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Abstract— Several softwares have been developed for
computer-aided design of radio networks. The first constitutive
element of such a tool is the propagation modelling algorithm.
The second is the planning process providing positions and setup
of access points. The last one concerning the frequency channel
allocation problem (FAP) is the focus of this paper. Many works
devoted to this problem exploit a graph-based modelling that
leads to an under-constrained problem as interference between
mobile nodes are not taken into account. In this paper a new QoS-
based FAP criterion is formulated. This QoS criterion measures
the overall throughput taking downlink interference into account.
We show on an example that our FAP model outperforms
usual graph-based FAP approaches concerning the effective
SINR obtained at mobile nodes. Results are based on realistic
simulations exploiting a simulator called WILDE (Wireless Lan
DEsign) and implementing the MR-FDPF propagation algorithm.

I. INTRODUCTION

With the current very fast development of wireless IEEE
802.11b or 802.11g local networks (wLAN), deployment
engineers have to face an increasing interference level when
increasing the number of access points (AP). Usual empirical
frequency channel allocation (FAP) approaches use only 3
channels (typically 1,7,13) to compensate for the large overlap
between adjacent channels in the ISM 2.4GHz band. On the
one hand, it is obvious that getting interfence-free solutions
with only 3 channels is utopian for large deployments. On
the other hand dealing with all channels is not easy as it is
in fact a complex combinatorial problem. A computer-aided
approach is therefore the only way to manage efficiently the
widely overlapping multi-channel spectrum of 802.11b/g.

In such a computer-aided approach, multiple APs configura-
tions have to be evaluated, thanks to a propagation simulator,
with respect to a predefined criterion. Finding a good criterion
is precisely a hard task. Basically, criteria relying simply on
radio coverage [18] fail to provide efficient solutions. But on
the opposite, a planning process using a QoS based criterion
involving the overall throughput while taking into account
interferences and channel allocation would require a strong
computational overload [2]. A good trade-off may be to treat
AP planning and FAP as independent problems. It is in this
framework that this paper focuses on the impact of interference
modelling for robust channel allocation. It is thus assumed
that the AP positioning is already done and the FAP is studied

only on this predefined configuration. In section II, a reference
FAP model is described after a short survey of usual FAP
techniques. This section then proposes a new criterion taking
interference into account. The main novelty in this criterion
relies on the fact that the interference model is not computed
for peer to peer AP radio links but also for mobile nodes
in a downlink configuration. Furthermore, this approach also
takes the cumulative nature of interference into account. The
implementation of an optimization algorithm is proposed in
section III, relying on a Tabu search meta-heuristic.

Because such an approach firstly relies on a robust prop-
agation prediction tool, the propagation model used in this
study is shortly described in section IV. Finally, an evaluation
framework is proposed in section V. It should be noticed
that a specificity of IEEE802.11 when compared to cell-phone
systems holds in the fact that uplink and downlink share the
same radio resource. The proposed approach is then evaluated
both for downlink and uplink traffic. It is shown that including
a realistic interference model in the FAP criterion leads to
more robust FAP solutions because the interference level is
reduced significantly for both APs and mobile receivers.

II. 802.11 CHANNEL ALLOCATION

A. FAP methods

Different FAP approaches can be found in the literature [16]:

• Maximum Service F-FAP: Maximizes the number of
frequencies while minimizing interference level.

• Minimum Order MS-FAP: Penalizes the usage of fre-
quencies in order to chose the cheapest one.

• Minimum Span MS-FAP: Minimizes the required band-
width by minimizing the difference between the mini-
mum and the maximum used frequencies.

• Minimum Interference MI-FAP: Maximizes the inter-
channel spacing between close emitters.

• Fixed Spectrum FS-FAP: the same as MI-FAP but with
a limited set of frequencies.

It is obvious that the 802.11 channel allocation problem
falls in the last class, i.e. the FS-FAP modelling [16], [17].
For example in Europe the ISM Band at 2.4GHz is divided
into 13 channels partially overlapping with each other leading
to only 3 completely non overlapping channels. The FAP is



often described with a graph-based model, nodes being the
transmitters and edges the constraints (i.e. inter-cells interfer-
ence level) [20], [27]. The cost of a solution is thus evaluated
from the sum of each edge cost.

B. Interference taxonomy

Three different cases of interference can be established for
two access points AP1 and AP2 as represented in figure 1 .

Fig. 1. Three interferences cases.

• case a: Each AP is located in the service area of another
one.

• case b: Both service areas have a common region.
• case c: A mobile user located in the service area of one

AP (either AP1 or AP2) may interfere with any mobile
user associated to the other one.

The efficiency of any FAP approach is thus very sensitive to
the interference model involved in the minimization criterion.
Usual FAP are mainly based on the two following steps:

• Firstly, a graph is built by setting edges according to the
radio link between each pair of APs,

• Secondly, a criterion is defined as the sum of the edge
costs depending on the tested channel allocation.

The optimum frequency plan is the one minimizing this
criterion.

C. Reference FAP criterion

This reference FAP algorithm only takes the simplest in-
terference model described in Fig. 1-(a) into account. In this
approach, interference distribution is modeled as a weighted
graph whose nodes represent the APs placed in the environ-
ment [22]. Existance of an edge between two APs A and B
relies on the quality of the radio link between them: these is
an edge e if the access point A is in the carrier sense area of
B and inversely.The cost assigned to each existing edge e is
given by

Ce = GAP −De if De < GAP

Ce = 0 if De ≥ GAP
(1)

where GAP is the minimum distance (or gap) between 2 non
overlapping channels and De the gap between both channels
assigned to the nodes at the end of edge e. Typically, for a
IEEE 802.11b network, GAP is fixed to 4. The global penalty
cost function Cref is the sum of the costs Ce assigned to each
edge e of the graph.

D. A new QoS-based criterion

In usual algorithms [20], the interference model is in
fact simplified because of two approximations. The first one
neglects the cumulative nature of interference, each interferer
being considered independently from each other. The second
one holds in the fact that the interference levels are computed
from the direct radio links between APs as described above.
Such a model represents poorly realistic conditions of both
uplink and downlink traffic.

• The former approximation leads to an under-estimation
of the true interference level. The cumulative nature of
interference has been widely evaluated in the context
of GSM optimization showing its great impact. Initially
neglected in the framework of wLAN planning, the actual
growing size of wLAN deployed in more and more
complex environments calls for a new point of view.

• The second approximation is done because only the APs’
locations are known. Such a model is really unappropriate
for WiFi like networks which share the same radio
resources for uplink and downlink communications. The
consequence is that both APs and mobile transmitters
jointly produce interference at both APs and mobile
receivers locations.

Because a complete interference estimation would need the
knowledge of each mobile node location, our FAP interfer-
ence criterion is rather based on interfering signals coming
from transmitting APs evaluated at every possible receiving
locations, including both mobile nodes and APs positions.
The proposed criterion is more or less a downlink QoS-based
criterion but improves as well downlink and uplink flows as
illustrated in section V.

The second originality of our criterion holds in the fact that
the criterion is based on a QoS measure. Indeed the chosen
criterion aims to maximize the effective throughput in the
network.

For the sake of clarity, let the environment be divided into
regions of interest (ROI) defined as rectangular homogeneous
areas. It is assumed that the mean received power is constant
in each ROI. These ROI computed thanks to the MR-FDPF
propagation simulator (see section IV), are called MR-nodes.
The signal level from each AP is computed in each MR-node
providing the SNR associated with each MR-node l according
to:

(SNRl)mW =
(FBS

l )mW

(Pn)mW
(2)

where FBS
l is the power of the best server AP signal and Pn

the AWGN noise mean power equal to Pn = −92 dBm for
the 802.11b channel. SNRl represents the best possible SNR
one can obtain on the node l. This SNR supplies a mobile
user with a given class of service. For instance, a 802.11b
network having a SNR of 12 dB supplies a class of service
of 11 Mbps data rate. To know the available theoretical data
rate denoted Dth

l , SNRl is compared to the standard SNR
thresholds needed to guarantee emission rates of 1, 2, 5.5 and
11 Mbps.



Complementarily, having a given channel allocation scheme,
the Signal to Interference plus Noise Ratio (SINR) is computed
on each MR-node l according to:

(SINRl)mW =
(FBS

l )mW

(Pn)mW + (PIl)mW
(3)

where (PIl)mW , defined as the total power of the NI inter-
fering signals at MR-node l, is given by:

(PIl)mW =
NI∑

i=1

ν(|cBS , ci|).[F i
l ]mW (4)

ν(|cBS − ci|) is the power rejection factor due to the distance
between channels.
Table I gives the power rejection factor p(|cj − ci|); p(x) =
−10log10(ν(x)) in dB according to the gap between channels
ci and cj .

n = |cj − ci| 0 1 2 3 4

P(n) for 802.11b 0 dB 2.25 dB 5.25 dB 9.9 dB 29.8 dB
P(n) for 802.11g 0 dB 3.9 dB 6.9 dB 12 dB 25.5 dB

TABLE I

POWER REJECTION FACTOR P (n) DEPENDING ON THE GAP n = |cj − ci|
FOR BOTH 802.11B AND 802.11G.

The available data rate Da
l provided by the SINR at MR-

node l is computed and compared to the theoretical one Dth
l .

If the available data rate Da
l is lower than Dth

l , the MR-node l
is considered jammed. The total jammed area AI is computed
as the total surface of jammed MR-nodes. The cost function is
given by the percentage of jammed area for a given frequency
plan.

CQoS(S) = AI/Atotal (5)

III. A TABU SEARCH ALGORITHM

First greedy algorithms based on hill climbing approaches
have been used, but they have been shown to be really
ineffective [22] as they only converge to local minima. Then
the Tabu Search Algorithm has been developed to correct
this local search problem by allowing non improving moves
[13]. Other methods like Simulated Annealing or Genetic
Algorithms [12] are also frequently used. Models based on
Artificial Neural Networks or metaheuristic methods (like Ant
Colony Optimization) have been developed too.

Our search algorithm relies on a tabu search metaheuristic
firstly suggested by F.Glover [8]. It corresponds to a local
search algorithm whose main feature is its ability to store
information about the choices done at previous iterations. The
basic idea of the method is to partially explore the search
space of all feasible solutions by a sequence of moves. At
each iteration, the move carried out is the most promising
among those available. The optimum solution is updated only
if the solution found is better than the current optimum. A list
of moves already done is stored to prevent the search from
cycling round on the same set of solutions. The key elements
of the algorithm we chose to implement are inspired by [22]:

• candidate solutions: The representation of a frequency
assignment S is given by the list of elements ci containing
the index of the channel assigned to transmitter i:

S = (c1, c2, ..., ci, ..., cN ) (6)

N transmitters are considered.
• Neighborhood: The neighborhood of a solution is based

on a function that binds a solution S to a set of neighbor
solutions. The neighbor is herein defined such as a
solution Sn is a neighbor of a solution S if one and
only one channel ci, i ∈ [1, N ] of Sn differs from S.
The neighborhood of a solution of N transmitters with
Nc channels is of N × Nc solutions, which is far less
than the size of the global set of solutions: NN

c . At each
search iteration, the algorithm moves to the best solution
chosen among the neighborhood of the current solution.

• Tabu list: This list stores the last moves carried out,
which, for this reason, are forbidden. It can be referred
to as the short-term memory that enables the algorithm
to escape from local minima and withdraw cycling round
during the search process. In this implementation, our
tabu list stores a pair (t, c) where t is the transmitter and
c the channel identifier. A solution of the neighborhood
which has the channel c assigned to the transmitter t is
tabu and can not be selected for the next search iteration.
After a move from S1 to S2, the couple (t, c) that has
been changed to get the new solution S2 is stored in the
tabu list.
This short term memory has a length T that can be
fixed or chosen randomly at each iteration. Montemanni
et al. highlight in [22] the benefits of a dynamic length
implementation that supports better convergence proper-
ties. At each iteration the length T of the tabu list is
randomly chosen between two user-defined parameters
Tmin and Tmax. When T is reduced, the oldest moves,
which exceed the new length of the list, become feasible.
The initial value of T is chosen in the same way.

• Termination criteria: The algorithm stops when one of
the following termination criteria is satisfied:

– the number of iterations has reached the maximum
number of iterations nmax,

– the number of successive iterations without improve-
ment of the cost function has reached a specified
number NSAmax,

– the cost function returned value is equal to zero.

• Parameter values: The parameters used were tuned em-
pirically after several tests as it is recommended in [5].
We fix Tmin = N/5 and Tmax = N/2 with N the
number of transmitters. In the same way, we fix NImax =
NSAmax = 1000.

IV. RADIO COVERAGE PREDICTION MODELS AND AP
PLANNING

The FAP modeling presented in section II and the results
provided in section V heavily rely on the quality of the



Fig. 2. This figure shows the usual ParFlow node (left), the MR-node (right),
and their outward flows.

simulations. The propagation model being used in this work
is now described.

A. Usual Propagation models

Two different approaches have mainly been used depending
on the applications:

a) Empirical models: They have firstly been devoted to
outdoor environments. They are based on path-loss models as
described, for instance, in [21], [24]. For Indoor environments,
they suffer from a lack of accuracy because of the difficulty
to take correctly the obstacles into account, although many
efforts have been devoted to their improvement [3], [14].

b) Deterministic models: Ray tracing based approaches
(see for instance [19], [26]), aim at computing a set of
transmitted and reflected rays issued from the transmitter. Ray-
tracing has been shown really efficient for urban or semi-
open environments where only few significant diffractions and
reflections hold for each ray. On the contrary, severe Indoor
environments exhibit multiple diffraction and numerous reflec-
tions leading to a difficult trade-off between computational
load and realism. This trade-off is the heart of more recent
studies: image methods [1], [15], ray splitting [7], frustum ray
tracing [25] and dominant path [28] are ones of them.

A discrete formulation approach has been recently proposed
in [9]–[11]. This method is based on a peculiar finite difference
approach using a frequency domain transmission line matrix
(TLM) formalism. This method exploits the ParFlow theory
developed by Chopard et al. [4] for GSM prediction in urban
environment. A multi-resolution (MR) algorithm has been
proposed for the frequency domain formulation of ParFLow
(FDPF) equations leading to the MR-FDPF algorithm. The
main elements of this approach are provided below. Its main
advantage holds in the fact that all reflections and diffractions
are taken into account, with no impact on the computational
load.

B. MR-FDPF Model

In the ParFlow formulation the environment is discretized,
each pixel having inward and outward flows associated with.
The electrical field associated with each pixel is computed as
the sum of all incoming flows. In steady-state, incoming flows
in a node m are scattered according to the stationary scattering

Fig. 3. The pyramidal structure.

equation:

outward flows:
−→
F (m) = Σ(m) · ←−F (m)

inward flows:
←−
F (m) = N (

−→
F (m)) + S(m)

(7)

where Σ(m) is the local scattering matrix, N (F (m)) the
vector of neighbor flows, and S(m) the radiating source.
Outward flows are illustrated in Fig.2(a).

Gorce et al. proposed in [9] to formulate a multi-resolution
decomposition of the problem. The starting point is the
definition of a multi-resolution (MR) node, as illustrated in
Fig.2(b). A MR-node is a rectangular group of pixels having
exchange flows on the border only. A scattering matrix can be
associated with this node, allowing to compute outward flows
as function of inward flows. The multi-resolution feature is
obtained by a recursion that divides an initial MR-node, as
illustrated in Fig.3. The MR recursion starts from the head-
node encompassing the whole environment, and divides each
MR-node into children nodes. Recursion stops when each
branch is terminated by a standard ParFlow node (i.e. a pixel).
A way to build a non regular binary tree to optimize the
fit between nodes and walls and other obstacles has been
presented in [6].

This method leads to a very efficient computational ap-
proach where the coverage calculation is split up into two
stages:

• The preprocessing stage: Exploiting the environment
characteristics, the binary tree is built and the scattering
matrix of each MR-node is computed. This phase con-
sumes the most computational and memory loads due
to the needed successive matrix inversions. However this
stage is done only once for an environment whatever the
source location is.

• The propagation stage: In this stage coverage maps for
each transmitter are computed. Starting from the source
pixel, the father node of a source node is considered
itself as a source node. Corresponding outward flows
are computed from the child source node thanks to the
upward matrices computed during the preprocessing. This
is the bottom-up phase. When the head-node is reached,



Fig. 4. left: a test environment, center: homogeneous MR-nodes coverage
map, right: maximum resolution coverage map

the top-down phase consists in the propagation of inward
flows of each source MR-node toward its children nodes.
The process either ends at pixels, or stops at nodes having
a predefined size.

This approach allows to reach quickly large homogeneous
MR-nodes, referring to MR-nodes only containing free-space
pixels only. It gives more sense to compute a mean power from
inward flows over wide MR-nodes to save computational time.
Figure 4 shows an example of a source coverage in a 20× 30
meters environment at two different resolutions (homogeneous
resolution and pixel resolution). The preprocessing computa-
tion time is measured at 4.3s while the source propagation
time respectively equals to 3.6s at the pixel resolution and
only to 0.5s at the homogeneous node level. In this figure, the
good fit between both resolutions can be observed.

An experimental validation has been performed and simu-
lations obtained after calibration exhibit a root mean square
error (RMSE) of less than 5dB [23].

V. RESULTS

A. Reference FAP and QoS-FAP algorithms results

Eleven APs have been placed in the environment as pre-
sented in Fig. 5. Ten runs of both Reference FAP and QoS-
FAP process have been started on this problem instance.

Table II presents the mean value and the standard deviation
of the reference cost function Cref and the QoS-FAP cost
function CQoS computed with the 10 solutions obtained for
both algorithms. P (SINR > 10) is the percentage of surface
area where the SINR is higher than 10 dB, allowing a data
rate of 5.5 Mbps.

Reference FAP QoS-FAP
mean σ mean σ

Cref 37.7 0.8 - -
CQoS 36.4% 8.6 0.6% 0.3

P (SINR > 10) 76.5% 7.6 99.9% 0.1

TABLE II

COMPARISON BETWEEN REFERENCE FAP ALGORITHM AND QOS-FAP

ALGORITHM. NUMERICAL RESULTS WERE OBTAINED AFTER 10 RUNS.

Table II highlights the efficiency of the QoS-FAP criterion.

Fig. 5. SINR map for the best solution obtained with the Reference algorithm.
The numbers on the figure correspond to the channel numbers. Gray points
in the building correspond to potentially jammed mobile receivers.

Fig. 6. SINR map for the best solution obtained with the QoS-FAP algorithm

With QoS-FAP, a maximum global jammed area lower than
1% (max(0.6 ± 0.3)) is obtained while the reference FAP
criterion leads to a minimum global jammed area of 27.8%
(min(36.4± 8.6)). QoS-FAP obviously outperforms the Ref-
erence FAP algorithm and can enhance frequency plans.

The SINR map obtained with the best solution provided by
the Reference FAP is represented on Fig. 5. As the criterion
only takes interference between APs into account, only the AP
locations are guarantee to be free of interference. The SINR
map obtained with the best solution provided by the QoS-FAP
is represented on Fig. 6. The potentially jammed receivers seen
on Fig. 5 are no longer jammed on Fig. 6.

Thus, the quality of the QoS-FAP frequency plans allows
to increase the density of APs in an environment and also
guarantees high data rates for each cell.

B. Uplink SINR

To test the efficiency of our QoS-FAP result, it is worth
to characterize how interference occur when the network is
working. Therefore, a set of 12 users has been placed in the
network and their coverage maps computed with our prediction
model. For both channel assignments, a SINR map has been
computed corresponding to uplink transmissions. Those maps
are presented in Fig.7 and Fig.8. Users are represented by blue
crosses and are linked to the AP providing the strongest signal.

Although our QoS-FAP approach is based on a downlink
modeling, jammed area corresponding to these uplink trans-
missions remain sparse. The percentage of surface area where
the SINR is lower than 10 dB is given by P (SINR < 10) =



Fig. 7. Uplink SINR map for the best solutions of the Reference Algorithm

Fig. 8. Uplink SINR map for the best solutions of the QoS-FAP Algorithm

1.5% for the uplink context, whereas it is of P (SINR <
10) = 0.5% for the downlink one.

For the reference solution, the uplink jammed area is also
comparable to the downlink jammed area as P (SINR <
10) = 10% in the uplink case and P (SINR < 10) = 11% in
the downlink one.

VI. CONCLUSION

In this paper a tabu-based heuristic and a QoS-based
interference criterion dedicated to the frequency assignment
problem in wLAN deployments have been detailed. The cri-
terion is based on a realistic interference model, expressed at
mobile user positions. The proposed QoS-based FAP algorithm
presented herein is interesting because it not only tries to
maximize SINR, but ensures getting the best available class
of service for a fixed AP distribution by minimizing the loss
of overall throughput due to interference. It is shown on an
example that the proposed QoS-FAP solution reduces as well
the uplink and the downlink interference level.
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