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ABSTRACT

The multi-resolution frequency domain ParFlow (MR-
FDPF) algorithm has been developed since 2001 for the
purpose of Indoor wave propagation simulation. This algo-
rithm derives from a TLM like formalism, and implements
a multi-resolution (MR) approach to compute efficiently
full coverage of several access points (AP). This approach
is well-designed for a wireless LAN planning because the
computation load required to process an AP candidate is
fast. The heart of the proposed approach holds in the MR-
nodes that are obtained by gathering recursively pixels into
bricks. This requires a MR binary tree structure which
should be adapted to the environment. In this paper, dif-
ferent strategies are evaluated to compute this binary tree.
Computation load and memory consumption are evaluated
on a real example. It is shown that an appropriate choice of
the binary tree may decrease significantly the computation
load associated with the method.
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1 Introduction

The generalization of Indoor radio systems (Bluetooth,
WiFi , UMTS, ...) deployed in personal or professional
environments is exploding. This calls for more efficient de-
sign and planning tools. Because Indoor propagation suf-
fers numerous reflections and diffractions the prediction of
wave propagation is difficult to assess. This problem has
been tackled for a couple of years and several tools have
been developed. The heart of these tools is the wave propa-
gation engine which aims to predict the behavior of waves
in realistic environments. Two kinds of wave propagation
engines are widely used: empirical and deterministic ap-
proaches.

e Empirical approaches (see for instance [1]) are based
on statistic models of propagation. These methods al-
low to predict the average behavior of waves in typ-
ical environments but surely not to provide accurate
predictions in closed areas.

e Deterministic approaches have been developed to im-
prove the propagation prediction in small dense urban

email: katia.runser @insa-lyon.fr

email: jean-marie.gorce @insa-lyon.fr

areas and indoor environments [2, 3], for which em-
pirical approaches failed. By analogy with the light
propagation, these approaches are based on geometric
optic (G.O.) laws and computation engines take their
origin in the world of image rendering. In these meth-
ods, rays are launched, attenuated and reflected de-
pending on the obstacles they meet during their travel.
Because these approaches are based on a determin-
istic model, they provide more accurate results than
empirical approaches. They suffer however of a high
computation load for wide open areas.

Compared to these approaches, only few works tack-
led the propagation simulation with finite difference ap-
proaches. The reason is of course the computation load
which is particularly high in these approaches. However
in 1998 Luthi et al.[4, 5] have proposed a new discrete ap-
proach, ParFlow (Partial Flows), based on the Cellular Au-
tomata formalism. Although the theoretical background is
different, ParFlow when applied to electromagnetic waves,
is similar to the Transmission Line Matrix method [6] with
specific dispersion nodes. In order to increase the computa-
tional efficiency, Luthi [4] has proposed an implementation
on parallel architectures, taking advantage of the Cellular
Automata structure. It was applied for GSM mobile sys-
tems in urban environments. The main advantage of this
approach is that all propagation effects including reflection
and diffraction are naturally taken into account. But the
required resolution is in turns very high and some approxi-
mations are required to perform the propagation simulation
under a reasonable time.

At our knowledge, this method has never been ap-
plied such as, in Indoor environments. In 2001 [7], we
have derived in the frequency domain an efficient algorithm
to solve this problem in two dimensions (2D); see section
2. This algorithm is based on a multi-resolution approach.
Conventional TLM nodes are firstly gathered two by two
leading to nodes of higher level. These nodes can be gath-
ered once more leading to other nodes, and so on until only
one node encompasses all the environment. A binary tree is
thus built, gathering progressively all the pixels of the im-
age. To build this tree, ascending or descending approaches
can be used, as detailed in section 3. In ascending ap-
proaches, nodes are gathered two by two recursively, while
in descending ones, each node is settled into two children,
starting from the head node. The way the binary tree is



built plays a fundamental role on the computation load and
memory consumption of the method, as detailed in section
4. This paper focuses on this aspect and proposes an effi-
cient heuristic to optimize computation and memory loads.

2 MR-FDPF Formalism

2.1 The Conventional Node in Frequency
Domain

Figure 1. 4 inward flows (a) and 4 outward flows (b) are
associated with each pixel.

In a standard frequency domain approach starting ei-
ther from TLM or ParFlow theory, the pixels are nodes over
which the field is computed, and each node is linked by
branches with its neighbors. The TLM or ParFLow equa-
tions then reflect the way flows propagate on this grid. Four
inward and four outward flows are associated with each
node as illustrated in Figure 1.

The propagation of a source is managed by the tran-
sition line matrix providing the outward flows of a node
m = {4, j} according to the inward flows:

F(m) = X(m)- F (m) + S(m) (1)

where X (m) is the local scattering matrix and the flow vec-
tors are given by
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The links between adjacent node flows are given by
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The FDPF algorithm can be implemented in a modified cel-
lular automata framework [8] leading to

Algorithm 2.1
Initialization
—
VYm, Set F,..(m) = F (m) = S(m)

Do  (until stability is reached)
— —
Update inward flows: Vm, F (m) = N (F (m))

Accumulate : Ym, F,..(m) =F,..(m) + <f(m)

— —
Compute outward flows : Vm, F' (m) = X(m) - F' (m)

Until convergence ((f (m) < F,,.(m))
with

-
N(F (m)) = J;LV (i 4 4
5
fn

A brick

Figure 2. A MR-node is defined as a rectangular set of
pixels.
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Figure 3. Inward flows (a) and Outward flows (b)are asso-
ciated with each MR-node.

The multi-resolution FDPF is developed on the bloc
concept derived for the first time in 2001 [7], in which a
multi-resolution node (MR-node) has been defined as a rec-
tangular set of aggregated pixels. Shlepnev [9] proposed



a similar concept associated with the TLM formalism and
called the brick. Indeed, the MR-node is nothing else than
arectangular piece of space. The MR-node is a rectangular
set of pixels and is defined by its size (Z = (A., A})), and
the position of its top-left pixel (P = (ps,py)) : B(Z, ]_-7))
(see Fig. 2). All the flows belonging to a MR-node b are
gathered into three vectors. In one hand, inward and out-
ward flow vectors gather the flows located on the bounds of
the MR-node as illustrated in Fig.8 a and b. They are given
by:
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In the other hand, the inner flow vector F (b) gather all the
other flows included in the MR-node: these flows are lo-
cated on branches connecting two pixels of the brick and is
given by

F(b) = [2(0,0), [a(0,1), ..., fo(N, —1,Ne—2),
Fur(0,1), Finr(0,2), ..., fr (N, — 1, Ne — 1),
74(0,0), Fa(0,1), ..., fo(N, — 2, Ne — 1),
Fn(1,0), Fn(L,1), ... fu(Ny — 1, Ne — 1)](';)

where the indices refer to the position inside the MR-node.
The scattering matrix of a MR-node B provides the
links between outward and inward flows, as for the usual
node. This scattering matrix may be expended into 16 sub-
matrices according to the direction of concerned inward
and outward flows, leading to
O'EE((B)) O'EW((B)) O'ES((B)) O'EN((B))
| B) o B) o B) o B
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2.3 The Tree Structure

Let now a MR-node C, be settled into two child MR-nodes
A and B, according to Fig.4. The inner flows associated
with this bloc are now not all the flows inside the node but
only the exchange flows between nodes A and B as illus-
trated in Fig.4.

It may be shown that the scattering matrix of MR-
node C' can be computed from those of its children [8],
according to

(C)=U(C)-1(C) - D(C) ®)

where U (C), I(C) and D(C') are respectively the upward,
the downward, and the inner matrices associated with MR-
node C and given by
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Figure 4. the flows of a MR-node C are related to the flows
of its two child bricks.

and
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with
tep(C) = (Is = 0w (A) - owp(B) ",
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and

[0] opp(B)
Uw[vg](A) i [023)
asw (A4) sﬁJ] an

[0] ong(B)
onw(A) [0]

It should be noted that these matrices correspond to
a vertical cutting of MR-node C. For an horizontal cut-
ting,these matrices are similar but with permutation of in-
dices E (East) and S (South) in one hand, and of indices W
(West) and N (North) in the other hand.
It can be emphasized that only I (C') and ¥(C) should be
computed and stored for each MR-node, the others pointing
directly to parts of its child MR-nodes scattering matrices.
A binary tree thus can be built, as described in section

3. A regular structure which is a specific case, leads to a
pyramidal tree as illustrated in Fig.5. In such a structure, a
(£)-level MR-node contains two (¢ — 1)-level MR-nodes.
The pre-processing phase consists in building this tree
structure, and computing the scattering matrices associated
with each MR-node.

U(C) =

2.4 Computing a Source Coverage

Once the binary tree is created and scattering matrices com-
puted, the propagation can be done in two steps : the up-
ward and the downward. The upward step starts from the
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Figure 5. The regular multi-resolution approach is based
on a regular binary tree for assembling MR-nodes.

source node, and computes the propagation inside its fa-
ther MR-node. When its outward flows are computed, the
father node stands for the new source node. The propa-
gation is then computed in its own father node, and so on
until the head node of the binary tree is reached. The two
following elementary operations are done in each father of
source node

e the steady-state inner flows of father MR-node (C)
propagate inside C, as in an isolated world, as illus-
trated in Fig.7(a). Steady-state flows are then given

by
0 | fw(B)
F(C)=1I(C) < ]%(A) ) (12)

e The second propagates these steady-state inner flows
toward outward flows as illustrated in Fig.6(b).

F(C)=U(C)-F(C) (13)
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Figure 6. Upward step. In the left, the MR-node A is a
source and Est flow propagates inside C; the steady-state is
computed. In the right, the inner flows are propagated to
outward flows providing the flows of the MR-node C.

The downward step implements the propagation of inward
flows to inner flows independently in each MR-bloc, ac-
cording to Fig.7(c) and to
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Figure 7. Downward step. Inward flows of MR-node C
propagate inside C leading to inward flows of MR-nodes A
and B.

3 Algorithms for Building Binary Trees

3.1 Constraints

A regular binary tree is the easiest to be built. However, it
is shown in this paper that it is neither the only way, neither
the most efficient as described in this section.

The efficiency is considered with respect to four criteria:

e The computation time of the pre-processing step, ded-
icated to the computation of the two matrices X () and
I() associated with each MR-node.

e The memory needs, to store both matrices.

e The computation time needed to compute the cover-
age of a source over the whole environment at the
pixel resolution.

e The computation time needed to compute the cover-
age of a source but at a rough resolution.

It is indeed possible to reduce slightly more the computa-
tion time associated with the source propagation by stop-
ping the downward propagation at MR-nodes correspond-
ing to free-space homogeneous nodes. A free-space ho-
mogeneous MR-node is defined as a node containing only
air cells. For these nodes, the mean received power of all
included cells is evaluated directly from the inward flows.
This reduces the amount of downward propagations per-
formed over the whole space and the resolution used for the
coverage prediction is adapted to the heterogeneity of the
environment. In wide free space areas, the mean received
power is computed over wide MR-nodes, while in dense
areas (numerous obstacles) the received power is computed
over smaller MR-nodes. This is illustrated in section 4.

It appears clearly that the main computation load and
memory consumption in the pre-processing phase is due
to the computation of scattering matrices. Thus, a compu-
tation and memory loads are theoretically associated with
each MR-node. And higher is the MR-node size, higher are
the loads. It is obvious to show that the computation load
evolves in O(NN?3) while the memory consumption evolves
in O(N?), where N is the length of exchange flow vectors
between child nodes. However this can be reduced when
considering that some MR-nodes are sometimes similar in



the environment. Two MR-nodes are said similar if they
have same size and contain exactly the same cells. In this
case, their matrices are exactly the same and they can be
computed and stored only once. It is therefore interesting
to build a binary tree privileging the reuse of same MR-
nodes. For this purpose, a brick is defined as a model of
MR-node. A MR-node is thus a node having a father, two
children, flow vectors and a reference to its model : the
brick. The brick is a MR-node model having two children,
not an explicit father but several unknown fathers, no flows
but scattering matrices.

The aim of the preprocessing phase is twofold: build-
ing the binary tree (very fast) and building the brick data-
base with the computation of associated scattering matri-
ces.

3.2 Descending Approach

An ascending approach would consist to start from the pix-
els, and to gather them recursively until all are gathered
into the head node of the binary tree. The advantage would
be to take into account more accurately the local arrange-
ment of walls and others obstacles. However, an ascending
approach cannot warrant both to preserve the rectangular
form of MR-nodes and the binary nature of the tree. This
would lead globally to an overhead computation and mem-
ory loads.

In the opposite, the descending approach tackles the
problem from the head node, and divide it into two chil-
dren MR-node. Then each child is itself divided, and so on
until the unitary nodes are reached. Several empiric algo-
rithms can be developed to decide how each MR-node is
divided. Keeping in mind the aim of reducing the memory
needs, a first idea could be to try to minimize the number of
MR-nodes. It is in this case obvious to show that the best
approach consists in cutting each MR-node along a line in
the middle of its higher length. This leads to the regular
binary-tree. However this is probably not the most efficient
cutting. Indeed, memory and computation loads depends
rather on the number of bricks than on the number of MR-
nodes. It appears indeed more efficient to try to reduce not
the number of MR-nodes but rather the number of bricks
(reference MR-nodes).

In this case, another proposal is to try to align cuts
in MR-nodes along walls and obstacles, to reach as soon
as possible homogeneous MR-nodes. To implement this
approach, the following rules are followed:

o Select the longer side of a MR-node, (N pixels).

e Compute the number of discontinuities D(7) for each
possible splitting line /;; Vi € [1; N — 1]. In the case
of a vertical cut, the number of discontinuities D(7) is
given by the number of lines j for which the material
indices n(i, j) and n(i + 1, 7).

M-1
D(i)= ) (n(i—1.7)#n(i.7) (15

Jj=0

e Split the bloc at the index 4,, such as D(¢) is maxi-
mum.

im = argmaz D(7) (16)
i€[1;N—1]

It however appeared that splitting MR-nodes along the
highest discontinuity increases sometimes strongly the pre-
process computation load. Indeed, this approach favors
higher MR-nodes than the regular splitting. We propose
a tradeoff between both approaches by weighting the pre-
vious criteria as follows:

im = argmax D(i) - C(1) (17)
i€[1;N—1]
where . »
oy =1-|-—2 (18)
co

with co the half-length of the node. p is given by

. (19)
K ifN>L

{0 ifN < L,
p =

where K and L are settings parameters. Their meaning is
the following. For MR-nodes having sides smaller than L,
the splitting is discontinuity based only. For larger MR-
nodes the splitting line is chosen as a tradeoff between dis-
continuities and distance from the middle of the node.

3.3 Implementation

The method has been implemented on a JAVA virtual ma-
chine for portability purposes. Matrix computations are
down using the COLT library developed by the CERN,
Geneva. However, because of the high number of ma-
trix inversion and multiplications done during the pre-
processing phase, and because JAVA is not optimized for
matrix computation, a Java interface (JNI) has been devel-
oped to perform calls to the BLAST (Basic Linear Algebra
Subprogram)library. The BLAST library is a freely dis-
tributed library including procedures for intense matrix cal-
culus which can be compiled specifically for each system.
This approach has allowed us to save computation time.
The whole computation time for the preprocessing phase
decreased by a factor of 8 for a 500 x 500 pixels. Further-
more, higher is the environment size, higher is the saving
time factor. The following results have been obtained on a
PC pentium 2GHz.

4 Results

The test environment of about 120m x60m contains a build-
ing floor in which a wLAN has been deployed. The simu-
lations are done with resolution step of 20cm. In order to
respect the resolution criteria given in [4, 8] and requesting
that the resolution should be at least six times lower than
the wavelength, the simulation frequency used is not the



Figure 8. Coverage maps for 3 access points obtained at homogeneous bloc level (a) and at pixel level (b). Red, green and blue

stand respectively from -30dBm down to -100dBm.

Table 1. computation and memory loads

method

regular optimal disc.
(L=32,K=6)

memory 48 MO 62 MO 87 MO
CPU time 17s I1s 32s

brick H20 37% 55% 54%

true frequency (2.4GHz), but rather a lower one. The im-
pact of this approximation has been detailed in [10]. Mean
errors between measurements and simulations were in the
order of 5dB.

The final results concerning the preprocessing phase
are summarized in table A. The lower memory use is ob-
tained with the regular tree. However, it corresponds to
a small number of homogeneous bricks. Only 37% of
the whole free-space is represented by large homogeneous
nodes (size > 20pixels). In the opposite, with the dis-
continuity base splitting algorithm the CPU time increases
by a factor of 3 and the memory needs by a factor of 2.
The modified approach makes a trade-off between both ap-
proaches. With the use of the modified approach, the prop-
agation of a source lasts 450 ms to reach the homogeneous
level and 8 seconds to reach the pixel level. the resulting
coverage maps are provided in Fig.4.

5 Conclusion

In this paper, implementation and computational perfor-
mances of the MR-FDPF approach are presented. An orig-
inal approach is proposed to optimize the computation time
required to compute the coverage of access points in Indoor
environments. With the adaptive tree built as proposed the
preprocess time is about few seconds and the propagation
to the homogeneous bloc is under one second for the tested
environment (600x300 pixels). This is very useful to imple-
ment planning algorithms for which hundreds AP positions
have to be tested.
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