
The Sticking Heartbeat Aperture
Resynchronization Protocol

Santiago Gonzalez
Department of Computer Science

University of Texas at Austin
2317 Speedway

Austin, TX 78705
slgonzalez@utexas.edu

Tracy Camp
Department of Computer Science

Colorado School of Mines
1610 Illinois Street
Golden, CO 80401
tcamp@mines.edu

Katia Jaffrès-Runser
Institut de Recherche en Informatique de Toulouse

Université de Toulouse, INPT
2 Rue Charles Camichel. BP 7122
31061 Toulouse Cedex 7, France

kjr@enseeiht.fr

Abstract—As wireless sensor networks become more ubiqui-
tous in the world, the need for lightweight, resilient time synchro-
nization protocols is apparent. Wireless nodes’ internal clocks are
subject to drift over time due to manufacturing imperfections
and environmental changes. While various protocols have been
introduced that attempt to correct for this drift, they each have
their own peculiarities and issues.

This paper presents a new protocol, the Sticking Heartbeat
Aperture Resynchronization Protocol (SHARP), that reduces
synchronization error and resolves shortcomings of existing pro-
tocols. We have implemented and compared SHARP to two exist-
ing (and noteworthy) time synchronization protocols, Reference
Broadcast Synchronization (RBS) and Simple Synchronization
Protocol (SISP), on Atmel ATMega328p based microcontroller
platforms with IEEE 802.15.4 Xbee radio modules. We show
that SHARP exhibits a higher level of synchronization than SISP
(which in turn exhibited much better performance than RBS),
while requiring significantly fewer messages.

Index Terms—Time synchronization, wireless sensor networks,
network protocols.

I. INTRODUCTION

Precise time synchronization in wireless networks is es-
sential to a wide variety of disciplines and can enable new
applications of wireless networks that have previously been
unfeasible. The internal clocks in a network have the tendency
to become increasingly inaccurate as time goes on, allowing
the nodes in a network to exhibit different times. Time
synchronization protocols help to mitigate both clock drift and
clock skew by periodically adjusting erroneous clocks. Ideally,
time synchronization protocols are lightweight, scalable, and
capable of synchronizing a network’s clocks to a sufficient
degree with few network message transmissions and without
major disruption to the task at hand.

Adequate time synchronization is particularly useful in
wireless sensor networks, where clock drift and skew can
introduce error, especially at high sampling rates. One man-
ifestation of clock desynchronization is improperly times-
tamping data from a network; accurate clocks are of high
importance in several applications, such as geophysical or
structural health monitoring, where knowing the time-of-flight
of acoustic waves is essential. GPS has often been proposed as
a solution to the time synchronization problem; however, GPS

units are unusable in indoor or subterranean environments and
often incur significant energy usage.

Section II provides a brief overview of time synchronization.
Two noteworthy protocols are described with a high level of
detail: Reference Broadcast Time Synchronization (RBS) [1]
and Simple Synchronization Protocol (SISP) [2].

Section III elaborates on our experimental setup and how we
implemented RBS and SISP on lightweight, wireless motes.
The GeoMote platform that we developed, and subsequently
used, is described in detail. We also provide results and
analysis on the performance of RBS and SISP. We observe that
SISP offers synchronization that is superior to that of RBS, in
both synchronization accuracy and precision. This leads us to
use SISP as a baseline to compare with our new protocol.

Section IV presents our new time synchronization protocol,
the Sticking Heartbeat Aperture Resynchronization Protocol
(SHARP). We discuss the advantages that SHARP inherently
provides over RBS and SISP, including the minimal amount
of network activity necessary to achieve synchronization.

In Section V, we provide a detailed analysis and comparison
of SHARP with SISP. We calculate rolling means with varying
window sizes for different test runs and present results graph-
ically. Additionally, Root-Mean-Square Error (RMSE) values
are calculated for test runs of RBS, SISP, and SHARP. We
find that SHARP performs admirably.

Finally, Section VI provides concluding remarks. SHARP
does an excellent job of synchronizing the nodes in a wireless
network with minimal overhead.

II. BACKGROUND

The field of wireless sensor networks has been rapidly
growing over the past decade; wireless sensor networks have
been applied in different domains, ranging from zebra mi-
gration tracking [3] to structural integrity monitoring [4].
Wireless sensor networks face several challenges due to their
lightweight nature, one of which is time synchronization. Due
to various imperfections, a given mote’s internal clock can
deviate from other motes’ clocks over time. This clock drift
can be detrimental to networks where data timestamping must
be accurate, such as in geophysical system monitoring, or
where timing is important for sustaining a network’s wireless

communications protocols. The goal of time synchronization
is to remedy internal clock drift via network protocols that
adjust a network’s internal clocks to create consistency.

Due to the importance of time synchronization in a wide va-
riety of applications, researchers have devised several new time
synchronization protocols for use in the rapidly growing field
of wireless sensor networks [5]. These protocols seek to reduce
a network’s synchronization error through various means. In
many cases, researchers have tailored their protocols to specific
types of radio hardware, or with specific applications in mind.
There are a large number of time synchronization protocols in
the literature, several of which are discussed in detail in [6].
Our proposition is inspired by beacon-based protocols where a
single node emits a message to synchronize a group of sensors
in range periodically.

In the following two sections, we describe two noteworthy
time synchronization protocols: Reference Broadcast Synchro-
nization (RBS) [1], a representative beacon-based solution, and
the Simple Synchronization Protocol (SISP) [2], a noteworthy
distributed solution where all sensors are in range of all
beacon messages. RBS was selected for analysis because of
its low complexity, performance cited in the literature, and
ubiquity. SISP was selected for analysis as a consequence of
its innovative approach towards synchronization, potential for
good performance, and simplicity.

A. Reference Broadcast Synchronization

The Reference Broadcast Synchronization (RBS) [1] pro-
tocol is a time synchronization protocol for wireless sensor
networks that is capable of maintaining either an absolute
network time or a shared, relative time within the network
through the use of reference broadcasts. At a set interval,
a server node transmits a reference broadcast. The reference
broadcast does not contain a timestamp or other data. Each
reference broadcast triggers the exchange of local clocks
within the network. This allows nodes to calculate a local
clock shift given adjacent clocks.

RBS operates on the premise that every node receives the
reference broadcast at nearly the same time. By sending the
reference broadcast from as close to the PHY as is viable, the
critical path between when the broadcast is sent to the network
stack and when it is received by other nodes can be shortened,
resulting in better synchronization.

As noted by the RBS authors, a principle drawback inherent
in RBS is the fact that a network requires a low-level physical
broadcast channel to try and reduce the server node’s reference
broadcast nondeterminism. Broadcast nondeterminism results
from the variable time a packet spends inside the protocol
stack before actual emission.

Elson et al. have shown [1] that RBS is able to outperform
the ubiquitous Network Time Protocol (NTP) [7]. RBS was
originally implemented in the IEEE 802.11 MAC on Berkeley
Motes running TinyOS and then on Linux-based systems, for
more equitable comparisons with NTP. The RBS authors state
that RBS performed well on the Berkeley Motes, but argue
that this may be attributable to the motes’ tightly integrated

processor and radio. Still, on the Linux-based systems, RBS
was able to achieve a mean synchronization error of under
10µs, significantly better than NTP. Variations in the choice
of platform and radio can significantly impact the performance
of a time synchronization protocol, e.g., [8] was only able to
achieve an average synchronization accuracy of approximately
30µs with their implementation of RBS. The authors of [8]
attribute the performance difference to higher quality crystals
and a “superior” operating system used by Elson et al.

B. Simple Synchronization Protocol

SISP (Simple Synchronization Protocol) [2] is another
lightweight time synchronization protocol for wireless sensor
networks. In SISP, the network’s nodes converge on a shared,
relative time in a distributed manner. SISP does not require
a master node, making it more resilient to hardware failures
than centralized protocols (e.g., RBS).

SISP functions through a sisp procedure that is called at a
locally defined interval (10ms in the researchers’ evaluations).
SISP implements two counters, LCLK (local clock) and SCLK
(shared clock), which are each incremented each time that the
sisp procedure is called. Each time a set number of sisp
calls occur, a SYNC broadcast containing the node’s SCLK is
transmitted to all listening nodes. In [2], a SYNC broadcast is
transmitted every 640ms. During every other invocation of the
sisp procedure, the node checks to see if any messages have
been received. In the event that a message has been received,
a new SCLK is found by averaging the local SCLK with
the received message’s SCLK. In this manner, a consensus
is reached on the network’s shared clock.

Van Den Bossche et al. note that SYNC messages are
transmitted as close to the PHY layer as possible [2], similar to
RBS. Specifically, SYNC messages are broadcast through an
IEEE 802.15.4 beacon payload to shorten the transmission’s
critical path. Thus, a reduction in performance will occur in
networks without PHY level broadcast capabilities.

SISP was tested both experimentally and in a custom
simulator. A SISP implementation study was performed on
Freescale MC1231x based nodes. The nodes’ hardware timer
was set to a resolution of 10ms and the network’s packets were
monitored using a Daintree network analyzer. Van Den Boss-
che et al. conducted three tests: one with four nodes and two
with two nodes [2]. Results provided show synchronization
error over time, and demonstrated SISP’s ability to converge
the network nodes to a shared clock.

III. EXPERIMENTAL SETUP

We now describe our wireless sensor mote platform along
with procedures and implementation details for the time syn-
chronization protocols RBS and SISP. We elected to perform
all experiments on a set of custom developed Arduino-based
motes due to their ubiquitous and lightweight character. Im-
plementation details and design decisions for RBS and SISP
are also discussed.

Fig. 1. GeoMote 3.0 Platform for Geophysical Wireless Sensor Networks

A. Target Platform

Our experimental setup is on an array of Arduino Fio
embedded microcontroller platforms equipped with IEEE
802.15.4 Xbee radios and external Microchip 32k256 se-
rial 32 kilobyte SRAM chips. The Arduino Fio embedded
platform is based on the ubiquitous Atmel ATMega328p 8-
bit AVR microcontroller, running at 8MHz. This hardware
(called GeoMote, see Figure 1) was originally developed
by students in the interdisciplinary SmartGeo program, a
program focused on geophysical monitoring [9]. For this work,
we developed version three of the GeoMote. GeoMote 3 is
a redesign that improves upon previous versions by using
surface-mount components, including a temperature sensor
and a triaxial accelerometer, adding a dedicated power switch
and programming port, improving the layout and routing to
reduce signal noise, and adopting a smaller, more usable form-
factor.

B. Experimentation

All motes were physically located in close proximity to
ensure adequate wireless connectivity. Not including the base
station, four motes were used for RBS, while three motes were
used for SISP (since a server node isn’t needed). For each
test run, the motes were turned on manually, which produced
a slight initial discrepancy between the motes’ clocks in the
network. As the experiment continued, local clock values (i.e.,
the hardware clock value + clock shift) were saved to each
mote’s external SRAM at discrete intervals. Upon completion,
the motes are commanded to transmit their data. Due to
occasional data loss within transmission bursts, we transmit
data twice to ensure a complete data set. Additionally, clock
data is indexed upon transmission to aid in alignment and
facilitate data correctness checking.

For our implementations of RBS and SISP, all messages
were transmitted above the Xbee radios’ MAC layers. This
decision was both a limitation imposed by the Xbee radios,
which do not allow low level message access, as well as a
purposeful design decision to (1) compare different protocols
on fair grounds and (2) ensure full platform and network stack
portability. Furthermore, to avoid the potentially unreliable

nature of IEEE 802.15.4 broadcast mode, the wireless radios
were configured to unicast mode. Every radio was configured
to have the same address; we then transmit to this address to
emulate broadcast behavior.

In our implementations, all synchronized motes have func-
tionality to transmit collected measurements to a base station.
The base station is simply a data sink for results consisting of
an Xbee radio connected through a dongle to a computer.

For RBS, the reference broadcast interval was set to 500ms
(i.e., the network was synchronized twice per second), a fairly
typical value in research studies. The synchronization interval
for SISP was set to 500ms to match RBS and to be close
to the SISP researchers’ 640ms interval. Each synchronization
interval contains 100 sisp calls, resulting in a 5ms sisp
procedure call interval.

C. Quantitative Comparison of RBS and SISP

Our initial results suggest that SISP both functions sig-
nificantly better than RBS and is more than capable of
maintaining sub-millisecond time synchronization. A variety
of experiments have been conducted to evaluate the synchro-
nization error between nodes in RBS-synchronized and SISP-
synchronized networks, including different synchronization
interval lengths and experiment durations.

Figure 2 shows a graphical comparison of the RBS and
SISP protocols for a two node network. The synchronization
iteration (i.e., time samples) is on the X-axis and absolute
clock error (i.e., the absolute value of the difference between
the nodes’ synchronized clocks, called deviation) is on the Y-
axis. This absolute clock error, or deviation, is measured from
two motes. Each local clock sample is collected just prior to
when synchronization occurs to obtain the likely maximum
clock error for each time sample. Table I exhibits mean error,
standard deviation, and 50%, 95%, and 99% percentile bounds
for each protocol (e.g., for a 95% percentile bound, 95% of
the absolute synchronization errors — that is, the absolute
values of the synchronization errors — in a synchronization’s
distribution are between 0 and the 95% percentile bound). Our
results show that RBS is both significantly more imprecise
(i.e., noisy) and inaccurate than SISP with equivalent config-
urations on the same hardware. The large disturbances that
occur during the start of the experiment for SISP are due
to start-up costs in the network (i.e., the initial convergence
to consensus). This period has not been included in the
calculation of statistics in the “SISP (stable)” row of Table I.
That is, the SISP row statistics in Table I take results from all
synchronization intervals into account; while the SISP (stable)
row statistics only make use of data from intervals after the
start-up period (i.e., after 200 synchronization iterations).

While SISP has been shown to perform significantly better
than RBS, can we design a protocol that does better than
SISP? We want a time synchronization protocol that minimizes
network traffic, is scalable, is resilient to dropped messages,
is stable over significant periods of time, and is simple
and lightweight in its implementation while also achieving
a high degree of synchronization. In an n node network, a

TABLE I
RBS AND SISP SYNCHRONIZATION ERROR STATISTICS

Protocol Mean Error (µs) Std Dev 50% Bound 95% Bound 99% Bound
RBS 1509 108 1528 1640 1744
SISP 119 78 96 192 421

SISP (stable) 96 5 96 104 104

Fig. 2. Comparison of RBS and SISP Synchronization Error

single SISP synchronization interval requires n transmissions
and n ∗ (n − 1) receptions. If a new protocol was able to
send and receive fewer messages per interval, the network’s
synchronization frequency could be increased; furthermore,
increasing the network’s synchronization frequency would lead
to a higher level of synchronization, while still requiring fewer
message transmissions and receptions per length of time than
SISP.

IV. THE STICKING HEARTBEAT APERTURE
RESYNCHRONIZATION PROTOCOL

To improve upon existing protocols’ shortcomings, we
have developed a master-slave, heartbeat-based protocol
called Sticking Heartbeat Aperture Resynchronization Proto-
col (SHARP). SHARP uses heartbeats emitted by a master
node to synchronize slave nodes, without expressly knowing
the master’s clock. The protocol is resilient to lost heartbeats
and integrates seamlessly with networks that have scheduled
protocols, such as TDMA. Additionally, SHARP does not
require additional, non-standard radio hardware.

The Sticking Heartbeat Aperture Resynchronization Proto-
col (SHARP) uses heartbeats (i.e., network messages contain-
ing no data) for synchronization, and synchronization occurs
even if heartbeats are dropped. Figure 3 provides an overview
of SHARP, and illustrates how the protocol functions using a
simple master-slave heartbeat propagation technique. A master
node, which may or may not be synchronized with an external,
absolute clock source, transmits a heartbeat to its slave nodes
after every time period λ. This network’s synchronization
interval length, λ, may be changed to fit a specific network’s
time synchronization requirements. Figure 3 shows there are
large, free spaces in the network where no synchronization
takes place, allowing for the network to send other network
communication or sleep the radios.

Fig. 3. SHARP Overview

A defining feature of SHARP is the existence of heartbeat
apertures, i.e., time intervals where a heartbeat should occur.
The length of the network’s heartbeat apertures is determined
by a bound on a mote’s clock drift. When a heartbeat is
received by a slave, the current aperture ends and the slave’s
clock is adjusted to the master’s time, essentially nλ, where n
is the number of heartbeat apertures that have passed since the
initial synchronization. The existence of heartbeat apertures
enables TDMA to function with SHARP, i.e., the apertures
can be easily included into the TDMA schedule.

Figure 4 demonstrates how the current interval’s clock skew,
∆n, is calculated for a given slave mote. Given a known λ,
we calculate a node’s local clock shift change, δn, whenever
a heartbeat is received:

δn = nλ − tlocaln + ∆n−1,

where tlocaln is the value of the local clock (i.e., the incorrect
clock that is provided by the hardware) at interval n. The
current synchronization interval’s clock shift change, δn, is
added to the previous interval’s clock shift, ∆n−1, to find the
current synchronization interval’s clock shift: ∆n = ∆n−1 +
δn.

A. Resilience

Heartbeat apertures provide resilience against lost heart-
beats. We note the λ between heartbeats is constant, and that
a mote’s clock does not drift significantly over a short period
of time. Thus, a mote can estimate how many heartbeats, γn,
it has missed since its last received heartbeat, i.e., a mote can
count how many empty heartbeat apertures have passed. When
the next heartbeat arrives, the mote’s clock can then snap to the

Fig. 4. Example Slave Clock Deviation

correct time, since the mote knows that γnλ time has passed
since the last heartbeat. Specifically, SHARP may calculate a
local clock shift change δn when a heartbeat is received, as
before, by:

δn = nλ − tlocaln + ∆n−1.

For heartbeat apertures where no heartbeat is received, the
previous interval’s δn−1 is used as the current interval’s clock
shift change. Whenever a slave node misses a heartbeat, it
adjusts the size of its next heartbeat aperture to be equal to
the base aperture size multiplied by (γn +1). That is, SHARP
assumes the slave’s clock’s skew increases as more heartbeats
are missed, requiring larger heartbeat apertures to ensure that
a future heartbeat is not missed. Once a heartbeat is received,
the next heartbeat aperture can be restored to the base aperture
size. SHARP is resilient to lost heartbeats up to the point
where adjacent heartbeat apertures begin to overlap with each
other.

B. Analytical Example

Figure 5 presents an example execution diagram for
SHARP, detailing a master node and a slave node. LCLK
represents the slave hardware’s reported clock value, tlocal,
and SHIFT represents the slave’s local clock shift, ∆. SHARP
begins with an initial synchronization (i.e., a reliable, initial
heartbeat that is acknowledged by all slaves), represented by
Y in the figure. Following the initial synchronization, the
master node transmits heartbeats periodically, every 100 units
of time (i.e., λ = 100). When the first heartbeat arrives, Slave
A calculates that the heartbeat fits within the first heartbeat
aperture; thus, Slave A adjusts its clock shift, ∆, so that
∆n + tlocaln = n ∗ λ, where n is 1. The resultant δ1 = −10,
meaning that the Slave A’s new ∆1 = ∆0 + (−10). This
procedure continues for subsequent heartbeats. We note that
the third heartbeat transmitted is not received by Slave A; this
missed heartbeat is handled gracefully by setting the current
clock shift, δ3, to be the same as the previous clock shift, δ3−1.
Slave A then continues functioning normally.

C. SHARP Advantages

SHARP is computationally light, both spatially and tem-
porally, requiring minimal data processing and state memory.
Additionally, the protocol is energy efficient, requiring only

Fig. 5. SHARP Execution Example

0

5

10

15

20

25

CPU TX RX IDLE SLEEPSENSORS

C
u
rr

e
n
t
(m

A
)

Fig. 6. Tmote Sky Current Draw [10]

one data reception per mote per synchronization interval. Thus,
SHARP would work well in embedded networks requiring
prompt data transmission and high data throughput.

Table II provides a comparison of radio usage between
SHARP and other time synchronization protocols. We detail
transmission and reception counts symbolically for a network
with an arbitrary number of motes, x, along with actual
transmission and reception counts for networks with 2 and
100 motes. In this analysis, we assume a fully connected
network. All figures are for a single synchronization interval.
As shown, SHARP has significantly fewer messages sent and
received than RBS and SISP. We note that high reception
rates are sometimes more undesirable, energy-wise, than high
transmission rates. For example; consider Figure 6, which
details the current draw for different subsystems on a Tmote
Sky wireless mote, a widely used wireless sensor network
platform [10]. Lastly, note that Table II does not account for
varying message sizes. That is, SHARP messages always have
a zero-length payload, while SISP and RBS messages usually
have a non-zero payload size.

Another major advantage of SHARP is that slave motes
can be synchronized to an absolute time scale, unlike SISP
which forms a relative time scale. For example, if the SHARP
master is connected to an absolute time source, such as a
rubidium frequency standard, then tlocal would be the absolute
time. This advantage exists in RBS as well, by providing
the server node with an absolute time source. This feature
is advantageous in applications where it is important to know

TABLE II
COMPARING RADIO USAGE OF THREE SYNCHRONIZATION PROTOCOLS

Protocol Transmissions Receptions Messages Sent Messages Received
(x = 2) (x = 100) (x = 2) (x = 100)

RBS 1 + x x+ x ∗ (x− 1) 3 101 4 10000
SISP x x ∗ (x− 1) 2 100 2 9900

SHARP 1 x 1 1 2 100

the actual, absolute time that an event occurred.

V. SHARP RESULTS

We provide results and analyze the performance of SHARP
in this section. We perform several test runs with different
synchronization intervals. In our study, we report general
statistics for each test run, along with absolute synchronization
error plots, absolute synchronization error rolling mean plots
with various window sizes, and calculated Root-Mean-Square
Error (RMSE) values.

As expected, as the length of the synchronization interval,
λ, is reduced, SHARP achieves progressively more accurate
levels of synchronization. We find that SHARP exhibits a
slightly higher synchronization error than SISP when compar-
ing test runs with equal length synchronization intervals; how-
ever, SHARP has a significantly lower number of messages
transmitted and received. Thus, we can reduce the synchro-
nization interval length, λ, in SHARP, allowing us to achieve a
significantly lower network-normalized synchronization error
than SISP, and still send fewer messages across the network.

A. Analysis of Aggregate Statistics

Table III presents the mean error, standard deviation, and
50%, 95%, and 99% percentile bounds for SHARP, across
different synchronization interval lengths. All provided statis-
tics are from ∼ 7, 500 sample runs. As expected, the absolute
clock error in the network generally reduces as the length of
the synchronization interval, λ, is decreased.

Figure 7 presents how well SHARP synchronizes the clocks
in a two-mote network for a synchronization interval of
250ms1. Time samples (taken just before each synchronization
iteration, as before) are on the X-axis and absolute synchro-
nization error (i.e., the absolute value of the difference between
the two nodes’ synchronized clocks) is on the Y-axis. Each
local clock sample is collected just prior to when synchro-
nization actually occurs, in order to measure the maximum
clock error.

B. Rolling Mean Analysis

Figure 7 illustrates how SHARP is extremely stable over
time. This fact is especially clear in Figure 8, which presents
rolling mean curves for the absolute synchronization errors
in a network running SHARP at a synchronization interval
of 250ms2. Rolling means were calculated for window sizes,

1Additional synchronization error graphs for intervals of 1000, 500, and
100 milliseconds are similar and available in [6].

2Additional rolling mean graphs for synchronization intervals of 1000, 500,
and 100 milliseconds are similar and available in [6].

Fig. 7. SHARP Synchronization Error — λ = 250ms

Fig. 8. SHARP Synchronization Error Rolling Mean — λ = 250ms

n, of 51, 201, and 501 samples, i.e., there are n/2 samples
on each side of a center value that are averaged to produce
a data point. The high level of stability offered by SHARP
is important in the vast majority of wireless networks, where
nodes are kept running for extended periods of time.

As window sizes are enlarged, e.g., yellow lines in the
figures represent a larger window size than the blue lines in
the figures, rolling mean data becomes progressively smoother.
This result is expected since means are calculated from more
data points when window sizes are larger.

C. RMSE Analysis

Root-Mean-Square Error (RMSE), sometimes referred to
as Root-Mean-Square Deviation (RMSD), is an error metric
that is commonly used. For a set of residuals, x1 through xk,
RMSE is defined as follows:

RMSE =

√∑k
i=1 x

2
i

k

We compare the three time synchronization protocols —
RBS, SISP, and SHARP — using RMSE in this section.
RMSE does not need to be normalized for our comparisons

TABLE III
SHARP SYNCHRONIZATION ERROR STATISTICS

Interval (ms) Mean Error (µs) Std Dev 50% Bound 90% Bound 95% Bound
1000 180 145 152 368 448
500 152 114 136 320 376
250 123 108 96 272 344
100 135 97 120 272 312

TABLE IV
COMPARISON OF SYNCHRONIZATION PROTOCOLS VIA RMSE

Protocol Interval (ms) RMSE (µs) Mean Error (µs)
RBS 500 1512 1509
SISP 500 124 112
SISP 1000 189 179

SHARP 100 167 135
SHARP 250 162 123
SHARP 500 190 152
SHARP 1000 231 180

of the three protocols since the residuals all take place on the
same time scale. RMSE is a good metric for evaluating time
synchronization protocols as it penalizes error variability, i.e.,
peaks are taken into account more than troughs.

Table IV provides an RMSE comparison of SISP, RBS,
and SHARP with different synchronization intervals. As an-
ticipated, both SISP and SHARP exhibit significantly lower
RMSE values than RBS. Additionally, when comparing runs of
SISP and SHARP with equal synchronization interval lengths,
SISP exhibits a slightly lower RMSE value. This result is
due to the variability that is present in SHARP’s absolute
synchronization error. We note, however, that SHARP is a
successful protocol due to its low network usage, which
allows for shorter synchronization intervals to be used. That is,
SHARP can achieve a level of synchronization accuracy that
is superior to that provided by SISP, while also transmitting
and receiving fewer messages. For example, compare RMSE
for SHARP, with λ = 500 (190µs), to RMSE for SISP, with
λ = 1000 (189µs). These two RMSE values are similar,
but SHARP only transmitted 2 messages per second while
SISP transmitted 6 messages per second. This difference in
transmission counts becomes more pronounced as network
sizes are increased.

VI. CONCLUSION

As the number of wireless sensor network applications
grows, the need for effective time synchronization has become
clear. We present SHARP, a new protocol that improves upon
the shortcomings of other protocols, while maintaining a high
level of synchronization.

We initially evaluated RBS and SISP, two notable time
synchronization protocols in the literature. RBS operates on
the periodic transmission of “reference broadcasts” from a
server node to trigger synchronization within a network. SISP
operates in a completely distributed manner, where nodes
achieve synchronization in a consensus based manner. Our

early results demonstrate that SISP is able to achieve a
significantly lower average synchronization error than RBS
on the same experimental setup. We note that RBS functions
best on radios that support beacon messages (the Xbee radio
modules do not), providing a possible explanation for the poor
synchronization results we observed.

While SISP can achieve a reasonably high level of synchro-
nization, it has several shortcomings, including the fact that
many messages are transmitted per synchronization interval.
As such, we developed the Sticking Heartbeat Aperture Resyn-
chronization Protocol (SHARP), a simple, scalable, heartbeat-
based protocol that meshes well with existing networks, espe-
cially those that use TDMA. We then implemented SHARP on
our GeoMote platform and extensively tested it. Experimenta-
tion and analysis have deemed SHARP to be a great success;
SHARP achieves synchronization accuracy that is comparable
or better than that provided by SISP, while transmitting and
receiving vastly fewer messages, resulting in lower network
and energy usage.

Our hope is that SHARP can be augmented over time
to become a de facto protocol for time synchronization in
TDMA-based networks and wireless sensor networks. SHARP
provides numerous advantages that, coupled with its excellent
synchronization performance, make it a great choice for wire-
less applications.

We plan to improve SHARPs synchronization accuracy in
future works by learning relative clock drifts between slave
nodes and the master node and compensating for them over
time. An important issue to be tackled as well is to determine
an energy-efficient aperture size [11] and beaming period λ
[12]. Relevant recent works tackle similar issues that could be
leveraged to augment the network lifetime together with an
improved synchronization precision.

ACKNOWLEDGMENT

The authors are thankful for the support of the National
Science Foundation under Grant No. OISE-1243539. Any
opinions, findings, conclusions, or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchro-
nization using reference broadcasts,” Proceedings of OSDI, 2002.

[2] A. V. D. Bossche, T. Val, and R. Dalce, “SISP: a lightweight synchro-
nization protocol for wireless sensor networks,” Proceedings of ETFA,
pp. 1 – 4, 2011.

[3] P. Juang, H. Oki, Y. Wang, M. Martonosi, L.-S. Peh, and D. Rubenstein,
“Energy-efficient computing for wildlife tracking: Design tradeoffs and
early experiences with zebranet,” Proceedings of ASPLOS-X, 2002.

[4] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and
M. Turon, “Health monitoring of civil infrastructures using wireless
sensor networks,” Proceedings of IPSN, 2007.

[5] F. Sivrikaya and B. Yener, “Time synchronization in sensor networks:
A survey,” IEEE Network, vol. 18, pp. 45–50, 2004.

[6] S. Gonzalez, “Improving time synchronization protocols in wireless
sensor networks,” Master’s thesis, Colorado School of Mines, 2015.

[7] D. L. Mills, “Internet time synchronization: The network time protocol,”
IEEE Transactions on Communications, vol. 39, no. 10, pp. 1482–1493,
1991.

[8] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol
for sensor networks,” Proceedings of SenSys, pp. 138–149, 2003.

[9] T. Camp, M. Rubin, and S. Gonzalez, “Challenges in developing
intelligent geosystems (and the pros/cons of interdisciplinary research),”
Proceedings of ICNC, 2015.

[10] W. Heinzelman. Wireless sensor networks: Past, present, and
future. Accessed on October 14, 2015. [Online]. Available:
http://www.cs.rit.edu/ spr/CLQABS/wendi.pdf

[11] Y. Chen, F. Qin, and W. Yi, “Guard beacon: An energy-efficient beacon
strategy for time synchronization in wireless sensor networks,” IEEE
Communications Letters, vol. 18, no. 6, pp. 987–990, June 2014.

[12] J. P. B. Nadas, R. D. Souza, M. E. Pellenz, G. Brante, and S. M. Braga,
“Energy efficient beacon based synchronization for alarm driven wireless
sensor networks,” IEEE Signal Processing Letters, vol. 23, no. 3, pp.
336–340, March 2016.

