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1. Introduction

Wireless ad hoc and sensor networks often operate in difficult environments and require
several performance criteria to be satisfied related to the timely, reliable, and secure ex-
change of data. To enable communication across the network, key design elements include
routing and resource allocation protocols. Various constraints related to transmission de-
lay [1], energy consumption [2] or fairness [3, 4] are added to the protocol’s main design
goal of reliable information transfer. Thus, the assessment of such protocol performance
relies on various criteria measures which may be evaluated analytically or through network
simulations.

It is possible to understand the capabilities and limits of a routing protocol or a re-
source allocation strategy if a bound on the network performance is known. An end user
requires certain simultaneous levels of performance for multiple criteria to guarantee quality
of service, yet the considered performance metrics often conflict. The solution maximizing
for instance capacity may not be the one that minimizes delay. Therefore all of these per-
formance metrics have to be considered concurrently in the optimization process. In the
case of multiple criteria, however, there is usually no single optimum and several solutions
offering different optimal trade-offs exist. More specifically, if you decide to optimize delay
and capacity, you will find solutions (i.e. routing and resource allocation strategies) in the
Pareto optimal set that favor either capacity, delay, or some trade-off combination. The
main contribution of this paper is to propose a unified cross-layer framework capable of
capturing the trade-offs existing between multiple performance metrics.

The solution we propose for obtaining bounds on multiple benchmark objectives relies on
the definition of a multiobjective optimization problem; the subsequent evaluation provides
a set of Pareto optimal solutions. The Pareto set is composed of non-dominated solutions,
i.e. solutions of the search space that are never dominated by any other with respect
to the evaluation criteria considered. A solution herein characterizes one possible route
configuration with its resource allocation defined in terms of transmission rate. For example,

a possible solution to facilitate the transfer of information from source to destination could



be the selection of an intermediate node to relay the data with a fixed transmission rate.
This multiobjective optimization problem is hard to solve since it is the combination of a
resource allocation problem and a routing problem. Compared to analytical approaches, it
has the drawback of being computationally more expensive but has two main advantages.
First, it can be used to derive bounds for multiple performance metrics at a time. Second,
it not only provides the performance bounds, but also extracts the solutions that are Pareto
optimal which cannot be determined using a classic analytical approach.

In order to mitigate the limitations of the layered network architecture, cross-layer in-
teractions have to be considered in the framework definition. In [5], the authors address a
cross-layer optimization problem of joint design of routing, medium access control (MAC),
and physical layer protocols with cooperative communication to achieve minimum power
cost under a specified per-hop packet error rate (PER) objective in wireless sensor networks.
The authors in [6] highlight the need to find “a simple interface to the physical layer that
allows the upper layers to achieve optimal or near optimal cross-layer performance based on
the underlying channel conditions”. For the cross-layer model we describe in the following
sections, we define a link probability—the probability a packet arrives over a given link. This
parameter serves as an interface between network layer routing/link layer management deci-
sions and expected physical layer performance by leveraging the broadcast nature of wireless
transmissions. The variables of our multi-objective optimization problem determine how of-
ten and when a node should re-broadcast a received packet. The approach we take in this
work provides for the characterization of fundamental upper bounds, the tradeoff space of
multiple criteria, and the routing and resource allocation decisions to achieve these tradeoffs.
This approach mirrors the key research areas proposed in the framework of [6]. The authors
describe the need for joint research in the areas of fundamental performance upper bounds,
layerless dynamic network performance, and application and network optimization. It is
through the interaction of these research areas that ad hoc network design and performance
can be related and formalized.

Understanding the trade-offs involved with various routing solutions will enable adap-

tive resource management across layers and nodes, leading to a more accurate “local to
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global performance mapping” for practical routing protocol design. The identification of
Pareto optimal solutions provides not only achievable performance bounds, but also spe-
cific solution sets for the routing and resource allocation algorithms to operate at those
bounds. In this paper, we propose a novel framework capable of providing a bound for joint
optimization of multiple performance metrics. Our proposed framework comprises both a
probabilistic cross-layer network model and a multiobjective optimization problem formu-
lation. Our proposed cross-layer network model captures more accurately the interactions
between routing decisions and resource allocation, assuming a basic random medium access
control protocol. With its intrinsic probabilistic definition, it is capable of defining various
routing techniques such as multi-hop single path routes, broadcast protocols or multi-path
protocols. The multiobjective optimization problem is solved using the Parallel Multiobjec-
tive Tabu Search (PMOTS) algorithm to retrieve the set of Pareto optimal solutions. This
global cross-layer multiobjective framework is applied herein to tackle the problem of robust
routing and resource allocation for wireless sensor networks. The following three criteria
are relevant in this context: (i) reliability defined as the probability of having a successful
packet transmission, (i) delay, defined as the average end-to-end delay in the network, and
(iii) the forwarding energy, defined as the energy spent by the network for relaying.

The goal of our work is different from other approaches aimed to distributively compute
Pareto optimal routing algorithms with respect to multiple performance criteria as proposed
in [7, 8. Our aim is not to develop a new routing algorithm, but to provide a general
framework capable of capturing the performance trade-offs of a given network by computing
the set of Pareto optimal routing strategies. This characterization provides an efficient tool

to:

e compare the performance of existing routing algorithms to the bound provided by the

set of Pareto optimal strategies, and

e foster the development of more efficient and flexible routing strategies based on end-

user requirements for network performance.

Our main contributions in this work are two-fold:
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1. Propose a general cross-layer framework network model capable of capturing the im-
pact and interaction of a wide range of interference and resource management tech-
niques for various channel conditions;

2. Formulate a multiobjective routing optimization problem by defining appropriate eval-
uation functions for criteria such as reliability of information transfer, end-to-end delay,

and energy consumption.

The multiobjective routing optimization problem described in the following can be solved
using existing multiobjective search techniques [9]. Our paper focuses mostly on the deriva-
tion of the proposed cross-layer framework, and gives only a brief description of the op-
timization heuristic considered for solving the problem. A first description of our model
can be found in [10]. The formulation given in the present paper provides a more detailed
description of our complete framework and extends the results of [10] in several ways, pro-
viding an in-depth analysis of the framework and the multiobjective bounds derived with it.
This articles aims at understanding the nature of the bounds calculated by analyzing com-
prehensively the Pareto optimal solutions sets composing it. It extends as well the work of
[10] by assessing the analytical results with simulations, studying the impact of the network
geometry on the bounds and using the bounds to compare the performance of well-known
routing strategies such as AODV and DSR.

The paper is organized as follows. Related work is presented in Section 2. In Section
3 we present our cross-layer framework based on a probabilistic network model. Section
4 formulates routing and resource allocation in an ad hoc network as a multiobjective op-
timization problem and Section 5 discusses an example for sensor networks. Results and
analysis for two problem instances are then given in Section 6 to illustrate our modeling
framework. Obtained bounds are assessed using simulations and compared to solutions

provided by standard ad hoc routing protocols. Section 7 concludes the paper.



2. Related work

Over the last decades, research efforts have studied wireless ad hoc network performance

from at least three perspectives:

1. deriving analytical upper bounds and scaling laws on performance,
2. constructing and solving single objective functions for network optimization, and

3. formulating and solving multiobjective optimization problems to capture performance

tradeofs.

The first point emphasizes on defining closed form expressions of a network performance
metric, usually as a function of the size of the network. Such bounds are essential to the
understanding of the fundamental limits of wireless networking. The two other points take
a closer look at the problem by formulating an optimization problem (mono- or multiob-
jective) capable of extracting a very tight bound on the considered performance metrics.
Even though analytical scaling laws are usually very fast to compute, they provide looser
upper bounds than optimization-based formulations do. Indeed, these more computation-
ally expensive approaches provide a really tight (almost exact) upper bound and have the
second advantage of deriving at the same time optimal network configurations. Centralized
and distributed optimization solutions have been considered, the latter ones being mostly
studied for their straightforward practicality. However, distributed solutions may not com-
pletely converge to optimality. Thus, a truthful performance bound is obtained through
centralized optimization which is the approach considered in this paper. The first part of
this related work section highlights main works on analytical models while the second one

presents studies related to centralized optimization-based approaches.

2.1. Analytical performance bounds

Characterizing the performance of a wireless network considering only capacity as a per-
formance metric [11][12][13] has triggered a comprehensive study, starting with the seminal

work of Gupta and Kumar [14]. Grossglauser and Tse [15] extended the analysis in [14] by



considering the impact of mobility on capacity. The authors in [16] and [17] model infor-
mation dissemination for the unicast, multicast, and broadcast problems with a focus on
capacity.

Analysis of the trade-off between capacity and delay has been investigated by El Gamal
et al. in [18]. Comaniciu and Poor [19] accounted for delay as a constraint in their capacity
analysis. The compromise between capacity and energy consumption for line networks has
been analytically derived by Bae and Stark in [20]. A cross-layer framework for optimal
delay-margin, network lifetime and utility tradeoff has been proposed by Tahir and Farrell
in [21]. A tight hyperbolic bound on energy and delay for wireless networks has been
provided by Brand and Molisch in [22]. In [23] and [24], the trade-off between delay and
energy for wireless sensor networks are investigated. In [25], capacity, delay and energy are
considered concurrently but analytical bounds are only derived for a reduced line network

configuration of nodes in a series formation.

2.2. Optimization-based derivations

In [26] Toumpis and Goldsmith associate network design decisions with areas of the
performance graphs. The authors’ goal is to compare the performance achieved through the
implementation of various power, scheduling, queuing, and routing choices with theoretical
upper bounds on capacity. The protocols proposed in their work are evaluated in terms of
delay vs. throughput and energy per packet vs. throughput. Similarly, the work in [27]
studies the impact of power control, rate changes, multi-hop communication, and spatial
reuse on the problem of maximizing the minimum throughput. The work later described in
[28] then considers the tradeoff between throughput and network lifetime.

Several other works have proposed to derive optimal communication strategies with
respect to a specific optimization objective based on the networking application. Previous
approaches can generally be classified according to the interaction of considered layers [29].
There are protocol designs based on interactions between Medium Access Control (MAC)
and physical layers [30], between network and physical layers [31], etc. In this work, we

introduce a cross-layer approach for the design of a multiobjective optimization framework
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based on the interactions between the network and physical layer. The impact of routing
decisions on the interference distribution of the network is fully characterized and hence
solutions where interference is minimized can be derived accordingly.

Other approaches to network optimization include constraining the feasible set to account
for multiple criteria, and/or combining multiple criteria into a single objective function as
in [32]. A drawback of the latter approach is the difficulty in tuning the weights of the
performance objectives in the composite function. The performance gains and losses are
also not obvious when optimizing a composite function or constraining the solution space.
For example, the optimization of one objective may result in decreased performance of
another objective, but this tradeoff may not be clear. There is an inherent interconnection
of performance criteria given the wireless medium. Performance should thus be evaluated
and presented in terms of tradeoffs.

It is difficult to derive analytical models that provide bounds for more than two ob-
jectives at a time. As a consequence, providing a framework to obtain analytical bounds
for multiple optimization objectives becomes relevant in the context of a practical two di-
mensional network. The modeling framework that we present facilitates the performance
evaluation of multiple criteria. For the problem we address, we consider jointly optimizing
reliable information transfer, end-to-end delay, and overall energy consumption.

A similar approach in the context of routing design for wireless sensor networks has
been proposed in [23]. In this paper, the network is fully connected and the authors look
for the set of Pareto optimal routing unicast and multicast paths that minimize energy
and delay. Hence, reliability is assumed to be guaranteed since all links are considered
perfect and interference-free. This assumption is not made in our case and transmission
between any two nodes is modeled using a fading channel. In this paper, the probability of
a successful transmission on a channel is derived according to the statistical distribution of
interference. Our work therefore introduces a cross-layer approach that accurately accounts
for the interference generated by the routing and resource allocation decisions.

Another multiobjective approach for wireless sensor network (WSN) optimization [33]

looks to optimize coverage and network lifetime. The authors solve for the non-dominated
8



solutions and select the set of active nodes to cover an area specific to a considered appli-
cation. While the purpose of their study is WSN planning, WSNs is used in our work only
to demonstrate our framework. The authors do not consider the impact of transmissions on
the layers including interference and scheduling. They perform shortest path routing after
the Pareto set is identified for the coverage and lifetime objectives.

The approach of solving for the Pareto set to identify solutions for an application’s op-
erating point is shared by the works in [33] [34] and [35]. Great value exists in solving for
the set of performance tradeoffs and identifying the associated network solutions as detailed
earlier. Our aim is to provide a multiobjective modeling framework that intersects the re-
search areas identified in [6] for connecting theoretical limits with practical performance.
As such, we provide a probabilistic network model relying on a cross-layer approach which
intrinsically captures wireless broadcast communications and interference effects. The pro-
posed multiobjective optimization problem captures different routing and resource allocation

paradigms while relying on a reduced search complexity compared to other approaches.

3. A Cross-layer Framework for Network Modeling

3.1. Probabilistic network model

A wireless network composed of N nodes is assumed. Our proposed model considers
a probabilistic network which is characterized by two probability measures: link and node
probability. These two parameters completely characterize the network and capture cross-
layer interactions.

The node probability (x;) captures the availability of node ¢ for routing purposes, i.e.
the probability that node i re-broadcasts a received packet. The node probability has two
components (x; = x; - &), one that is determined by the node’s routing choices and called
the forwarding probability x;, and one component &;, called the external impact factor, that
represents the impact of the environment and protocol implementations at adjacent layers
(e.g. congestion models, node failures, security risks, energy levels, etc.). For instance,
if nodes fail with a probability py, it may be reflected in ¢ which would be equal to (1-

pi). Similarly, it may be a way to account for decisions made by other layers, such as
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Figure 1: Node and global link probabilities on a link (3, 7).

the medium access (e.g. congestion control mechanisms) or the application layer depending
on the context of the application (e.g. security risk management). It is through &; that
cross-layer interactions including MAC and application layers can be accounted for in our
framework. For simplicity we have decided to introduce a unique factor &; to represent the
impact of all decisions of a node which are not related to routing. Deriving an explicit
definition for &; based on different assumptions is out of the scope of this paper but will be
addressed in future works, as more elaborated networking case studies are analyzed. In our
cross-layer framework, we aim to optimize the forwarding probability.

The global link probability (p;;) captures the link availability, i.e., the probability
of a successful transmission over a link (i,7). Characterization of the link probability is
impacted by enhancements and impairments at various layers of the protocol stack such as
fading at the physical layer or congestion at the MAC layer. Both node and link probabilities
are illustrated in Fig. 1.

Node and link probability measures are strongly related due to the broadcast nature of the
wireless channel. Hence, once the node probabilities y; are set, the activity of every node of
the network is fixed and the interference distribution can be completely determined given the
activity of the nodes on the wireless channel. As a consequence, the link probabilities can be
computed as a function of the signal to interference plus noise ratio (SINR). Once the link and
the node probabilities are available, various performance metrics such as delay, reliability, or
energy consumption can be calculated for various transmission schemes (unicast, multicast,
broadcast, anycast, etc.). It is important to stress that the proposed cross-layer framework
accounts for the interference-limited and broadcast nature of the wireless channel. Indeed,

any transmission originating from a node can be received by any other node of the network
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with probability p;;, modeling both the interference-limited and broadcast features of the
wireless channel.

In the following, we consider the set of node probabilities as the variables of the net-
work optimization problem. Finding the best possible routing choices with respect to one
particular criterion reduces to the problem of selecting the set of node probabilities that op-
timizes one particular objective of the network. Within a multiobjective perspective, solving
the network optimization problem requires finding the set of Pareto optimal solutions that
concurrently optimizes several performance metrics of the network.

To illustrate our framework, we consider here a network where the nodes are indepen-
dently and randomly distributed according to a random point process of density p over a
disk D. The communication between any two nodes is performed in a half-duplex mode
over a single to multi-hop path. The bandwidth of the channel is divided into R resources
(time slots or frequencies). For clarity purposes, we present this model in the context of
time-multiplexing.

This paper concentrates on a single flow, but our framework can be extended to multiple
flows since the proposed interference model accurately accounts for all the nodes transmitting
in the network. Hence, one source transmits a constant traffic in one of the R time slots.
We also assume that a relay cannot differentiate packets. As a consequence, all packets
are treated as unique by a relay and several copies of a packet can be received at the
destination. However, a node relays the packets in the order they are received in one of its
available resources. If several packets are received in the same frame, it can only transmit
the proportion of packets its forwarding probability x; allows. The packets that the node

cannot forward are dropped.

3.2. Link probabilities

A realistic link (7, j) in time slot r is characterized by its link probability p;;(r), which is a
function of the statistical distribution of the SINR at the location of the destination node j.
Such a computation captures the cross-layer impact of the network routing decision on the

physical layer performance since the activity of all the nodes of the network are accounted
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for statistically in the model. The following are some preliminary definitions and notations

that are needed to define the link probability:

Pathloss attenuation factor and transmission power. a;; reflects the attenuation due
to propagation effects between nodes 7 and j. In our simulations, the simple isotropic
propagation model is considered. We consider that all the nodes use the same transmission

power denoted as Pr.

Interference. Since we consider time-multiplexed channels, interference only occurs be-
tween transmissions using the same channel at the same time. Hence, the power of interfer-

ence I;;(r) on a link (7, j) using resource r and computed at node j is defined by:

K
[iJ'(T):ZPT Q. fOI‘/{Z#Z (1)
k=1
where K is the number of interfering signals in resource 7.

SINR. The SINR between any two nodes ¢ and j in resource r is given by:

Pz' .

= N+ 1,(1) (2)

i (r)
where P;; is the power received in j, [;;(r) is the interference power on the link and N, the

noise power density. We have P;; = P; a;; for a fixed nominal transmission power F; and a

pathloss attenuation factor a;;.

Packet error rate (PER). For any value of SINR +, the packet error rate PER can be
computed according to:

PER(y) =1—[1— BER(y)]"™ (3)
where N, is the number of bits of a data packet and BER(7) is the bit error rate for the

specified SINR per bit v which depends on the physical layer technology and the statistics
of the channel. Results are given for an AWGN channel and a BPSK modulation without

coding where BER(7) = Q (v/27) = 0.5 % erfc(/7).

Frame. The MAC layer consists of frames repeating indefinitely. Each frame is divided

into R resources. These R channels can be allocated as time slots or frequencies.
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Figure 2: Frame and transmission rates for the case of R = 2 and two nodes ¢ and j share

slot 1 with 7;(1) = 0.33 and 7;(1) = 0.5, respectively.

Transmission rate. The activity of a network node in a channel r € [1,.., R] is given
by its transmission rate 7;(r) € [0, 1] in that particular channel. This rate is defined as the
percentage of time a node ¢ transmits using resource r. Fig. 2 shows the set of communication
frames each split into R resources. In the case of time slots, node ¢ in the figure sends a
packet in time slot 7 every three frames for a transmission rate 7;(1) = 0.33. Node j

transmits every two frames in r = 1 for a transmission rate of 7;(1) = 0.5.

Interfering sets. A node i is said to be active in the network if 7;(r) > 0. We define M" as
the set of active transmissions in resource r. An interfering set Zj; for link (4, j) in resource
7 belongs to the set of all possible interfering sets L£;. Lj; is the power set P(M" — {i}),
i.e. the set of all subsets of M" — {i}. Because of the half-duplex constraint, the receiver
j is kept in the set M" — {i}. Thus, the channel probability computation accounts for the
interfering sets where j is active. If j is active, the SINR is very low and transmission on
link (4, j) in resource 7 is impossible. The set £;;(r) includes the case where no other node

is transmitting (K = 0) as well.

Link probability. p;;(r) depends on the distribution of the SINR, and consequently on the
distribution of the corresponding packet error rates. Equation (4) details the derivation of
pij(r) as the average of the PER experienced for all possible interfering sets | € L;;(r) on
resource r referred to as PER;:

pi(r)= > [1-PER].P (4)

IEEU (7’)
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where PER; = PER(7;),l € L;;(r). Here v, is the SINR experienced on the link (7,7) in
resource r if the nodes of the interfering set [ are active.

P, is the probability for the interfering set [ to be active and create interference on
the link (7,7) on resource r. More specifically, it is the probability that the nodes of the

interfering set [ are transmitting concurrently and the others are not as specified in the

following: . [
P, = HTk(T) : H (1 —=7m(r)) (5)

In (5), []e, 7(r) gives the probability that the K active nodes of the interfering set [ are

M—-K-—1
m=1

transmitting and [ | (1—7,,(r)) the probability that the M — K —1 other active nodes

are not.

Global Link probability. For a link (¢, j), the global link probability p;; is the probability
that a packet arrives with success at node j. It is given by:
R

7;(7)
r=1;7;(r)#0 Zr Ti(r)

where p;;(r) is the link probability between i and j for resource r (c¢f. Eq. (4)), and
7;(r)/ >, 7i(r) is the probability for the packet to be sent using r.

3.3. Node probabilities and transmission rate

As we introduced early, the variables of our model are the probabilities y; is decomposed
into z; and &. In the following, we assume & = 1 to simplify our model for this first
investigation. Our model is still inherently cross-layer since it captures the impact of the
forwarding and resource allocation decisions at the network and MAC layers on the physical
layer by accurately computing the interference distribution in the network. Finally, knowing
the optimal routing strategies and corresponding performance trade-offs, a network designer
can make informed decisions based on operation and quality of service requirements at the

application layer.
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There is no explicit notion of routing paths in our model and a packet sent by a source
may use one or more paths in parallel to reach the destination, depending on the forwarding
decisions of the nodes. For x; = 1 each received packet by node ¢ is forwarded. For z; < 1
node i drops the packets with probability 1 — x;. Values of x; €]1, R] are not allowed yet as
they imply that node 7 transmits several copies of the same packet.

As stated earlier, the transmission rate 7;(r) in resource r is a function of the node
probability x; but also depends on the amount of traffic coming into node ¢, which is a
function of the activity of the other nodes of the network. As a consequence, computing
the values of 7;(r) knowing the z; values is intractable since determining 7;(r) requires the
knowledge of the link probabilities which are themselves a function of the 7;(r) values.
However, the reverse approach where the variables z; are expressed as a function of the 7;(r)
can be easily derived as stated below. Hence, such a reverse approach leads to the use of
the transmission rates as the variables of our multiobjective optimization problem instead
of the forwarding probabilities. This reverse approach represents an important contribution
of our cross-layer model since it captures an exact picture of the interference distribution at
the physical layer and determines the corresponding node forwarding probability x; at the
routing level. Fundamental to this derivation is for the flow of interest to be mapped using

a directed acyclic graph (DAG) for the considered network topology.

DAG assumption. Assuming a wireless network of N nodes using R resources, a flow
between a source S and D and a set of transmission rates 7;(r),Vr € [1..R],i € [1..N], a
directed acyclic graph G = (V, E') where all paths originate at S and end at D is assumed.
The set of vertices V' is reduced to the set of active nodes M with non null transmission rates
on all resources. Oriented edges link any two active nodes with non null link probability p;;
and belong to a multi-hop path joining S to D without loop. Construction of an instance
of this graph is out of the scope of this paper and will be investigated in later studies.

For any node i € V, we denote by V!" the set of incoming oriented edges coming from its
previous hop neighbors. Similarly, V7 denotes the set of outgoing edges to any next hop

neighbor node. The set of previous hop neighbors N/™ and next hop neighbors N2 of i is
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Node probability X probability node i rebroadcasts a received packet as

a function of x; and &;

Forwarding probability x; probability node i decides to retransmit a packet

External impact factor & factor to account for any effect not originating from
routing

Link probability pi;(r) | probability of successful transmission over link (3, j)

in resource r

Global link probability | p; probability of successful transmission over link (i, )

Transmission rate 7:(r) | percentage of time node i transmits using resource r

Table 1: Variables and parameters of the cross-layer model

defined as well: N/" ={k eV :(k,i) € E} and N?“* ={j € V : (i,5) € E}.

Relationship between z; and the 7;(r). Given the values of 7;(r),Vj € N/™ we can

define the quantity of information coming from all the previous hop neighbors of node ¢ by:

R
o= 33 pulr)mlr) (7)

keNin r=1
where py;(r).7:(r) is the probability that a packet arrives in node i from previous hop node
k in resource 7.
The quantity of information going out of i is given by the sum of the 7;(r) over all the
time slots. Hence, we can determine the forwarding probability of ¢ to be:

_ 2., 7ilr)
> e S Pri(r) 7i(r)

(8)

X

4. A Multiobjective Optimization Problem

The performance of most wireless networks can be assessed with regards to various
criteria such as throughput or capacity, end-to-end transmission delay, overall energy con-

sumption or transmission reliability. The purpose of the multiobjective framework presented
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in this work is to determine, given a network and a communication pattern, what kind of
trade-offs arise between chosen performance metrics when varying the routing strategies. It

relies on the cross-layer probabilistic network model presented in Section 3.

4.1. Variables of the multiobjective (MO) framework

The routing strategies are the variables of our multiobjective optimization problem and
a solution is defined by:

Definition 1 A solution § of the MO framework is defined by the set of transmission

rates 7;(r) € [0, 1] used by each node i on each resource r:

S= {Tz‘(T)}ie[L..,N],re[l..R} (9)

The set of forwarding probabilities x;e1..n is derived according to Eq.(8) and represents

the routing strategy of the network. Each variable 7;(r) takes its values in a discrete set I’

of size T = |T'|. As a consequence, the solution space is derived as:

(N-2)

[sl=">_ (AT (10)

m=0
In order to reduce the size of this very big search space, we only consider solutions where at
least one cumulative time slot per node is available in the frame, i.e.

st. Vi€ [1,N], 3% 7,(r) < R—1. The solutions that do not meet this constraint are
usually very bad solutions since at least one of the nodes of the solution is transmitting in
all its time slots preventing a failure free packet reception.

Using this definition of a routing strategy, a solution may reflect various routing strate-
gies: it can be single-hop or multi-hop, single path or multi-path, probabilistic or determin-

istic.

4.2. MO-Tabu: a multiobjective optimization heuristic

The aim of our MO framework is to obtain the set of Pareto optimal routing strategies
of the MO problem. A Pareto optimal set is composed of all the non-dominated solutions
of the MO problem with respect to the performance metrics considered. The definition of

dominance is:
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Definition 2 A solution A dominates a solution B for a n—objective MO problem if A
is at least as good as B for all the objectives and A is strictly better than B for at least one

objective. Mathematically, we have for a minimization problem:

The considered optimization problem is solved using a multiobjective metaheuristic called
PMOTS (Parallel MultiObjective Tabu Search) described in [9]. It is based on the Tabu
metaheuristic [36], a local search using a list of Tabu solutions to reduce the occurrence of
loops in the search. PMOTS is a multiobjective extension of Tabu search where K Tabu
searches are performed in parallel. The goal of this algorithm is to obtain the best possible
approximation of the Pareto optimal set of solutions Fp. A more detailed description may

be found in Appendix A.

5. A First Application to Sensor Networks

We propose in the following to assess the performance of a wireless sensor network
(WSN) by capturing the trade-offs that arise between end-to-end reliability, overall energy
consumption, and end-to-end delay. These criteria are most relevant since providing a

maximal network throughput is usually not the main task of a WSN.

5.1. Maximum number of hops

The following criteria are defined for a single source-destination pair (S, D) and for a
fixed maximum number of hops H,; a packet can travel in the network. The quantity H,,
is similar to a Time To Live (TTL) tag appended to a packet transmitted in the network.
Consequently, the optimization criteria will account for the performance of all possible paths
between S and D which are composed of at most Hj; hops.

Since the model we have defined in Section 3 relies on a DAG representation of the
network topology for the flow of interest, the maximum length of paths in the network is
finite but can be higher than our fixed limit Hj;. As such, we introduce a binary variable vy;

to represent the usefulness of the link (k,7) with respect to the maximum number of hops
18



constraint. Hence, if link (k,7) does not belong to a path of length H); hops between S and

D, we have vy; = 0. On the contrary, we have vy; = 1 if k only receives packets with number

of hops h < Hj;, meaning it belongs to at least one path of Hy; hops between S and D.
Setting Hjs impacts the definition of z; in (8). Equation (8) is modified as follows:

2., 7i(T)

- R
Zke/\/;'n Zr:1 sz‘(r) Tk (T) ki

5.2. Reliability criterion

Reliability is defined as the probability that a packet emitted at S successfully arrives

at D in at most H); hops. The reliability criterion is given by:
fr="P(Ts3") (13)

For any two nodes ¢ and j of the network, T;]q represents the event that a packet transmitted
by ¢ successfully arrives at j in at most H hops. Our aim is to maximize P(TSHK) which is
defined as follows.

Definition 3: P(T 5 1) is the probability that the packet arrives successfully at D in at
most H)j; hops and is given by:

Py = 1~ [[(1— P(TsplH = b)) (14)

h=1

where P(Tsp|H = h) is the probability for a packet to arrive in h hops at D. For h = 1,
P(Tsp|H = 1) = psp, the successful transmission probability on the link (S, D) following
Eq. (6). For h > 1, we have:

Ngut
P(Tsp|lH =h) =1— [] [t —psj 23 P(Typ|H = h — 1)] (15)

j=1
with Mg the number of possible next hop relays of S; pg; the link probability between S
and its neighbor j; P(T;p|H = h — 1) the probability to reach D in (h — 1) hops and z; the
forwarding probability of j.

To reduce the computational complexity of the reliability probability, a restricted set

NE&" of next hop relays may be considered but the loss in terms of accuracy is hard to
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quantify. Therefore, we rather introduce a link threshold value Py, computed for each path
made of h hops. While recursively calculating P(Tsp|H = h), if the probability of a path
gets lower than Py, the recursion is stopped for that particular path and its contribution

to P(Tsp|H = h) is set to zero.

5.3. Delay criterion

The end-to-end delay is the sum of the times spent at each relay on a multi-hop path
[18] because all nodes transmit at the same 1Mbps rate and propagation delay is negligible.
We assume that there is a finite bound on the time a packet spends in the outgoing buffer
of any node of the network. In this case, each relay introduces a normalized delay of one on

the end-to-end delay. The criterion fp is defined by:

Hyr

fo=R-\|Y (h—1)2R, (16)

h=1

The quantity (h — 1) is the delay needed by a packet to arrive in h hops using (h — 1)
relay nodes. The scaling factor R represents the delay induced by the R resources. R}, is

the probability that the packet arrived in exactly h hops and did not arrive in one, two, or

(h—1) hops. For h =1, we have R, = P(Tsp|H = 1) and for h > 1:

Ry = P(Tsp|H = h). H P(Tsp|H = 1)) (17)
If no route exists between S and D then fp = +oc.

5.4. Energy criterion
The energy criterion fg is given by the total forwarding energy needed for a packet sent
by S to reach D. We do not account for the energy spent by the initial transmission in S.
The reception (respectively transmission) of a packet at node j in resource r consumes ef('r’)
(resp. €] (r)). Hence, the energy criterion is defined as:
Hy

fe =Y _ ETsp|H = h) (18)
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where £(Tsp|H = h) is the total energy needed by the h-hop communications between S
and D defined by:

Ngut
E(Tsp|H = h) = Z (psj.eff + psjaj. [e] +E(Tip|H = h—1)]) (19)

j=1
In Eq. (19), psj.ef is the energy consumed for a packet reception by the neighbor j of S;
pgj.:cj.e;f is the energy consumed for the packet transmitted by neighbor j and pg;.x;.€(Tjp|H =
h — 1) is the total energy consumed by the remaining possible paths made of (h — 1) hops
between neighbor j and the destination. For h = 1, £(Tsp|H = 1) = 0 since the energy in

S is not accounted for.

6. Results for a Single Source-Destination Pair

6.1. M-Relay problem

The results presented in this section are obtained for a small problem instance for three
reasons. First, we are able to determine the whole Pareto optimal set of solutions using
an exhaustive search. Secondly, such a problem can be easily analyzed and provides a first
illustration of our multiobjective framework. Lastly, it is used in Appendix B to assess the
efficiency of the multiobjective optimization metaheuristic we developed to tackle bigger
problem instances [9] .

In the following, the network is composed of N = 333 nodes uniformly distributed with
density p = 0.004 over a disk D of radius Rp. The distance between S and D is about
215 meters. To reduce border effects, S and D are selected within a radius Re << Rp
which ensures that the power of a node at distance R. is below the noise power for the
nodes located at distance Rp. We consider R = 2 time slots and use a probabilistic discrete
variable space. A link reliability threshold of Py, = 1071 is set. Propagation and physical
layer parameters are summarized in Fig. 5. Energy consumption for emission and reception
of packet of size 5000 bits for the type of sensors considered in [37] is assumed. Main energy

is consumed by packet emission here.
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Figure 3: 3D plot of the Pareto optimal set for the 1-relay problem.

The dimension of the search space can be modified by setting a maximum number of
forwarding nodes M in a solution §. This sub-problem is addressed in the following as the
M-relay problem instance and has a reduced search space compared to the original one of
Eq. (10). To compute the complexity of this search space, we assume that at most M relays

compose a solution, R = 2 time slots exist and that the constraint:

Vie[l,N], Y n(r)<R-1 (20)

is realized to permit packet reception in at least one slot out of two. Complexity of the

M-relay problem with R = 2 is derived as follows :

1= 3 (%) ((T - 1)2(T + 2)) o
22




1 — 2 ; ; ‘
e T o+ o+ + o o R+ e e
s
" 1.8 i
M+M b o i e b4 4+ T —
08} M,w* 1 1-6WHMH+ [T, J T —— ]
s
#
/ [ G e e 1
0.6 ,w/ T L2 W e s e T — ]
g o =2
° # [T N TP TP 1
a s &
0.4} // 1 0.8 fucsmms 4 ++ + +9 S 1
0.6 Jwsmmrne # ++ + +4 - R
02F —H 0.4 fmie 4 +++ +4 P ———— b
(0] STTTIETSTER— g
O L L L L 0 L L L L
0 0.2 04 06 0.8 1 0 0.2 0.4 0.6 0.8 1
Reliability Delay
2 T T T T
ferr + ++ + |+ - T 1 4 ar e e
18 1
b 11 + 4 x o PR -
16 b
b & 44+ PP -
R e e e e 1
>\1.2.’.WM++W FEH B R ]
o
o
e LRisvs s S MR e 1
]
0.8 Fisri s o b
0.6 Fresrnr o warie R
0.4 g+ whesm i
0.2 o wrimnn 4
O L L L L
0 0.2 04 06 0.8 1
Reliability

Figure 4: Representation of the projections of the Pareto optimal set for the 1-relay problem.

It sums the set of solutions composed of 0, 1, ... M relays. For solutions composed of m < M
relays, the constraint of Eq. (20) imposes that for one relay of a m—relay solution, there
are (T'— 1)(T + 2)/2 possible time slot allocations. All combinations of selecting m relays

N72).

among N — 2 are accounted for with the factor (¥

The cardinality of the M-relay problem is mainly reduced because of the limited summa-
tion over m. It is clear that the proposed approach will not scale to account for solutions with
a very large M. However, since we are looking for compromises with reduced energy, delay
and high capacity, it is beneficial to search for solutions with a small number M of relays. As
we will show in the rest of this section, this assumption is not limiting the characterization
of the Pareto optimal performance limits of small to medium scale networks.

In order to cope with large scale networks, other approaches considering continuous

network models [38] or mean field theory [39] are more appropriate. The downside of these
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Emission energy e5=1.93 J || Reception energy | e® = 0.74 mJ

Figure 5: Propagation and physical layer parameter values from [37].

approaches is that the granularity of the problem definition does not permit the derivation
of exact Pareto-optimal performance and we lose the complete description of the Pareto-

optimal set.

6.2. Pareto optimal set for the 1-relay problem

In this problem instance, we set M = 1 and Hy, = 2. 7;(r) takes values in the set
' =4{0,0.05,0.1,...0.9,0.95,1.0} of |I'| = 21 elements. In that particular case, the search
space has a dimension of 76,131 solutions and the Pareto optimal set is obtained with an
exhaustive search.

For this instance, the direct link (S, D) is very weak. A reliability of only P(T43") =
0.0003 is achieved with a delay of fp = 0 and an energy of fr = 0. Only 24,820 solutions
fulfill the constraint x; < 1 that forbids a node to duplicate packets. Among these solutions,
3,855 solutions are Pareto optimal, representing about 5% and 15% respectively of the
whole and the constrained solution space. For all the Pareto optimal solutions the relay
never transmits in the first time slot concurrently with the source. The performance of
the Pareto optimal set of solutions is represented in Fig. 3 in the space defined by the
three evaluation functions. For clarity purposes, the projections of the Pareto set on the
reliability-delay, reliability-energy, and the delay-energy planes are also displayed in Fig. 4.
The plots show that an improved reliability is obtained at the price of an increase in delay

and energy. The trade-off between reliability and delay can be easily understood since higher

reliability is achieved when the relay contributes with a higher forwarding probability z;,

24



300 . + # . » ! !
+ ¢ o+ * e
R MR ARt .
- + + e ® o
250 | o o o 4 vt oo i
) + 4. S
o ** + ¥+ + ¢ + -+-'+‘ °
. TR I SO ]
200 - Qe LT SO + 4 ¢
. Y 9 44t 4, +*
. ® o % +4 ¥ L+
« v+ 8 + 4t
150 - o ° o ° ® ++++ + i
et e ﬁn& L, ®e 8 ¢ bt g
[
. * " e %t ¢ e ] +)
100} °° . o X4 . + . . i
. o %o +2 b
R MY DA + e, " ¥ s
® . o S oo, y ° ++ < + + ++ 4 ¢
50 | ¢ [ ° .o + + + T
A
.. ® o o [ .. o .. ... #
0 L L * 'I. ° ) I.. 1 1
0 50 100 150 200 250 300
Node Location e Destination 4 Node with f; >0.999 @

Source @ Node of Pareto Front +

Figure 6: 1-relay problem: Location of the nodes that provide Pareto optimal solutions
(purple crosses) and of the nodes that provide a near quasi-perfect reliability (full black

dots), i.e. fr > 0.999.

25



Energy

[ a—
Reliability

Pareto-optimal points With relay 90 X
With relay 286 > With relay 103 *

Node > Relays [J

(b)

Figure 7: 1-relay problem: Selection of the Pareto optimal solutions using a same relay
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inducing an increase in delay. Similarly, an increase of z; triggers an increased average
energy consumption since the relay is forwarding packets more often.

The Pareto set is composed of solutions for which relays belong to a set of 226 nodes,
which represents about two thirds of the number of nodes of the network. The location in
the network of these 226 nodes is presented in Fig. 6. We also highlighted on this figure the
relays that provide a near perfect transmission. We can conclude that the relays located
in an ellipse near the middle of the (S, D) distance provide the best reliability at the price
of the highest delay and energy. The other relays present in the Pareto set provide various
trade-offs depending on their values of 7;(r).

The Pareto optimal solutions composed of the same selected relay are represented in
the objective space in Fig. 7. Three sets of solutions are represented corresponding to
three different relays. The locations of the selected relays are also highlighted in Fig. 7.
All solutions related to the same relay create a line in the 3-D space defined by the three
optimization criteria. Each point of this line is obtained for the same relay but for a different
value of 7(2) (as stated earlier, there is no solution with a relay transmitting on 7(1) in the
Pareto optimal set). For one particular relay, there are at most 21 values, corresponding to
the 21 values of 7;(r) defined in this problem instance. There are relays that provide less
than 21 Pareto optimal solutions because some values of 7;(2) were not valid considering
the x; < 1 constraint. It can be clearly seen that relay 103 is one of the relays that provide
the highest possible reliability. In this specific example, the location of the relay conditions
the maximum achievable reliability and the choice of its transmission rate 7;(2) modifies the
energy versus delay trade-off.

A continuous transmission rate variable 7;(r) would provide continuous lines instead of
discrete points. However, tackling the continuous formulation of our problem is much more
challenging and for our study, we will stick to the simpler discrete formulation which still

provides a fair representation of the Pareto set.
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Figure 8: Projections of the Pareto optimal set for the 2-relay problem. The solutions are
divided into two sets: the set of 2682 solutions using only one relay (red cross marker) and

the set of 72895 solutions using two relays (blue dot marker).
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6.3. Pareto optimal set for the 2-relay problem

In this problem instance, we set M = 2 to allow solutions of either one or two active
relays. We set Hj; = 3, meaning that we account for all the paths having h < 3 hops in the
criteria computation. The granularity of the 7;(r) variable is reduced, and it takes its values
in the set I' = {0,0.1,...0.9,1.0} of |I'| = 11 elements. The search space has a cardinality
of 230,769, 891 solutions. An estimate of the Pareto optimal set is presented in Fig. 8 after
6,100 iterations and is composed of 75,577 solutions. On the reliability-energy projection
and on the delay-energy projection, we have highlighted the solutions composed of only one
relay using a red cross marker.

As shown in the projections of Fig. 8, the same trade-offs between reliability and delay
exist as in the 1-relay subproblem. The shapes of the other plots also resemble the 1-relay
subproblem. As in the 1-relay case, most of the solutions in the front are divided into various

energy levels because of the discretization of the 7;(r) space.
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Figure 9: 2-relay problem: location of the nodes that provide Pareto optimal solutions (blue
crosses) and of the nodes that provide a near quasi-perfect reliability (full black dots), i.e.
fr > 0.999. Nodes present in the Pareto optimal set for the 2-relay problem but not for the
1-relay problem are highlighted with purple square markers.
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Figure 10: 2-Relay problem: Location of nodes composing 2-relay solutions with fr > 0.45
and fp <2

Fig. 9 displays the nodes involved in solutions with 2 active relays. The nodes present
in the solution set of the 2-relay problem, but not in the 1-relay problem are highlighted
with purple squares. They are concentrated at the edge of the network near the source and
destination. Solutions which provide a high reliability (fz > 0.999) using two active nodes
are denoted with a black circle marker. Most of the solutions providing a quasi perfect
reliability are composed of a single relay. With this particular configuration and network,
it makes sense since intuitively the use of a single relay is the best possible configuration to
mitigate interference for a 2-time slot system. For the highly reliable solutions which have
two nodes participating, one relay node is located ‘behind’ the source and the second relay
is located between the source and destination. In this case it is the centrally located node
that is contributing the most to the reliability criterion.

For energy constrained wireless networks, it is interesting to see which solutions provide
the best possible compromise between energy and reliability. It is clear from Fig. 8 that

such solutions are composed of a single relay located in between S and D (cf. Fig. 6). For
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such 1-relay solutions, optimum reliability-energy trade-off is of (fr = 1, fr = 2). Looking
at the solutions of Fig. 8 composed of 2 relays only, the solutions with an energy criterion
fe < 2 have a maximum reliability of a little more than 0.45. The relays locations of the 3
solutions with fr > 0.45 and fr < 2 are represented in Fig. 10. For these 3 solutions, one
of the relays is only active in the first time slot with 7(1) = 0.1 while the other one is only
active in the second time slot with 7(2) = 0.5. All three solutions have a reliability very
close to 0.45. Lost packets are due to interference between source and relays transmitting
in the same time slot one. It is clear from this study that 2-relay solutions are not of any
use for this network if a low energy and high reliability is targeted.

This first simple study shows that the proposed multiobjective probabilistic network
model provides a coherent and complete view of the trade-offs that arise between reliability,
delay, and energy in our network. For larger networks or when more relays are needed, our
problem is solved using the multiobjective optimization algorithm PMOTS as presented in
Section 4.2. Although this paper does not concentrate on the description and the perfor-
mance analysis of PMOTS, we highlight the convergence properties of the algorithm for the
1-relay and 2-relay problems in Appendix B.

6.4. Model assessment through simulations

The previously derived Pareto fronts for the 1-relay and 2-relay problems are assessed
through simulations completed with the WSNet simulator [40]. WSNet is an event-driven
simulator tailored for wireless sensor networks. Additional to common event-driven wireless
network simulators, it features detailed propagation models and energy monitoring capabili-
ties of sensor devices. Each Pareto-optimal solution is simulated using the same parameters
as used for Fig. 5 and considering the same network distribution as described in 6.1. The
basic forwarding procedure of RELAY described in Algorithm 1 is implemented.

Sources transmit Ng = 10,000 packets before performance criteria are computed as

follow:
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Algorithm 1 RELAY algorithm
1: if PACKET is received at node 7 then

2:  generate a random value Z,qndom € [0, 1];

30 if (Zrandom < ;) and (hop_count(PACKET) < H)s) then

4: put PACKET into relay buffer and generate random value p; € [0, 1];
5: fork=1,k<R;k++ do

6: if p; < % then

7: send PACKET using resource Kk;
8: else

9: send PACKET using resource R;
10: end if

11: end for

12:  else

13: drop PACKET;

14: end if

15: end if

Reliability. The end-to-end reliability corresponds to the average number of packets success-

fully received at D in at most Hj; hops:

52 i ¢ s
j=1 L[PACKET ¢ received in D]
Ns

fr=
Delay. The end-to-end delay is measured in three steps as follows. Firstly, the total number

of packets n(h) arrived in h hops at D is counted for h < Hy;. Secondly, the probability R,

that the packet arrived in exactly h hops is computed using R, = %Z) Lastly, the delay

criterion obtained by simulations fp is derived based on the following formulation:

Hyy

fo=y|> (h—1)2-R,

h=1
Energy. The energy consumption is measured by counting the total number of packets

received ¢, and sent ¢, in the network for the whole simulation duration. Simulated energy
32



Table 2: RMSE for Reliability, Delay and Energy

Network RMSE for frg RMSE for fp RMSE for fg
1-Relay 0.31% 0.57% 0.08%
2-Relay 0.06% 0.09% 0.007%

criterion is then derived according to:

o treR + tSeS

N

where e and e denote energy consumption of packet reception and emission, respectively.
In order to measure the differences between each criteria predicted by the model and

evaluated by WSNet, we adopt a normalized root-mean-square error (RMSE) metric. Nor-

malized RMSE can be computed as:

i \/Zj-v—l rO)-F @12
RMSE(f. f) = =5

where f and f are the criteria derived from the MO model and from the WSNet simulations,
respectively. NV is the total number of solutions compared. Table 2 presents the RMSE values
for the 1 and 2-relay Pareto sets presented earlier. Relative RMSE is really low, showing

that for these networks the model accurately estimates reliability, delay and energy criteria.

6.5. Impact of the geometry of the network

In this section, we investigate the impact of various network parameters on the Pareto
optimal front. We consider the 1-relay problem to obtain several Pareto optimal fronts for
our study with a limited computational time and draw a first set of conclusions. In the
following, we still consider a network of randomly distributed nodes of density p. Three
parameters can be modified in the network definition: i) the location of the relays in the

network, ) the network density, and 4ii) the geometry of the source-destination flow.

Impact of the location of the relays. The impact of the location of the relay nodes

on the Pareto optimal set of solutions is studied. All network instances presented here are
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Figure 11: 1-Relay Pareto optimal sets for 5 network instances with p = 0.004 for the same
S-D flow.
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S-D flow for highly reliable solutions (zoom in).

obtained for the same node density of py = 0.004 and the same source destination flow (cf.
flow 1 in Fig 14). The Pareto optimal set of solutions is obtained using an exhaustive search

for five network instances. The fronts are presented in Fig. 11. To better see the distribution

of the solutions on the Pareto front, Fig. zooms on the highly reliable solutions.

From Fig. 11, it can be observed that all fronts overlap but are different. They all belong
to the same surface but provide a different discretization of it. Depending on its location, a
relay provides a different line of trade-off values on the Pareto optimal front as shown earlier

on Fig. 7. Each different network instance provides another set of possible relays but the

same trade-offs are observed between reliability, energy and delay for each of them.
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Impact of the network density. The impact of the network density is investigated in the
following. The same source destination flow 1 is considered and two Pareto optimal fronts
are computed with a density of p = 2py and p = 6py, with py = 0.004 the density of the
original network of Fig. 11. It can be seen on these plots that with more nodes present in
the network, the Pareto optimal set gets more dense. Adding relays gives a more precise
description of the Pareto optimal set. The complete set would be obtained for a continuous
definition of the problem where both the locations of the relays would be continuous and
the values of the transmission rates. Our current approach does not permit a continuous
definition of the network and its parameters. In this context, the novel works on massively
dense networks [41, 38] provide an appropriate framework for pursuing an extended analysis
based on this paper and deriving an asymptotic description of the Pareto optimal sets.

For the 1-relay problem, the density of the network does not affect the geometry of the
Pareto optimal set. However, this may not be the case for the M —relay problems with
M > 1. Indeed, increasing the number of potential relays may provide different multi-hop
transmission strategies with better performance. However, we conjecture that once a limit
density is reached, the Pareto optimal front will reach a steady structure, similar to the
limit provided by a continuous network definition. More extensive simulations are needed

to verify this assumption.

Impact of the flow geometry. The impact of the geometry of a source destination flow
on the Pareto optimal set is analyzed in the following. Three flows with different source-
destination distances and orientations are defined as shown in Fig. 14. The 1-relay problem
has been solved for each one of the flows separately and their corresponding Pareto optimal
sets are given in Fig. 15. A 3-D view and the projection on the reliability-delay plane is
plotted.

The orientation of the flows does not impact the trade-offs between reliability, delay and
energy because the distribution of the relays is uniform. Hence, it is the distance between
the source and the destination that determines the geometry of the Pareto sets. On the

reliability-delay projection, the point where the curve intersects the reliability axis gives the
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point where delay is null, which means that no relay participates in the transmission. The
reliability achieved in this case is a function of the source-destination distance. The shorter
this distance gets, the higher the reliability of the no-relay solution gets as well. For the case
where source and destination nodes are close enough to have a perfect direct transmission,
the Pareto optimal sets is reduced to this unique no-relay solution. Except for this particular
case, the sets follow the same trade-offs between reliability, delay and energy.

On the same projection, the point where reliability equals 1 is obtained by several solu-
tions. It can be seen that as the source and the destination get closer, the corresponding
transmission delay lowers for a reliability of 1. Since the direct transmission between S and
D has a better link probability, the relay does not need to transmit packets as often to
guarantee the reception of the data. Hence, its activity is reduced, and consequently the
transmission delay is reduced as well. This of course similarly impacts the energy consump-
tion of the network.

For higher order M —relay problems with M > 1, the same conclusions can be drawn
regarding the impact of the geometry of the flows since the distribution of the nodes is
uniform. To go further, it would be interesting to see what kind of Pareto optimal sets are
obtained for other types of networks and how flows or other network parameters influence

the performance of these networks.

6.6. Performance comparison with existing routing protocols

In this section, the performance of Dynamic Source Routing (DSR) [42] and Ad hoc On-
Demand Distance Vector (AODV) [43] routing protocols are compared to the Pareto-optimal
performance bounds derived with our framework. Our goal is to show how close these two

well-known routing strategies perform to the Pareto optimal choices derived earlier.

6.6.1. DSR and AODYV routing protocols

DSR and AODV are reactive routing protocols, where the routes are established on-
demand by the source node. To establish a route, a Route Request (RREQ) packet is
broadcast to all nodes of the network by the source. Once the intermediate nodes receive

the RREQ packet for the first time, they will broadcast it again to their neighbors if they
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do not know any route to the destination. A Route Reply packet (RREP) is transmitted
to the source node either by the destination or any relay receiving a RREQ packet and
knowing a route to the destination. In these algorithms, the destination sends a RREP
after it receives the first RREQ. Thus, they generally select the shortest path in cumulative
hop count metric. With AODV, each node stores the next-hop neighbor address for each
source destination path, while in DSR, a route cache memory stores the completes routes
to destination nodes.

With DSR, the header of the RREQ contains the route it has travelled up to arriving
at the destination. In this case, the packet header can be used to store cumulative metric
values (e.g. hop count, cumulative geometrical distance, cumulative packet error rate, . ..).
The destination can then wait for several RREQ packets to arrive from multiple routes and
select the one with the best metric value (minimum geometrical distance, PER..) to improve
reliability for instance [44]. Multiple routes per destination may be maintained [45]. In this
section, we target a DSR implementation where only one route is selected and maintained.
Important to both algorithms, the neighborhood of each relay has to be maintained using
HELLO messages to make sure the next hop node is still in range.

In this section, two DSR routing implementations are simulated to derive the routing
path relative to two different metrics: the shortest cumulative distance path from S to D
and the path with the minimum cumulative PE R. For each implementation, two nodes are
defined as neighbors in the protocol if the average link PE R is smaller or equal to A > 0.

For AODV, the shortest hop-count path is selected. It resumes to choosing, at each hop,
the relay which is the closest to the destination among the set of neighbor nodes which are

reachable with perfectly reliable links (i.e. with PER = 0).

6.6.2. Simulation setup

To be consistent with the simulation of the previously defined 1- and 2-relay problems,
we consider a frame composed of R = 2 time slots. The same network topology as defined
in Section 6.1 is considered. The source is transmitting a packet in the first time slot while

the relays share the second time slot for relaying. Since several relays may participate in
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Routing A Routing Performance evaluation Neighborhood
protocol path Analytical By simulation size
S: 196
Node 56: 333 (A =0.1)
frR=1-1078 frR=1
DSR-dist S: 177
A>0|S — Node 56 = D fop=1 fo=1
Solution 1 Node 56: 296 (A = 0.01)
fe=1931 feE=1934
S:164
Node 56: 261 (A =0.001)
frR=1 fr=1 S: 102
DSR-dist S — Node 56—
0 fp=2 fp=2 Node 56: 133
Solution 2 Node 58 — D
fE = 3.862 fr = 3.868 Node 58: 133
S: 196
Node 56: 333 (A =0.1)
fR:I—l()*S fRZl
DSR-PER S: 177
A>0|S — Node 56 = D fop=1 fo=1
Solution 3 Node 56: 296 (A = 0.01)
fg =1.931 fg=1.934
S:164
Node 56: 261 (A = 0.001)
fR =1 fR =1 S: 102
DSR-PER S — Node 23—
0 fp=2 fp=2 Node 23: 121
Solution 4 Node 4 —+ D
fE =3.862 fr = 3.868 Node 4: 119
fr=1 fr=1 S: 102
AODV S — Node 56—
0 fp=2 D=2 Node 56: 133
Solution Node 92 — D
fE =3.862 fr = 3.868 Node 92: 116

Table 3: Analytical and simulated performance of DSR and AODV routing protocols for

different neighborhood selection strategies (A values).
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the relaying, we adopt the IEEE 802.11 DCF MAC protocol to grant access to the relays in
the second slot. The overhead due to routing and MAC is not measured in our simulation
in order to provide a fair comparison with our framework results. Indeed, the framework
doesn’t account for any protocol overhead in its definition.

In this study, three routing implementations are tested: DSR with minimum cumulative
distance (DSR-dist), DSR with minimum cumulative PER (DSR-PER) and AODV which
minimizes the hop-count metric. For the two DSR implementations, neighborhood sets
are adjusted based on the value of A, with A € {0,1073,1072,107'}. Smaller values of
A select neighbor nodes with highly reliable links, inducing neighborhood sets of smaller
cardinality. For the DSR-PER implementation, which looks for the maximum reliability
route, a possibly very big number of routes with a zero cumulative PER may exist because of
multi-hop forwarding. Thus, since in our paper we have investigated 1 and 2-relay problems,
we will look for the route with maximum reliability composed of at most 1 or 2 relays. It is
equivalent to introducing a Time To Live (TTL) field in the RREQ packet that specifies a
maximum number of 2 or 3 hops.

In the simulations, routes are first calculated for the appropriate routing metric using
Dijkstra’s algorithm either for a reliable neighborhood sets (A = 0) or for unreliable neigh-
borhood sets (A € {1072,1072,107'}). Then, a flow of 10000 packets is transmitted on
the selected route. The performance evaluation criteria of the resulting routing solution is

calculated analytically and by simulation as stated earlier in Sections 4 and 6.4, respectively.

6.6.3. Results

The analytical and simulated results for the three routing protocols are shown in Table 3.
The routing path calculated for each routing implementation is given, together with the
analytical and simulated values of fr, fp and fgr. The impact of A on the neighborhood is
represented as well in Table 3 by showing for the source and relay nodes the size of their
neighborhood. Figure 16 represents the location of the different routes in the network and
Fig. 17 compares the evaluations in fr, fp and fg of each routing solution to our Pareto-

optimal performance bound for the 1-relay and 2-relay problem.
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Figure 16: Routing solutions for DSR and AODV routing protocols.

For the tested implementations, different routes are obtained:

e For DSR-dist, two routing solutions are obtained, referred to as DSR-dist solution 1
and 2. DSR solution 1 is obtained as unreliable neighbors are permitted (i.e. A > 0)
and is thus composed of a single relay. DSR solution 2 is constructed as only perfectly
reliable relays are selected as neighbors, reducing the neighborhood set size. Therefore,
the DSR-dist solution 2 is composed of 2 relays, adding another relay to DSR-dist

solution 1 on the source-destination path.

e For DSR-PER, two solutions referred to as DSR-PER solutions 3 and 4 are obtained.
Solution 3 is obtained when unreliable neighbors are permitted and a TTL of 2 hops
is enforced while solution 4 is obtained when A = 0 and a TTL of 3 hops is chosen.
DSR-PER solution 3 is exactly the same solution as DSR-dist solution because the
propagation model we use is a direct function of the distance. DSR-PER solution 4 is

one of the solutions with a zero cumulative PER and a TTL of 3 hops.
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Figure 17: The Pareto optimal set and DSR and AODV routing results.
For AODV, the shortest hop-count route contains two relays for this topology. The

second relay of the AODV solution is different from the one of DSR-dist solution 2.
This is due to the fact that AODV selects the second relay that is the closest to the

destination, and not the one that minimizes the cumulative path distance.

Over all tested scenarios, analytical and simulated values of the optimization criteria
are really close, showing that the analytical calculation provides (for this topology) a good
performance measure even if CSMA /CA protocol is introduced in the second time slot. All
routing solutions provide a close to one reliability criterion. DSR-PER solution 3 (which
is equal to DSR-dist solution 1) maximizes the reliability of the 1-relay case. As shown on
Fig. 17, DSR-PER corresponds exactly to the solution of the 1-relay problem with maximum
reliability. For the other solutions different delay and energy criteria are obtained. This is

due to the fact that conventional multi-hop routing does not leverage multi-path as we do in
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the framework. Routes with 3 hops have a delay criterion of 2 because all packets travel on
a 2-hop path, whether the retransmission of the first relay can reach the destination or not.
With our framework, the packets transmitted by the 2-relay solutions travel in average on
a 2-hop path (and not a 3-hop one) and therefore have an average delay of 1. Since most of
the time the transmission through one of the relays located in between S and D (cf. Fig. 9)
is successful, the second transmission is not necessary.

We can conclude that the three routing implementations leading to DSR-dist solution
2, DSR-~PER solution 4 and AODV are dominated by the Pareto-optimal solutions of our
multiobjective performance bound. Routing strategies leading to DSR~dist solution 1 and
DSR-PER solution 3, where unreliable neighbor links are leveraged, are Pareto-optimal in
the sense of maximum reliability, minimum average delay and minimum average energy
consumption.

More generally, we have shown that it is topical to compare the performance of state-of-
the-art routing solutions to our Pareto-optimal performance bounds. Several simple routing
implementations have been tested, showing that some of them are Pareto-optimal while

others are dominated by the derived bound.

7. Conclusion

In this paper, we have proposed a novel multiobjective optimization framework for net-
work routing and resource allocation in wireless ad hoc networks. Our proposed framework
consists of a general probabilistic network model capable of capturing the impact and in-
teraction of a wide range of resource/interference management techniques, various channel
conditions, and network scenarios. Used in conjunction with metaheuristic optimization
techniques, this framework provides an efficient tool to capture the trade-offs between dif-
ferent performance metrics and to obtain bounds on the achievable performance of routing
for a single source-destination transmission. Results were obtained for characterizing the
delay, reliability, and energy trade-offs for a two time slot sensor network model. Future
work will extend the model to consider more complex network scenarios, for example ac-

counting for various network topologies, including multiple concurrent flows in the network,
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Figure A.18: PMOTS: Description of one search iteration.

and using more refined cross-layer interaction and interference models. Other development
will introduce a continuous network model in order to get asymptotic Pareto optimal sets
for large scale networks. In the same sense, we will target as well networks of mobile nodes
by leveraging statistical mobility models of the literature. In this case, links between nodes

are a function of their probability to meet with a sufficient channel capacity.

Appendix A. PMOTS algorithm

This appendix presents briefly a multiobjective metaheuristic called PMOTS (Parallel
MultiObjective Tabu Search) that has been presented in [9]. It is based on the well known
Tabu metaheuristic [36]. PMOTS is a multiobjective extension of Tabu search where K
Tabu searches are performed in parallel. Its macro-algorithm is given in Algorithm 2 and a
graphical description is shown in Fig. A.18. The goal of this algorithm is to obtain the best
possible approximation of the Pareto optimal set of solutions Fp.

In a search iteration, i, the K parallel search paths are represented as a search set or
search front F.(i) of K solutions. The first set of K solutions is randomly created. A set
of neighbor solutions V' (S) for each solution Sy, of the search front is computed according
to a set of rules. The neighborhood generation rules specific to our MO problem enable

atomic changes to solution Sy by altering the selection of relay nodes, the transmission rates
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7;, and/or the resources r. Further details on these rules can be found in [9]. The pool of
neighbor solutions is added to the current Pareto optimal front Fp, and the new front Fpe
is obtained by extracting the set of non-dominated solutions.

A new search front F,(i 4+ 1) is selected by choosing promising non-Tabu solutions that
are not always non-dominated to avoid a premature convergence of the algorithm. Therefore
for a path k, each new solution is selected randomly in the set of neighbor solutions of Sy
which is limited to the solutions having a Pareto rank R,,... The rank of a solution zx is
defined by R(z) = 1+d(z), where d(z) is the number of solutions by which z is dominated in
the set of feasible solutions S. The solutions of the Pareto optimal set have a rank R(z) = 1.
In this algorithm, the Pareto ranking is local to the set of neighbor solutions and does not
include the current estimated Pareto set Fp. By not including Fp and selecting fairly good
solutions with the Pareto rank constraint, diversity is introduced within the search strategy.
Once F.(i + 1) is chosen, the solutions of F,(i) are stored in the corresponding Tabu lists.

There is also a restart strategy that creates a new random search front if no solutions
have been added to or suppressed from Fp for a given number of search iterations. The
algorithm stops after a fixed number of iterations and provides an estimate of the Pareto

front Flp.

Appendix B. Validation of PMOTS

The proposed multiobjective probabilistic network model provides a coherent and com-
plete view of the trade-offs that arise between reliability, delay, and energy. For larger
networks or when more relays are needed, our problem is solved using the multiobjective
optimization algorithm PMOTS as presented in Section 4.2. This appendix presents results
related to the convergence properties of PMOTS for the 1-relay and 2-relay problems.

Two performance metrics measure the convergence of PMOTS towards the Pareto opti-
mal set F'j obtained through exhaustive search. The approximated Pareto sets Fp obtained
by PMOTS are compared to F5 with respect to the number of iterations the search has

performed using the following metrics [46]:
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Algorithm 2 Macro-Algorithm for PMOTS

1: Init K Tabu lists TLy, = 0,k € [1,.., K]; Fp = 0;

2: Randomly create K solutions and include them in the search front F.(0);

3: for i € [0, .., [,y4:] do

4: Fe(i+1) = 0;

5: for all S, € F.(i) do

6: Compute and evaluate the neighborhood set V(Si);

7: Select from V'(Sy) the solutions with Pareto rank R(S) = R4, and add them
in Pr(Sk);

8: Select randomly a solution of Pgr(Sk) and add it into the new search front
F.(i+1);

9: Concatenate Pgr(Sy) with the Pareto front Fp;

10: Update the Tabu list T'Ly;

11: end for

12: Remove the solutions having a Pareto rank R(S) > 1 from Fp;

13: end for

14: Return Fp;

e The error ratio that measures the non-convergence of a search method to Fp. It is

given by:

n

ER = 22i=1% (B.1)

n

where e; = 0 if solution ¢ of Fp belongs to F; and e; = 1 otherwise, and n is the

number of solutions in the approximated Pareto front Fp.

The generational distance that measures the distance between an estimated set of
n solutions and the theoretical Pareto front F'5. It is defined by:
no gy
GD = (Zz:l z) (B2)
n
where d; is the smallest distance between a solution of Fp and F}5. Here, we use p = 2

and n the number of solutions of the approximated Pareto front Fp.
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The smaller the error ratio and the generational distance metrics, the smaller in number
and amplitude are the errors between Fp and Fj5. These metrics have been calculated for
the 1-relay Pareto fronts obtained with PMOTS every 20 iterations. Average and standard
deviation values are computed over 10 runs of PMOTS using the same test environment.
In Fig. B.19, it can be seen that both FR and GD quickly decrease with time. Iterations
40 and 80 have been highlighted on Fig. B.19 because they represent the times at which
PMOTS has evaluated the number of solutions equal to half the search space and the entire
search space, respectively. At iteration 80, only about 4% of the solutions of Fp do not
belong to F5, and these solutions are really close to the Pareto optimal front as shown by
the GD measure of 7.1075. At iteration 40, we already have a good first picture of the
Pareto optimal front. Indeed, the generational distance shows that the erroneous solutions
of Fp are very close to F with a value of GD = 1.10~%. Moreover, looking at the percentage
of solutions of Fp that belong to F}, we hare already identified 60% of the Pareto-optimal
solutions.

Similar analysis has been pursued with the 2-relay Pareto optimal set. Fig. B.20 shows
the performance of four runs of the PMOTS algorithm for the 2-relay problem using the
same test environment. The error ratio and generational distance values are calculated after
the initial neighborhood generation and at every 1,000 iterations of the algorithm. In two
of the cases, the initial solution selected for neighborhood exploration provides a very poor
initial estimate. By 1,000 iterations of PMOTS, however, we obtain a good estimate of the
Pareto front. In all four runs, the error ratio is below 25% at iteration 1,000. The maximum
generational distance for the trials at iteration 1,000 is GD = 9.3775. Although there are
still more non-dominated solutions to obtain in further iterations, we have confidence in the
initial observations of the performance trade-offs. PMOTS performs well for the 1-relay and
2-relay investigation. As we increase to even larger problem instances, we will continue to

improve the algorithm’s implementation and convergence speed.
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