiFi power reception level due the lack of knowledge on
reception equipments (sensitivity, gain, ...) and antennas
radiation patterns. To evaluate the suitability of this ap-
proach for WiFi planning, complementary WiFi coverage
predictions have been assessed by three measurement cam-
paigns done in two buildings. For each measurement loca-
tion, about 300 samples were recorded during 60s with an
802.11b PCMCIA Orinoco(c) receiver nested in a laptop.
During the recording time, slow displacements and rota-
tions have been performed to get a mean value compen-
sated for flat fading as done for harmonic measurements.
A local mean power and a standard deviation have been
calculated for each point. The three measurements sets
are the following;:

1. CITI; set: 199 measurement locations recorded in
the intermediate floor of Fig.4. Six different APs have
been deployed for this purpose.

2. CITI set: 15 measurement points located on the
same floor covered by 3 other APs.

3. BuildingG set: 15 measurement points located in an-
other building covered by one access point.

For each data set, the same previously defined materials
were assumed: concrete, plaster and glazed wall. Cali-
bration of the simulator with C'ITI; provided roughly the
same values for (n, ) than the harmonic study.

CITI; and BuildingG were used to calculate the accu-
racy of the simulations after calibration with CITI;.

5.2.2 Calibration performance

The calibration of the 3 indices based on the CITI; data
set needed roughly 1800 function evaluations to converge.
The more parameters DIRECT had to find out, the more
evaluations were processed. As one evaluation can last
up to 1 minute depending on the environment size, it is
sensible to validate the portability of the indices found. If
indices can be re-used, a single calibration offset can be
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Figure 6: Comparison between predictions and harmonic
measurements

computed based on a couple of measurements to simply
annihilate the mean prediction error (é(7)).

5.2.3 Error analysis

Validation of the calibration offset dq/ and the indices has
been done by computing the RMSE (¢(i)?), the mean er-
ror (é(i)) and the standard deviation o2 of the prediction
errors occurring when comparing predictions and measure-
ments of CITI; and BuildingG data sets. For CITI,, an
RMSE of 5.1dB has been obtained with a mean error of
(é(i)) = —2dB and a standard deviation of 02 = 4.65dB.
For BuildingG, an RMSE of 5.0dB has been obtained with
a mean error of (€(¢)) = —2dB and a standard deviation
of 02 = 4.3dB. The fit between simulations and measure-
ments for the CITI5 set assesses stability of the predictions
in the same building. The results of BuildingG assess the
portability of the predictions to another similar environ-
ment.

The RMSE values are similar to those obtained with
CITI; while the mean error is of about -2dB for both val-
idation sets. This mean error can easily be removed by a
simple calibration offset adjustment. Based on those re-
sults, we can claim that calibrated MR-FDPF predictions
are truly efficient for WiFi planning.

6 CONCLUSIONS

Indoor propagation prediction is an important issue in the
development of wireless technologies. The proposed dis-
crete approach offers an original way to produce fast multi-



path predictions. The fundamental trade-off between com-
plexity and coarseness is herein managed by the selection of
the simulation frequency rather than the number of sim-
ulated paths as done with ray-tracing based approaches.
Mean power predictions may be used in many contexts,
including WLAN planning, indoor mobile equipment po-
sitioning or interference management. The simulator also
opens for a promising way of simulating and evaluating ad
hoc and sensor networks in an indoor context. The multi-
resolution algorithm is indeed truly adapted to simulating
mobile multi-nodes networks: thanks to the preprocessing
phase, computing peer to peer radio links is very fast.

In future works, the simulations could be significantly
improved by relaxing the computational load constraint.
i) The true frequency could be used. ii) The local impulse
response could be built by running the simulator at sev-
eral frequencies around the carrier. iii) Full 3D simulations
could be performed. Such a framework appears promising
for simulating indoor radio networks, including a realistic
channel model. Furthermore, the simulator may easily in-
clude multiple antenna simulations for the evaluation of
MIMO systems such as expected, for instance, for future
802.11n compliant systems.
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