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Abstract

Deriving the complete distribution of the end-to-end delay in a wireless multi-

hop network is of paramount interest when delay-sensitive flows have to be

conveyed over such networks. First works have proposed models to derive the

total delay distribution of networks assuming the well-known IEEE802.11 DCF

medium access (MAC) protocol. Current derivations can be decomposed into

two main steps: i) the calculation of the total delay probability generating

function (PGF) and ii) its numerical inversion. We show in this paper that

there is a need for a thorough performance evaluation of these models since both

steps introduce errors, naming modeling and inversion errors. We argue that

both types of errors have to be analyzed separately to characterize the accuracy

of the analytical derivations of the literature. Therefore, this paper defines two

performance evaluation metrics that measure the magnitude of both types of

errors. Both metrics are illustrated to select and optimize the most accurate

model to calculate the single-hop end-to-end delay distribution of nodes using

the IEEE802.11 DCF MAC protocol. The most accurate model is extended to

calculate the end-to-end delay distribution for a 2-hop wireless communication.
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1. Introduction

Wireless networks based on the IEEE 802.11 technology [1] are now de-

ployed widely for non-critical applications. The flexibility of wireless connectiv-

ity is gaining momentum in the context of real-time networks (wireless industrial

fieldbuses, wireless embedded networks, etc..) [2, 3]. The main pitfall of wireless

communications is of course the increased unreliability the medium suffers from

due to interference and pathloss compared to shielded wires. Moreover, main-

stream IEEE 802.11 technology is based on CSMA/CA (Carrier Sense Multiple

Access with Collision Avoidance), which is non-deterministic but highly flexible.

Carrying soft real-time data over wireless has been shown to be a feasible

option in practice [3]. However, to be able to roll out such a technology, it is

necessary to calculate the worst-case end-to-end delay the network offers to the

real-time applications using it. If a CSMA/CA type of medium access control

(MAC) protocol is considered, a probabilistic definition of the worst-case delay

has to be taken into account, which relies on the full knowledge of the delay

distribution [4]. The probabilistic worst-case delay can be defined as the delay

dwc for which the probability P (d ≥ dwc) to find a delay larger than dwc is

arbitrarily small (e.g. smaller than δ = 10−9 for instance).

The building block of this approach is the precise and accurate knowledge

of the delay distribution. This delay distribution, defined more precisely by its

probability mass function (PMF), can either be computed by simulations or

using analytical models. This paper focuses on the analytical derivation since

simulation-based ones do not scale and are too computationally intensive. Only

a few works [5, 6, 7, 8] discuss the analytical derivation of the full delay distri-

bution of CSMA/CA networks. Most references on the performance evaluation

of IEEE 802.11 [5, 6, 8, 9, 10] mainly focus on the mean delay calculation since

it is sufficient for the design of non-critical wireless networks.
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The main works that discuss the delay distribution derivation propose differ-

ent analytical models for the MAC and queuing delay. All these works calculate

first the probability generating function (PGF) of the MAC and queuing delays.

From these, they deduce the PGF of the total transmission delay which has to

be inverted to obtain the total delay distribution. For instance, in [6] and [8], the

MAC delay PGF is derived from the well-known Markov model of Bianchi [11].

An important step to get the delay distribution is to invert the PGF to obtain

the corresponding probability mass function. This step can introduce errors.

Similarly, different inversion methods have been proposed in these works.

Our aim in this paper is to propose a clear and precise performance evalua-

tion method to i) assess the quality of the analytical model leading to the total

delay PGF, ii) select the most accurate numerical inversion method. There-

fore, we define two performance measures whose aims are to characterize the

error originating from the analytical model on the one side and from the PGF

inversion method on the other side. Computing the distribution is complex,

and previous works have assessed the performance of their model only by com-

paring analytical distributions to their simulated counterpart. However, they

have neglected the numerical inversion error. We argue in this paper that to

trust the models, it is necessary to discriminate the impact of both errors on

the final distribution. Unique to this work is to provide metrics to differentiate

both types of error, which are then used to select the most accurate models and

inversion errors of the litterature.

Our performance evaluation method is illustrated on the specific case of

an IEEE 802.11 DCF medium access where two different types of queues are

assumed, naming M/M/1 and M/G/1. Our main conclusions show that a pretty

accurate model for the MAC delay is available while improvements are needed

for the queuing delay distribution derivation.

The paper opens up on examining the feasibility of extending the single-hop

theoretical delay distribution derivation to dual-hop communications assuming

simple M/M/1 queues at the source and the relay nodes. We first show that

the main assumptions of the single-hop case do not hold anymore, triggering
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an increased error for the total delay distribution. However, interestingly, the

analytical model extension for the dual-hop case provides a good approximation

of the distribution tail, which is the part required to calculate a probabilistic

worst case delay.

This paper is organized as follows. In Section 2, the overall analytical deriva-

tion of the total delay distribution is presented. Detailed calculations for the

individual MAC, queuing and total delays for IEEE 802.11 DCF protocol and

specific queues are given in Section 3. In Section 4, we introduce the method

proposed to assess the performance of a delay distribution model. This method

is leveraged in Section 5 to select the most accurate analytical model that derives

the total delay distribution of an IEEE 802.11 wireless network using DCF. We

extend the total delay derivation to a 2-hop communication scenario in Section

6. Finally, Section 7 concludes the paper.

2. Derivation of the total delay distribution

This section starts by introducing the wireless system of interest and then

presents the overall analytical derivation of the total delay distribution.

2.1. System model

In this paper, a source node is directly transmitting its packets to a desti-

nation node. These two nodes belong to a set of n stationary nodes sharing a

common wireless medium. Each emitted packet experiences a total transmission

delay dt which is measured from its time of generation to the time its sender gets

an acknowledgement (ACK) from the destination node or a maximum number

of transmission trials has been reached.

At the time of generation, the emitted packet enters the transmission queue.

Once it has reached the head of its queue, it will compete for channel access

with the other stations. If the packet has been emitted, the sender waits for

a positive ACK from the destination. Thus, the total delay is the sum of: i)

a queueing delay, which is the time for the packet to reach the head of the

transmission queue, and ii) a medium access delay (MAC delay), which is the
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time needed by the medium access protocol to either successfully deliver the

packet or drop it in case of repeated failures.

The rest of the paper recalls the analytical derivation of the distribution of

the total delay experienced by packets for an IEEE 802.11 DCF medium access

(with or without RTS/CTS mechanism). We consider a saturated traffic where

all nodes of the network always have a packet ready for transmission. Two types

of queues are investigated as well, naming M/M/1 and M/G/1. Ideal channel

conditions are assumed as well (no channel errors, no hidden terminals).

2.2. Global analytical modeling

MAC and queuing delays can be assumed as independent discrete random

variables as shown in [8]. Indeed, the MAC delay experienced by a head of line

packet is completely independent from the time it has spent in the queue. It is

just a function of the number of nodes contenting for medium access with him.

In the rest of the paper, the following notation is adopted: dt(k), dq(k) and

dm(k) represent the probability mass functions (PMF) of the total transmis-

sion, queuing and MAC delays, respectively. Dt(Z), Dq(Z) and Dm(Z) are

the probability generating functions (PGF) of total, queuing and MAC delay,

respectively. We recall that the probability-generating function of a discrete

random variable X is the Z-transform of its PMF. It is calculated following

D(Z) =
∑∞
k=0 d(k)Zk, with Z ∈ C and d(k) the PMF of X.

Since MAC and queueing delay random variables are independent, the PGF

of the total delay Dt(Z) is equal to the product of Dm(Z) with Dq(Z):

Dt(Z) = Dm(Z)Dq(Z) (1)

The mean of the total delay E[Dt] = E[Dm] + E[Dq] is obtained by summing

the mean MAC and queuing delays with E[D] = D′(Z)|Z=1.

In this work we are interested in extracting the probability mass function

dt(k) of the total delay. Therefore, we will need first to deriveDm(Z) andDq(Z),

the PGF of MAC and queuing delays respectively. Previous works have tackled

these problems with different perspectives and models. Our aim in this paper
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is to present a performance evaluation analysis of these derivations to select the

ones which provide the best trade-off between accuracy and complexity.

Having Dt(Z) =
∑∞
k=0 dt(k)Zk, dt(k) is obtained by the Z-transform inver-

sion of the PGF. This last inversion step is critical and can introduce errors.

The error introduced by the inversion is added to the error an imperfect analyt-

ical model can create. We argue in this paper that to have a clear view of the

performance of a given analytical derivation of a delay distribution, its valida-

tion has to be done in two steps. First, the model used to derive the individual

PGFs has to be validated before numerical inversion. Second, the numerical

inversion has to be tailored to reduce the inversion error.

3. PGF derivations of MAC and queueing delays

This section recalls briefly the derivation of the individual PGFs for the

MAC and queueing delays we have selected from the literature.

3.1. PGF of MAC delay

Two different types of models have been proposed in the literature to charac-

terize the MAC delay distribution. The models of Zhai et al. [8] and Vardakas

et al. [6] rely on the well-known Markov chain originating from the work of

Bianchi [11]. Vu and Sakurai have given in [7] the main lines of a different

probabilistic derivation for the MAC PGF, together with a very limited perfor-

mance evaluation. In the rest of this paper, we will focus mainly on the PGF

derivation of [6] and [8] that builds on the Markov chain model of [11].

For conciseness purposes, we refer the reader to [1], [6] and [8] for a detailed

description of the Markov chain representing the IEEE 802.11 DCF MAC pro-

tocol. From this Markov chain, at steady state, the probability τ that a node

transmits in a randomly selected time slot is extracted. In the following, the

derivation of the MAC PGF given by Vardakas et al. in [6] is summarized. The

saturated state are considered, where each of n nodes always has a packet to

transmit in its transmission queue.

The interruption of the backoff period is a result of two different events: the

collision of two or more nodes with probability p and the transmission of only
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one node other than the tagged one, with probability

p′ =
(
n−1
1

)
.τ.(1− τ)n−2 (2)

Following [6], the binary exponential backoff algorithm can be envisioned as a

function of two coordinates (x, y), where (x ∈ [0,m]) is the backoff stage and

(y ∈ [0,Wx − 1]) is the value of the backoff counter at the backoff stage x. The

authors of [6] deduce that the PGF of the duration a packet stays in stage x

with backoff counter y is given by:

Bx,y(Z) = (1−p).Zσ
1−(p′S(Z)+(p−p′)C(Z))

(3)

where Zσ is the PGF of the propagation time σ, S(Z) = ZTs and C(Z) = ZTc

are the PGFs of the duration of a successful transmission period Ts and of a

collision period Tc, respectively. They depend on the type of service (basic or

RTS/CTS) and their derivation can be found in [6]. Main DCF timing values

considered in this paper can be found in [12].

The PGF of the duration the packet stays in the backoff stage x follows:

Bx(Z) =


∑Wx−1
y=0

Bx,y(Z)y

Wx
, 0 ≤ x ≤ m′

Bm′(Z),m′ < x ≤ m.
(4)

From this, the PGF of the MAC delay is derived as:

Dm(Z) = (1− p).S(Z).
∑m
x=0[(p.C(Z))x

∏x
i=0Bi(Z)]+

(p.C(Z))m+1.
∏m
i=0Bi(Z)

(5)

It represents the duration for the packet to reach the end state (i.e. being

transmitted successfully or discarded after maximum m retransmission failures)

from the start state (i.e. beginning to be served). The first term relates to the

delay of a successfully transmission including the delay spent in the previous x

and y backoff stages, while the second term calculates the delay for dropping

the packet after m trials.

Mean MAC delay E[Dm] is given by the first derivative of Dm(Z) at Z = 1:

E[Dm] = D′m(Z)|Z=1
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3.2. PGF of queueing delay

This section presents the derivation of the queuing delay PGF, Dq(Z), Z ∈ C

for both M/M/1 and M/G/1 queues. Packets enter the queue according to a

Poisson distribution of rate λ. The packet transmission process introduced by

the DCF medium access can be modeled as a general single server whose service

time distribution is known from Eq. (5).

3.2.1. Assuming an M/M/1 queue

For the M/M/1 queue, the service time is exponentially distributed with

parameter µ. Thus, the cumulative distribution function (CDF) and probability

density function (PDF) of the service delay are F (t) = 1−eµt and f(t) = µe−µt,

respectively. The service times have an average value of µ equal to the mean

MAC delay: µ−1 = E[Dm]. The Laplace transform of F is the function Lf (s) =

µ
s+µ [13]. According to the Pollaczek-Khintchine (P-K) transform equation, the

Laplace transform LDq (s) of the queueing delay can be expressed as:

LDq (s) = s(1−ρ)
s−λ+λLf (s)

(6)

with ρ = λ/µ the server utilization. According to the relationship between

Laplace and Z-transform [13] (cf. Appendix in [12]), it is possible to deduce the

Z-transform Dq(Z) from LDq (s) by substituting s = − lnZ into (6):

Dq(Z) = −ln(Z)(1−ρ)
−ln(Z)−λ+λLf (−ln(Z))

(7)

We can derive the PMF dq(k) by inverting Dq(Z).

3.2.2. Assuming an M/G/1 queue

The M/G/1 queue is a single-server system with Poisson arrivals and arbi-

trary service-time distribution.

Similarly, Laplace transform of the queueing delay gives LDq (s) = s(1−ρ)
s−λ(1−Lf (s)) ,

where Lf (s) is the Laplace transform of the service time distribution function.

The Z-transform of the queueing delay Dq(Z) is derived as in [5]:

Dq(Z) = (1−Z)(1−ρ)
1−Z−λ(1−Dm(Z))

(8)

Similarly to the M/M/1 case, the PMF dq(k) can be derived by inverting Dq(Z).
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3.3. PGF of total delay

The PGF of the total delay is computed by multiplying the PGF of queuing

and MAC delay as given in (1). We investigate two different models, a very

simple and a more accurate one. The first one assumes an M/M/1 queue and a

Markovian MAC delay distribution as well. The second one assumes an M/G/1

queue and a MAC delay that follows the Dm(Z) PGF of (5). This last model

is very heavy to compute compared to the simpler M/M/1 one.

3.3.1. Assuming an M/M/1 queue

In this total delay derivation, we assume that the service times are exponen-

tially distributed with an average µ−1 equal to the mean MAC delay deduced

from (4). We do not use the MAC delay distribution of (5), but assume that

the packets are served by the MAC with an exponential distribution of PDF

f(t) = µe−µt of mean MAC delay µ−1 = E[Dm]. The corresponding PGF of

the exponential MAC delay is given by:

Dm(Z) = µ
µ−ln(Z)

(9)

This assumption may of course introduce errors but its derivation is much

simpler. The point of this paper is to state whether the loss due to this ap-

proximation is reasonable or not compared to a precise (and complex) M/G/1

formulation and complete MAC delay derivation.

Similarly to (1), the Laplace transform of the total delay LDt(s) is computed

as the produce of the Laplace transforms of the queuing and MAC delay PDFs.

LDt(s) = Lf (s)LDq (s) = Lf (s) s(1−ρ)
s−λ+λLf (s)

(10)

From Lf (s) = µ/(s+ µ) and (10), LDt(s) is given by

LDt(s) = µ(1−ρ)
s+µ−λ = µ−λ

s+µ−λ (11)

The Z-transform of the total transmission delay Dt(Z) can be expressed as

Dt(Z) = LDt(− lnZ) = µ−λ
− lnZ+µ−λ (12)

The mean queueing delay E[Dq] for M/M/1 queue is computed using Little’s

law as ρ/(µ− λ) and the corresponding mean total delay E[Dt] as 1/(µ− λ).
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3.3.2. Assuming an M/G/1 queue

In this case, the service times of the queue are distributed according to the

MAC delay distribution given by the PGF Dt(Z) in Eq. (5). Following (1), the

Z-transform of the total delay Dt(Z) follows:

Dt(Z) = Dm(Z)Dq(Z) = Dm(Z)(1−Z)(1−ρ)
1−Z−λ(1−Dm(Z))

(13)

The mean queueing delay E[Dq] for M/G/1 is derived by the Pollaczek-Khinchin

mean value formula [14] [Kleinrock 1975 (sec 5.6)], given through the second mo-

ment ofDm: E[Dq] =
λE[D2

m]
2(1−ρ) . E[D2

m] is given by E[D2
m] = var(Dm)+(E[Dm])2

and var(Dm) by var(Dm) = D′′m(Z)|Z=1 +D′m(Z)|Z=1 − (D′m(Z)|Z=1)2.

4. Evaluating the accuracy of a delay distribution model

This section proposes a performance evaluation measure to characterize the

accuracy of a given delay distribution model. As presented in Section 2, it is

very convenient to express the delay distribution as a PGF. Thus, to obtain

the PMF values p(k), the corresponding PGF D(Z) has to be inverted. This

numerical inversion introduces errors. Thus, we argue that directly comparing

the final p(k) with the PMF obtained by simulations ps(k) is not appropriate

to validate the quality of the analytical model. It can not discriminate the error

originating from the model itself from the numerical inversion error. In other

words, it is not possible with such a comparison, as done in [8], to know whether

the errors between the simulated and analytical PMF come from an inaccurate

model or originate from the inversion of D(Z).

We show in this paper that to have a clear view of the performance of a

given analytical derivation of a delay distribution, its validation has to be done

in two steps. First, the model used to derive the individual PGFs has to be

validated before numerical inversion. Second, the numerical inversion has to be

tailored to reduce the inversion error.

Indeed, even though the models proposed in previous works [6][7][8] are very

interesting, they suffer from a limited or not convincing performance evaluation

of the delay distribution. More specifically, the MAC delay distribution models
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of [6] and [7] show little results in their papers. Vardakas et al.[6] mostly vali-

date the average MAC delay against simulations but don’t give results for the

total distribution. Vu and Sakurai [7] present a single figure to validate their

model against simulations and [8]’s results. Zhai et al. [8] provide PMF results

for several cases, but they directly compare the PMF to the simulated distribu-

tion, completely ignoring the fact that errors can originate from the numerical

inversion of the PGF. There is clearly a need for a clean performance evaluation

measure capable of assessing the quality of a delay distribution model.

In the following, we describe first a performance measure to assess the ana-

lytical model’s accuracy. Then, we give a performance measure to calculate the

error introduced by the PGF numerical inversion.

4.1. Performance measure for the analytical model quality

From now on, we will denote the PMF (resp. PGF) values obtained by

simulation using ds(k) (resp. Ds(Z)) and the ones obtained analytically using

da(k) (resp. Da(Z)).

It is straightforward to calculate the PMF values ds(k) from the statistics of

the delay obtained by simulation. Thus, to avoid the inversion of the analytical

PGF for its performance evaluation, we propose to compare directly the analyt-

ical PGF values Da(Z), Z ∈ C to the PGF Ds(Z) derived from the simulated

PMF. The value of the PGF Ds(Z) for any complex Z ∈ C is given by the

Z-transform of the d(k): Ds(Z) =
∑∞
k=0 d

s(k)Zk. This calculation doesn’t in-

troduce any errors. Thus for a same set of complex values C ⊆ C, it is possible

to calculate the analytical PGF Da(Z), Z ∈ C and its simulated counterpart

Ds(Z), Z ∈ C. Figure 1(a) illustrates both analytical and simulated complex

sets (Da
m(Z) and Ds

m(Z)) in a real and imaginary plot obtained for the MAC

delay. Analytical PGF is derived following Eq. (5). The set of complex values

used to calculate Da
m(Z) and Ds

m(Z) is here defined as C = {re−iπh/k} where

r = 10−4/k, k varies from 1 to 50 with step 5 and h varies from −k to +k with

step 1. This set samples the complex unit circle with an accuracy of 10−8.

For a perfect analytical model, the points calculated for Da(Z) would ex-
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Figure 1: Model and inversion error in the complex space.

actly match the ones obtained by simulation (providing that the simulation is

extensive enough). From Figure 1(a), it is clear that there is an error between

analytical and simulated values. Therefore we propose to quantify this error by

defining a normalized root mean squared error (NRMSE) criterion as:

fmodel =
1

Card(C)
∑
Z∈C

√
|Ds(Z)−Da(Z)|2

|Ds(Z)|2
(14)

4.2. Performance measure for PGF inversion quality

By definition, a perfect PGF inversion is characterized by:

Z{Z−1{D(Z), Z ∈ C}} ≡ {D(Z), Z ∈ C}

where D(Z) is the PGF of a delay distribution, Z : Z ∈ C →
∑∞
k=0 d

a(k)Zk

is the Z-transform function and Z−1 : D(Z), Z ∈ C → d(k) is the inverse

Z-transform function.

In the following, the PMF obtained after inversion is denoted {d̂(k), k ∈ N}.

Thus, for a perfect inversion, there is a perfect match between the original PGF

values D(Z) and the Z-transform of the PMF d̂(k) = Z−1{D(Z), Z ∈ C},∀k ∈

N. A non perfect inversion yields a difference between the two obtained complex

sets. This is illustrated on Figure 1(b) for the MAC delay PGF calculated for

n = 5. The same complex set C is used to plot the complex PGF values of

Figure 1(a) and 1(b).
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To assess the quality of a PGF inversion method, we propose to simply

calculate, for each Z in a complex set C ⊆ C, the NRMSE between the original

PGF and the Z-transform of the delay PMF obtained by inversion, naming

d̂(k) = Z−1{D(Z), Z ∈ C},∀k ∈ N. Formally, our performance measure is:

finv =
1

Card(C)
∑
Z∈C

√
|D(Z)−Z{Z−1{D(Z)}|2

|D(Z)|2
(15)

5. Assessing the performance for IEEE 802.11 DCF

This section exploits first the analytical performance metric fmodel to assess

the quality of the models used to derive the individual MAC delay PGF and

the queuing delay PGF introduced in Section 3. Second, PGF inversion metric

finv is used to select and fine tune the numerical inversion method. Finally, the

final total delay PMF is shown based on the choices made in terms of modeling

and numerical inversion.

5.1. Simulation settings

A thorough simulation of the transmission delay is needed to compute the

analytical performance metric. This section introduces the main simulation

settings. The wireless network, composed of n nodes and one sink, is simulated

using the discrete event-driven network simulator WSNet1. Presented results

for the IEEE 802.11 DCF MAC delay are given with RTS/CTS mechanism.

As no transmission errors are assumed, the distance between the nodes is short

(maximum distance between a node and the destination is of about 7 meters),

with a maximum range of 743 meters assuming a 2-way ground propagation

model. In this case, RTS/CTS mechanism is compulsory to avoid hidden node

problems. Indeed, in [15], Xu et al. show that if the distance between the

source and the destination is above 0.56* Rtx, with Rtx the transmission range

of the source, the RTS/CTS effectiveness drops rapidly. In all our simulations,

1http://wsnet.gforge.inria.fr/

13



Table 1: Simulated mean MAC delay with respect to the simulation duration (n = 5).

Simulation

duration
Mean MAC delay (ms)

95% Confidence

interval

Number of

transmissions

12 hours 12.8189 [-35.9969, 61.6147] ∼ 3 376 000

24 hours 12.8206 [-36.1339, 61.7750] ∼ 6 742 000

30 hours 12.8202 [-36.1319, 61.7722] ∼ 8 425 000

48 hours 12.8172 [-36.1009, 61.7355] ∼ 13 473 604

the source to destination distance is much shorter than 0.56* Rtx, and thus it

RTS/CTS mechanism has to be accounted for.

The DSSS-PHY layer is assumed with a data rate of 11Mbps, using packets

of a constant size equal to 1400 bytes. Propagation delay δ is set to 1µs.

The queues implemented in the simulator have no limited size. Simulations

have been conducted for 5 days. We have extracted the results of the first 24

hours, experimenting the transmission of ∼6 742 000 packets, since the 24-hour

delay distribution was identical to the one calculated over longer periods. For

conciseness purposes, we do not show the evolution of the distributions but just

represent the average MAC delay for different durations in Table 1.

All nodes experience the same Poisson arrival rate λ. Since the MAC model

assumes saturated conditions, λ should be chosen such as to satisfy the condition

of a non-empty transmission queue. Therefore, utilization of the queue ρ should

be more than 95%. And to satisfy the P-K transform equation condition, ρ has

to be lower than 1 (i.e. λ < µ). Since we have set µ−1 = E[Dm], values for λ

are calculated for each network size using λ = 0.95 ∗ 1/E[Dm]. Arrival rates for

network sizes of n ∈ {5, 15, 30} are given in Table 2.

Table 2: Queue parameters to reach saturation

Number of nodes λ (packet/ms) µ (packet/ms)

n = 5 0.07799 1/12.1808

n = 15 0.02665 1/36.4052

n = 30 0.01359 1/71.3596
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5.2. Assessing the performance of the MAC models

This section illustrates our analytical performance measure fmodel on the

following two models of IEEE 802.11 DCF MAC:

1- the Markov chain based MAC PGF of [6], [8] of Eq (5).

2- the simple exponential MAC PGF of Eq. (9).

The PGF of the first model is complex to evaluate while the second one is

very light, since it simply necessitates the derivation of the mean MAC delay.

Table 3: E[Da
m], E[Ds

m], ∆ = |E[Da
m]− E[Ds

m]| (ms) and Confidence interval (95%)

Number of nodes E[Da
m] E[Ds

m] ∆ Confidence interval

n = 5 12.1808 12.1123 0.0685 [-29.2188, 53.4434]

n = 15 36.4052 36.4096 0.0044 [-137.3915, 210.2106]

n = 30 71.3596 71.1140 0.2456 [-263.0347, 405.2628]

Most of the works on DCF modeling have been validated by comparing

the mean MAC delay to the one obtained by simulations. Table 3 gives the

analytical and simulated mean MAC delays obtained for different network sizes.

By definition, the mean delay of the simple exponential MAC is set to the mean

delay of the Markov MAC model (referred as E[Da
m]). Simulated and analytical

mean MAC delays are really close as shown in Table 3. However, looking at

Figure 1(a), given in p.12, the analytical and simulated values of Dm(Z) do not

coincide for the Markov MAC model. Just comparing the mean MAC delay is

not convincing, which calls for a more precise performance evaluation.

Table 4: Comparison of MAC distributions

Number of nodes n = 5 n = 15 n = 30

fmodel for Markov model 0.0547 0.0789 0.0729

fmodel for Exponential MAC 0.1736 0.1258 0.1040

In Table 4, fmodel quantifies the error induced by both MAC models (before

inversion) compared to simulations. Not surprisingly, the Markov MAC model

outperforms the simple exponential MAC. However, an interesting observation
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Figure 2: Comparison of Da
q (Z) and Ds

q(Z) for M/G/1 and M/M/1 queue with n = 5.

is that the simple exponential MAC becomes better as the number of nodes in

the network increases.

5.3. Assessing the performance of the queueing models

This section assesses the queueing delay models (M/M/1 queue of Eq (7)

and M/G/1 queue of Eq (8)) using fmodel.

For the M/G/1 queue, fmodel = 0.03387 and for the M/M/1 queue, fmodel =

0.10515. Not surprisingly, M/G/1 outperforms the M/M/1 queue, but at the

price of a much more intensive computation load. To illustrate the error, Fig-

ure 2 plots the analytical and simulated PGF values for M/G/1 (Figure 2(a))

and M/M/1 (Figure 2(b)) queues. There is still a noticeable error between these

infinite queuing models and the simulated values. Thus, there is still room for

improvement in the selection of the queuing model.

5.4. Assessing the performance of PGF inversion methods

In the first part of this section, the proposed PGF inversion performance

metric is leveraged to select the most efficient numerical inversion method. In

the second part, it is used to parameterize the numerical inversion method

selected previously for both MAC and queuing models.

5.4.1. Considered PGF inversion methods

Inverting the probability generating function can be done by repeatedly dif-

ferentiating and evaluating it at Z = 0: d(k) = D(k)(Z)
k!

∣∣∣
Z=0

. This type of
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inversion has been done by Zhai et al. in [8] using numerical differentiation

techniques and symbolic mathematical software. However, it is often difficult

to achieve desired accuracy with numerical differentiation techniques, especially

for large kmax (kmax being the number of PMF values obtained after inversion).

It is also difficult to invoke symbolic mathematical software when the generat-

ing function is only expressed implicitly. Fortunately, in our setting, numerical

inversion is a viable alternative that has been chosen by Vardakas et al. [6] and

Vu and Sakurai [7]. The numerical inversion of a PGF is based on the Lattice-

Poisson (LP) algorithm [16]. Two different derivations of the LP algorithm have

been proposed to numerically invert a delay PGF in [6] and [7], respectively.

The LP inversion formula of Vardakas et al. [6] is:

d(k) ≈ 1
2krk

∑2k
j=1(−1)jRe[D(reiπj/k)] (16)

with Re[D(Z)] the real part of the complex D(Z). d(k) is derived by summing

Re[Dm(Z)] over a circle of radius r = 10−γ/(2k) for an accuracy of 10−γ .

The LP inversion formula of Vu et Sakurai [7] is:

d(k) ≈ 1
2klrk

Re
[∑kl−1

j=−klD(re−iπj/(kl))eiπj/l
]

(17)

where, l = 1 and r = 10−γ/(2k), which results in an accuracy of 10−γ as well.

Both formulas are almost equivalent. The only difference is how the real part

is calculated. In Eq. (16), only the real part of D(Z) is considered, while in

Eq. (17), the real part of the whole sum is returned.

Table 5: Evaluation of LP algorithms using finv on the MAC delay PGF for n = 5.

Accuracy Vu and Sakurai Vardakas et al.

10−4 0.0232 0.1814

10−6 0.0195 0.0688

Using finv, it is possible to figure out which inversion formula is best. It

is the one with the smallest value of finv. The values are given in Table 5

for an accuracy of 10−4 and 10−6. It is the LP formula of Vu and Sakurai

which introduces the less error for both accuracies. This fact can be observed
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Figure 3: MAC delay PMF for different inversion methods (accuracy 10−6, n = 5).

as well on Figure 3(a) and Figure 3(b), which presents the MAC delay PMF

after numerical inversion.

It makes sense that Eq. (17) is correct since to inverse the PGF mathemati-

cally, a contour integral has to be computed for the complex values D(Z)Zn−1.

The real d(k) values of this integral are obtained by taking the real part of the

integration result and not by integrating Re[D(Z)]Zn−1. As a consequence, we

apply the LP formula of Vu and Sakurai for all results shown in the rest of the

paper.

5.4.2. Tuning the LP algorithm for MAC and queuing models

It can be seen in the results of Table 5 that the accuracy with which the LP

algorithm is computed directly influences the inversion error. If the accuracy is

improved from 10−4 to 10−6, the error measured with finv reduces from 0.0235

to 0.0195 for Vu and Sakurai’s LP algorithm. These values have been calculated

for the MAC delay PGF. Figure 4 plots the MAC delay PMF obtained after

inversion with the two accuracies of 10−4 and 10−6, for three different network

sizes. The impact of the improved accuracy is clearly visible on these figures.

The impact is the highest for n = 5.

Using finv and fmodel, the MAC delay distributions shown on Figure 4

present the best possible fits we have obtained with the models investigated.

18



It has been obtained using the Markov MAC model of Eq (5) and the Lattice

Poisson algorithm of Vu and Sakurai for an accuracy of 10−6.

Table 6: Impact of the accuracy of LP algorithm for the queuing delay using finv metric

Accuracy M/G/1 M/M/1

10−6 0.01477 0.01482

10−8 0.007582 0.009189

A similar analysis has been performed using finv to determine the best

accuracy for the inversion of the queuing delay PGF. Results are shown in

Table 6 for both M/M/1 and M/G/1 queues. A good improvement is obtained

by adopting an accuracy of 10−8 for the LP algorithm.
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Figure 4: MAC delay PMF for different accuracies using Vu and Sakurai’s LP formula.
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Figure 5: Analytical queueing delay PMFs for M/M/1 and M/G/1 queues vs. simulations.
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Figure 6: Analytical total delay PMFs for M/M/1 and M/G/1 queues vs. simulations.

5.5. Final queuing and total delay distributions

Queueing and total delay distributions for M/M/1 and M/G/1 are presented

in Figure 5 and Figure 6, respectively. They are given for n = 5 and 15.

The total delay is clearly dominated by the queueing delay. This is not

surprising since we are working at a very high utilization (ρ > 95%) to reach

saturated conditions. For the queuing delay, the NRMSE calculated using the

kmax PMF values is of 0.08519 (n = 5) and 0.10366 (n = 15) for the M/M/1

model and of 0.05057 (n = 5) and 0.01879 (n = 15) for the more precise M/G/1

model. It can be concluded that the M/G/1 model clearly better matches the

simulated queuing delay, but it can be noticed that the error with M/M/1 stays

limited for n = 5.
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For the total delay, the NRMSE calculated using the kmax PMF values is

of 0.08318 (n = 5) and 0.10455 (n = 15) for the M/M/1 model and of 0.05067

(n = 5) and 0.02061 (n = 15) for the more precise M/G/1 model. However,

looking at the total delay, M/M/1 seems to be a good compromise between

accuracy and complexity for small networks. In Table 4, it is clear using fmodel

that the MAC model of M/M/1 is less efficient than the Markov based model.

We can conclude that the Markov MAC model with the M/G/1 queue is the

most efficient one, but as well the most computationally demanding.

6. First extension to a 2-hop communication

The purpose of this section is to illustrate our performance evaluation method

on a simple extension of the previous computation to handle a 2-hop commu-

nication. Several important works have discussed the delay performance of

wireless multi-hop networks [17][10][18][19][20]. All these works investigate the

average end-to-end delay using various models and assumptions. To the best

of our knowledge, there are no previous works discussing the calculation of the

complete end-to-end delay distribution for a multi-hop wireless network.

In this section, we still assume ideal channel conditions (no channel errors,

no hidden terminals). Nodes work in saturated mode. The considered 2-hop

communication is depicted on Figure 7. Packets emitted by the source node

S can’t reach directly the destination D. A node R relays all packets received

from S and re-emits them to the destination on the fly. R only relays packets.

Similarly to the single-hop network, there is a total of n nodes transmitting

S

Source node: Poisson arrival with rate λ

Relay node: Poisson arrival with rate λR = 1/E[Dm]

Other node: Poisson arrival with rate λ

No node transmits in the shadow area to avoid
the hidden node problem

DR

Figure 7: 2-hop communication configuration
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packets concurrently, S and R being included in this set. All nodes but R have

the same arrival rate of λ. The arrival rate of R is given by the rate at which it

receives packets successfully from the source, which is given by λR = 1/E[Dm],

with E[Dm] the mean MAC delay of the nodes.

6.1. Analytical PGF derivation

The aim of this section is to present a simple analytical model to retrieve

the 2-hop total delay distribution. The 2-hop total delay is the time between

the date the packet enters the queue of the source S and the date it is received

at the destination. The packets that are lost are not accounted for in this first

model. The derivation we propose builds on the 1-hop delay analysis detailed

earlier. We calculate the analytical PGF of the 2-hop total delay distribution

and invert it using the Lattice-Poisson algorithm selected in Section 5.4. To

calculate the analytical PGF, we make the following two assumptions:

(1) The total delay (i.e. queuing plus MAC delay) a packet experiences on the

first hop from S to R is independent from the total delay it experiences on

the second hop from R to D.

(2) Packet arrival process at the relay follows a Poisson distribution with an

arrival rate close to 1/E[Dm].

Knowing that the PGF of the sum of independent random variables is equal

to the product of the PGF of each variable, the analytical PGF of the 2-hop

total delay Dt(Z) can be easily derived as the product of the PGFs of total

delay calculated for each hop,

Dt2hop(Z) = Dt1st(Z)Dt2nd(Z) (18)

with Dt1st(Z) and Dt2nd(Z) the PGFs of the 1st hop and the 2nd hop total

delays, respectively. For each hop, the PGF is calculated assuming:

• The MAC model is the simple exponential MAC with a mean equal to the

mean MAC delay E[Dm] extracted from Eq. (5),

• The queuing model is a simple M/M/1 queue. Thus, the 1-hop total delay

PGF follows Eq. (12)
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The numerical inversion of the 2-hop total delay PGF uses the LP algorithm of

[7] with accuracy 10−8.

The 2-hop total delay distribution derivation has been calculated for a small

network of n = 5. Figure 8 plots the error in Z space related to the model in

Figure 8(a) and to the inversion in Figure 8(b). It is clear on these plots that

the error mostly originates from the model. The two metrics proposed in this

paper bring us to the same conclusion: fmodel = 0.21664 and finv = 0.007917.

Figure 8(c) presents the 2-hop total delay distribution we are looking for.

The y-axis is plot using a logarithmic scale. Most of the errors are concentrated

for low 2-hop total delay values. The proposed distribution underestimates the

occurrence of these low delay values. Interestingly, the high delay values are

pretty well estimated with this model. This fact is explained in the next section

which discusses the main assumptions done in the 2-hop study.
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6.2. Discussion on the main assumptions

It is shown in this sections that the assumptions made are not realistic.

In this section, we will mainly discuss the second assumption. For the first

independence assumption, in most of the cases, the time spent by a packet to

travel on the 2nd hop is independent of the time it has spent traveling on the 1st

hop since R does not relay packets of other nodes. The dependence would exist

for the packets being lost on the first hop. But here the delay of lost packets is

not accounted for in the delay distribution calculation.

A more precise verification of the second assumption has been done to un-

derstand the results of Figure 8. To verify if the arrival date distribution is

Poisson at the relay node, the inter-arrival time distribution of the packets ar-

riving at R are plot on Figure 9 for n = 5 and n = 30. They are compared

to gamma, lognormal, exponential and normal distributions. From Figure 9,

the exponential distribution seems to provide a reasonably good approximation

for the smaller network (n = 5). The log-normal distribution provides a good

approximation for both cases. This conclusion is in line with the one of Zhai et

al. [8].

For n = 5, the small delay values are the ones that are less well captured by

the exponential distribution compared to the lognormal one. On the opposite,

for high delay values, the exponential distribution is as precise as the lognormal

distribution. Thus, it makes sense that the same kind of observation exists for

the 2-hop total delay distribution of Figure 8(c), where the 2-hop delay model

better captures higher delays than smaller ones.

7. Conclusion

This paper proposes a performance evaluation method to characterize the

accuracy of a delay distribution derivation. This method is capable of decou-

pling the error originating from the analytical model from the error induced

by the probability generating function inversion. The method has been illus-

trated on MAC, queuing and total delay distribution models for an IEEE DCF
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Figure 9: Inter-arrival time distribution

medium access protocol under saturated conditions for a 1-hop and a 2-hop

communication.

Future work will leverage the proposed performance evaluation method to

provide an analytical model to capture the multi-hop end-to-end delay distribu-

tion and extend the current proposition to non-saturated networks. This work

has highlighted that in the 2-hop scenario, the arrival process at the relay is not

Poisson distributed anymore. The main challenge will be then to incorporate

the log-normal inter-arrival time at the relay, using a G/G/1 queue. G/G/1

queueing has already been leveraged by Tickoo and Sikdar [21] to extract the

average single hop end-to-end delay. The main difference is that only the relay

uses a G/G/1 queue in the 2-hop scenario. Extending the model to more than

two hops will be even more challenging since additional relays may modify the

arrival distributions of the last nodes of the linear network.
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