
Assessing a precise gPTP simulator with
IEEE802.1AS hardware measurements

Quentin Bailleul
IRT Saint Exupéry
Toulouse, France

quentin.bailleul@irt-saintexupery.com

Katia Jaffrès-Runser, Jean-Luc Scharbarg
IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3

Toulouse, France
{kjr, jean-luc.scharbarg}@enseeiht.fr

Philippe Cuenot
IRT Saint Exupery, Seconded from Continental Automotive France

Toulouse, France
philippe.cuenot@continental-corporation.com

Abstract—TSN (Time Sensitive Networking) standards are
arousing growing interest in the critical on-board network
community because of their promise of deterministic Ethernet
networking. Among these standards IEEE802.1AS allows the
synchronization of network devices. This protocol achieves much
greater precision than other Ethernet synchronization standard
such as NTP or PTP. Thus, it paves the way for new network
mechanisms, such as the Time Aware Shaper, and allows the use
of applications that are more constrained in terms of synchro-
nization. In order to study the new mechanisms allowing to reach
this precision, precise simulations are mandatory. In this paper,
we review the different existing tools, extend the most promising
one to incorporate the most advanced features of IEEE802.1AS
and assess its behavior with respect to measurements. More
specifically, we extend an OMNeT++ simulation library, calibrate
its results following an extensive measurement campaign of
switched Ethernet devices supporting IEEE 802.1AS to assess
its performance in terms of precision.

Keywords—IEEE802.1AS, gPTP, TSN, Synchronization, Simu-
lation

I. INTRODUCTION

Critical on-board network architecture cannot cope with
the diversification of flows and their constraints. Thus, real-
time Ethernet solutions have been designed to bring much
higher bandwidth and advanced quality of service policies.
Promising solutions are the standards proposed by the IEEE
Time Sensitive Networking (TSN) working group. Among
these standards, central synchronous shapers like the Time
Aware Shaper (TAS) allow the transmission of zero-jitter time-
bounded low latency flows. Such shapers rely on a network-
wide precise and accurate synchronisation of the devices.
The IEEE TSN group has standardized the IEEE 802.1AS
synchronization protocol [1] we are investigating in this paper.

The IEEE 802.1AS protocol is a profile of the IEEE 1588
[2] synchronization standard already in use in non-critical
systems. IEEE 802.1AS has been designed with the goal of
reaching a precision of less than 1 microsecond in a linear
network setting where a master clock and an ordinary clock are
separated by 7 hops. The precision is defined as the difference

between the clock under test and the reference clock. Exper-
imental measurements [3] as well as simulation and worst-
case analysis [4] have assessed such precision. Simulation
allows the evaluation of this synchronization protocol at a
lower cost, provided that simulation assumptions are derived
from measurements. To the best of our knowledge, existing
simulation libraries have not been compared to real devices
supporting IEEE 802.1AS.

In this paper, we first review the already available simu-
lation tools for IEEE802.1AS and select the most advanced
open source OMNET++ simulation library. Then, we extend
this library to incorporate the most advanced features of
IEEE802.1AS and compare its performance to experimental
measurements of real IEEE802.1AS devices. From this step,
we propose a calibration step of the simulator and assess, after
calibration, its precision to validate its behavior in relation to
reality. Our contribution is a realistic open source simulation
model for IEEE802.1AS that reproduces the behavior of real
devices. Thanks to the improvements made to the simulation
model and the calibration of the jitter linked to the PHY layer,
the drift and the granularity of the clock using measurements
on real devices, we achieve a Root Mean Squared Error
(RMSE) of approximately 3 ns between the measured and
simulated sliding average of the synchronization precision.

This paper is organized as follows. First, we present IEEE
802.1AS and the related work on IEEE802.1AS simulation in
Section II. In Section III, we discuss our changes to an existing
library. Then in section IV, we present our experimental
protocols and discuss our results. And finally, we conclude
and present future work in section V.

II. CONTEXT

A. IEEE 802.1AS overview

IEEE 802.1AS [1] is a profile of IEEE 1588 Precision
Timing Protocol (PTP) [2] for Time Sensitive Networking.
Sometimes called generalized Precision Time Protocol (gPTP),
this protocol is used to synchronize clocks across a network
using the master slave paradigm. Each port is in one of the
following three states: master, slave, passive. Master ports



Fig. 1: Peer-to-Peer delay mechanism.

periodically broadcast time synchronization messages. Slave
ports process these messages on reception, while passive ports
ignore them to avoid loops in the distribution. The time-aware
system with all its ports in master state is called Grandmaster
and it is the time source of the network. It can be synchronized
by an external time source (GPS, NTP, ...) or use its own clock.

To determine port states, IEEE 802.1AS provides two
methods. The first one is the external port state configuration.
It statically defines the state of the ports for all the devices
involved in the synchronization. The second method is the Best
Master Clock Algorithm (BMCA). This distributed algorithm
is executed on each time-aware system to eventually determine
the state of the local ports and to elect the Grandmaster by
comparing the information received from each Grandmaster
candidate.

Synchronization itself is based on two core mechanisms:
i) the measurement of the link propagation delay using the
Peer-to-Peer delay mechanism and ii) the distribution of syn-
chronization information.

The Peer-to-Peer delay mechanism defined in IEEE
802.1AS measures the link propagation delay between two
time-aware systems that are separated by one hop. Pdelay
messages carrying timestamps are exchanged every Pdelay in-
terval (1s by default). Measurement of propagation delay needs
four timestamps as depicted in Fig. 1. t1 is measured when the
Pdelay_req is issued. t2 is obtained upon reception of this
message. t3 is measured when the Pdelay_resp is sent.
Finally, t4 is measured upon reception of Pdelay_resp.
Formula (1) calculates the delay of the link, Tprop, using the
timestamps. Moreover, with the t3 and t4 timestamps of two
consecutive Pdelay procedures, the requester can extract the so-
called neighbor rate ratio nr of Eq. (2) in order to compensate
the relative clock drift in Eq. (1).

Tprop =
(t2− t3) + nr.(t4− t1)

2
(1)

nr =
freq
fresp

=
t3i − t3i−1

t4i − t4i−1
(2)

Equation (1) assumes that the link is symetric. Existing
asymmetries can be compensated if they can be estimated,
typically in a calibration step. To smooth the effects of sources
of inaccuracies, some devices include filters for Tprop.

The distribution mechanism is based on the transmission
of Sync and Follow_Up messages that allow each time-
aware system to synchronize to the Grandmaster clock. Every
synchronization interval (typically 125ms), the Grandmaster
sends a Sync message out of its master ports, followed by a
Follow_Up message containing t0, the exact transmission
time of the Sync message, as pictured in Fig. 2. These
two messages are received via the slave ports of the device
connected to the Grandmaster. If the receiving device has at
least one port in the master state, it forwards both messages to
the next time-aware system. The Follow_Up message carries
t0, and updated values of the rate ratio r and the correction
field C. These two fields are detailed next.

The rate ratio r allows for logical syntonization of a time-
aware system to the Grandmaster rate. It is the product of
the neighbor rate ratio calculated by the receiver ports on the
path going from the Grandmaster to the time-aware system of
interest. It is initialized to 1 by the Grandmaster and is updated
on each hop with the equation (3), where i is the receiving node
and i− 1 the sending node.

ri = ri−1 ∗ nr (3)

The correction field C carries the time elapsed in the time-
aware systems and on the links on the path between the
Grandmaster and the time-aware system preceding the last hop.
At hop i, Ci is calculated using the previous correction field
Ci−1, the previous rate ratio ri−1, the neighbor rate ratio nr,
the propagation time undergone during the last hop Tprop and
the residence time Tres of the Sync in time aware system as
given in (4) :

Ci = Ci−1 + ri−1 ∗ Tprop + ri−1 ∗ nr ∗ Tres (4)

These operations are repeated at each hop, until the com-
plete set of time-aware systems is reached.

Using the two mechanisms described above, each device
can calculate the difference between its local clock and the
Grandmaster clock in order to deduce the correction to be
applied. Indeed, to deduce the Grandmaster time at the Sync
reception time, the device adds to t0, the original time of
transmission of the Sync by the Grandmaster, the correction
field carried in the Follow_Up message and the propagation
delay of the last hop Tprop measured with the Peer-to-Peer
delay mechanism.

B. Related Work

Since the first version of 802.1AS in 2011, several simula-
tion tools have been created. Garner et al. [3] proposed a simu-
lation model to evaluate a draft of 802.1AS. In order to reduce
its complexity, this discrete event simulation library only mod-
els events linked to Sync, Pdelay_Req and Pdelay_Resp
messages. It approximates operation in one-step mode. Using
this simulation, they showed that the proposed synchronization
mechanism can cope with Audio/Video application constraints
with a network having up to 7 hops. Lim et al. [5] built a
simulation model for IEEE802.1AS using OMNeT ++/INET



Fig. 2: Synchronization distribution mechanism.

in order to evaluate the performance of the standard on an
automotive Ethernet topology. This simulation model uses
passive clocks and a static configuration. They highlighted
the importance of the choice of filter to smooth out errors
in the propagation delay measurement and the improvement
in precision when a lower syncInterval is used in the first hop.
Gutiérrez et al. [4] developed a simulation library in order
to compare probabilistic and worst case precision achievable
in a 100 hop network. Their simulation model is based on
OMNET ++ / INET with a clock model using a drift that
varies over time at a bounded rate. Nevertheless, the neighbor
rate ratio is calculated from the perfect neighbor rate ratio
and the maximum error allowed by the standard, which makes
the Pdelay calculation pessimistic. However, these different
simulation libraries are not open source and haven’t been
assessed by real measurements.

A few works propose open source libraries, e.g. the
one proposed by Puttnies et al. [6]. They developed a
IEEE802.1AS simulation model, using OMNeT++ [7] with the
INET framework [8], containing the core time synchronization
and propagation delay measurements operations. The model
uses a simple clock model with constant drift. The BMCA is
not implemented because they focus on achievable precision.
Obtained results have been compared with the simulation
results of Lim et al. [5]. Wallner et al [9] also built an open
source simulation framework for IEEE1588-2008, also based
on OMNeT++/INET, with complex clock models using realis-
tic noises. This very complete simulator allows the use of many
PTP mechanisms such as End-to-End or Peer-to-Peer delay
measurement, BMCA and transparent clock mechanisms.

The simulation library of Wallner et al. [9] is of higher
complexity than the one of Puttnies et al. [6] due to the
implementation of many PTP mechanisms that are not part
of IEEE802.1AS. As such, we decided to carry out this work
on the basis of the library of Puttnies et al. [6] that supports
the core functions of IEEE802.1AS by design. In order to
compare the simulation accuracy with real measurements, we
had to extend this library with new features to better capture
all mechanisms of IEEE802.1AS. Resulting extensions are
presented next.

III. GPTP SIMULATION MODEL EXTENSIONS

In order to improve the simulation accuracy of [6], we
had to extend the simulation model to account for clock
syntonization on the one hand, and to better capture core
platform-dependant features such as clock granularity and jitter
of the link delay due to the PHY layer on the other hand.

A. Logical syntonization

As described above, logical syntonization is essential to
reach higher levels of synchronization precision. Indeed, it
allows to take into account the local drift compared to the
Grandmaster one when updating the correction field. Without
this mechanism, the relative drift between the Grandmaster
and the time aware system is not compensated for, causing a
wrong estimate of the correction to be applied to the clock.
This error is also propagated to the devices on slave ports
with the correction field. We have added this syntonization
step following the IEEE802.1AS standard to the simulator of
[6].

B. Towards a more realistic model

To better capture the real behavior of devices supporting
IEEE802.1AS, the following sources of imprecision have been
added to the simulator.

The first one is the granularity of the clock. This is the
step at which the clock ticks, for instance 10ns. Thus, when a
duration is measured between two timestamps, e.g. a duration
of the propagation delay computation or the residence time
of a Sync message, the measurement error varies between
-10ns and + 10ns. In the simulator, we round the duration
to the immediately lower multiple of 10ns to capture clock
granularity.

The second source of imprecision is the inaccuracy related
to the PHY layer that occurs at the reception device. Despite
the hardware timestamping used in devices supporting IEEE
802.1AS, which eliminates software-related jitter, the PHY
layer causes an implementation dependent jitter. As shown
by Loschmidt et al. in [10], the jitter linked to the PHY
layer depends on the protocol used. They show for instance
that the jitter is higher with 10Base-T than with 100Base-T.
Moreover, a propagation delay asymmetry may exist whose
magnitude depends on the initialization of the link PHY layer.
These two PHY layer phenomenons have significant impact on
the synchronization results since they change the propagation
delay statistics and values.

In the following we consider a 100Base-T PHY. Based on
[10], a random jitter is added to the reception timestamp of
a message. It follows a normal distribution with zero mean
and 0.286ns standard deviation. Additionally, a link delay
asymmetry may be introduced at link initialization by constant
latency. This asymmetry is rooted in the Phased Lock Loop
(PLL) system that may lock on dissimilar edges of the signal
at the RX interface on both ends of the link. If the PLLs of
the two RX interfaces at both ends of the same link lock on
dissimilar edges, then the propagation delay in both ways is
asymmetric, which causes an error in the estimation of the
propagation delay. The 5 possible edges being 8ns apart, the
worst asymmetry is therefore of 32ns which causes an error



Protocol Parameters Value
Sync Interval 0,125s

Pdelay Interval 1s
SyncLocked True

TABLE I: Protocol parameters

of 16ns when calculating the propagation delay by the time
aware system. This error leads to errors in the estimation of
the time spent by the Sync messages on the link and therefore
inaccuracies in the synchronization.

There are other sources of inaccuracy such as PLL or
oscillator noise. They can be neglected since their impact on
the delay is less than one nanosecond [10].

IV. EXPERIMENTS

In the previous section, we detailed the changes made to
improve the simulation library’s realism. This section aims to
calibrate and validate the choices made during the implemen-
tation and to identify calibration steps to improve simulation
accuracy. For this, we will measure and analyse first, on
the real TSN switch, the behavior of the switches clock.
Second, we challenge the results obtained by the link delay
measurement mechanism with the simulated ones. And finally
we compare the precision of the synchronization IEEE802.1AS
to the simulation results to validate the simulator’s accuracy.
From the first two steps, we extract calibration steps that can
be performed to adjust the simulator to a specific 802.1 PHY
technology.

A. Experimental setup

The goal is to calibrate and validate the behavior of the
simulation library using real devices. Configuration parameters
of IEEE802.1AS are given in Table I. The library is configured
with the help of the values determined in the rest of this paper
to get as close as possible to the behavior of real device.

Our experimental testbed, pictured in Fig. 3 consists of:

• 4 Fraunhofer IPMS TSN Multiport Switch Core -
TSN-SW v0.5.0 on Netleap boards,

• a netTimeLogic PPS analyer,

• 100Base-T Ethernet link.

As described in Fig. 3, the four switches are connected in a
chain topology. We capture the progress of the different clocks
using the PPS Analyzer. One of our experiments described later
requiring greater accuracy required the use of a better quality
reference clock as a reference for the PPS analyzer. For this
we used a Meinberg microSync HR slaved on GNSS time
connected to the reference input of the PPS analyzer with a
PPS link. And finally, to configure and retrieve internal switch
values, such as the result of the delay propagation calculation,
we use the serial port of the switches to communicate with a
computer.

Simulations also consider the same topology. Unlike a one-
hop topology, this multi-hop topology allows an evaluation
of the impact of the correction field. The measurements are

Fig. 3: Experimental measurement topology.

carried out by OMNeT ++ at instants following precise events,
e.g. the end of the propagation delay measurement or just
before and just after the correction of the clock.

To determine the duration of experimentation and simu-
lation necessary to obtain significant results, we studied the
evolution of the mean squared error (MSE) between the nor-
malized distribution of value obtain by the Pdelay mechanism
of a given experiment duration compared to a experiment
duration of 32h. A duration of 3600s corresponds repeatedly
to an MSE of around 10−5 % of the number of occurrences
as shown in the fig 4. Fig 5 makes it possible to observe the
small difference between the distribution of value obtain by the
Pdelay mechanism obtained after 1 hour of experience and the
distribution obtained after 32 hours. The sources of variability,
such as the granularity and the PHY jitter, do not depend on
the AS mechanism which is studied, we will therefore use this
duration of experimentation for the other mechanisms and not
only for the Pdelay mechanism. Thus, for the rest of this study,
we take measurements for 3600s.

The following sections present the three experiments that
we carried out to compare the operation of the simulator with
the operation of real devices in order to calibrate and validate
this simulation model.

B. Clock calibration

In [6], Puttnies et al. have chosen to implement a simple
constant drift clock. In order to validate this choice and adjust
the parameters of the simulator clock deviation in relation to
our real devices, we have studied the behavior of the clocks
of our switches in freerunning during one hour. To do this, we
measured with the help of the PPS analyzer the evolution of
the drift for each switch compared to the Meinberg microSync
HR slaved on GNSS when the synchronization is deactivated.
We use the Meinberg microSync HR on this experiment for
its clock quality.

Figure 6 and table II shows the results of this experiment.
These measurements were taken 10 minutes after starting the
devices, so that the temperature of the electronic components is
stable and without attempting to control the room temperature.
As indicated in the figure 7, presenting multiple results of the



Fig. 4: MSE of the distribution of the results of the Pdelay
mechanism according to the duration of the experience com-
pared to a 32 hours experience with the real switches

Fig. 5: Pdelay distribution for an 1-hour experience and a 32-
hour experience

linear regressions carried out, similar results are obtained for
the different repetitions of the measurements during 24h.

Using Fig 6 and the table II, we observe that an implemen-
tation of a constant drift clock makes it possible to simulate
the behavior of a real clock in freerunning for one hour in
an environment where the temperature variations are small.
However, by repeating the experiment during 24h, we observe
small variations in ppm within a range of 0.009 ppm , as shown
in Fig 7 caused by the temperature variation in the room. In
order to use up to date ppm value in the simulator, in the rest of
our comparison between simulation and reality, we perform a
ppm measurement in freeruning compared to the Grandmaster

Fig. 6: Grandmaster clock offset of two switches during 3600s

Switch 1 Switch 2
ppm 12.593 9.094

pvalue < 10−9 < 10−9

rvalue 0.99999995 0.99999999

TABLE II: Results of linear regression of the data presented
in Fig 6

of the experiment before performing any other measurements
on real devices.

C. Canal calibration

In order to adjust and validate the different sources of
inaccuracy that we have added to the simulator, we measure
the distribution of the values obtained by the Peer-to-Peer
delay measurement mechanism without any filter and compare
them to the value obtained with the simulator. To configure

Fig. 7: Result of linear regression of switch 1 clock drift
measured for 3600s and repeated for 24 hours.



the simulator, we use the relative drift measured before the
experiment and the mean link delay measured during the
experiment.

In order to determine the standard deviation to parameterize
the normal distribution which adds jitter to the link crossing
time in the simulator, we compared the distributions obtained
using the simulated and real Peer-to-Peer delay mechanism.
Figure 8 shows the MSE obtained between the simulated
and measured distribution of the Pdelay as a function of the
standard deviation used to parameterize the normal law which
causes the PHY jitter when crossing the link. By minizing
the MSE, we find a standard deviation of 12.5ns, which is
quite different from the 0.286ns measured by Loschmidt et
al in [10]. Indeed, our switch embeds a different PHY chip
from the one used for their measurements. In addition, our
measurement takes place much further in the chain of message
transmission. Indeed, our measurement is based on timestamps
which takes place between the MAC layer and the PHY layer
of the OSI model while their measurement takes place directly
at the PHY level using the RX DV and TX EN PINs of the
MII. Thus other source of jitter can be found between their
point of measurement and ours.

Fig. 8: MSE between the simulated and measured distribution
of the Pdelay during 32h according to the standard deviation
used to simulate the PHY jitter in the simulator

The figure 9 presents the results obtained where switches
are synchronized and exchange Pdelay messages every sec-
onds. We find there the distribution of the different values
obtained by the measurement mechanisms of the link delay
of one of the switches and of the simulation library obtained
during 32h. For this measurement, we use a measurement time
much longer than what we have previously determined to be
sure that the simulated distribution also covers rare events. The
simulation parameters such as mean link delay, granularity and
PHY standard deviation were chosen to match the experimental
distribution. By analyzing the distribution of the propagation
delays obtained by the real device, in Fig 9, we can deduce

the granularity of the clocks used by observing the difference
between the two consecutive values. Here, the difference being
5ns, the granularity is therefore 10ns, because of the division
by two in the formula (1). As can be seen with this figure, our
simulation gives a distribution very close to reality although a
little more pessimistic than reality but which does not bother
us in view of our on-board scope of application.

Fig. 9: Distribution of the results obtained by the simulated
and real Pdelay mechanisms

Fig. 10: Distribution of the results obtained during two exper-
iments with the real switches.

When the link between two measurements is reinitialized,
a variation of the mean Pdelay, as shown in fig 10, is observed.
These two distributions originate from a periodic measurement



of the Pdelay on real devices for which we trigger a link
reinitialization every hour. As described by Loschmidt et al.
in [11], the difference between the two distributions is a con-
sequence of link delay asymmetry. This asymmetry is induced
by the edges on which the PLLs of each physical interface
lock during link initialization. If the two PLLs don’t lock on
the same edge, the various messages of the Pdelay mechanism
undergo a different link propagation delay depending on their
direction on the link. As such, there is an error in the estimation
of the link delay by the Pdelay mechanism since it is based
on a symmetrical channel assumption. With the library, we
reproduce this behavior by randomly setting the edge on which
each interface is locked for each simulation.

D. Validation

In this last part, we compare the synchronisation precision
measured with the real TSN switches to the one computed by
the OMNeT ++ simulator. This steps validates the different
enhancements of the simulation library and the calibration
steps proposed in this paper.

1) Bounding the precision.: The measurements are trig-
gered by the PPS analyser every second. The SYNC messages
are sent about every 125ms. The PPS measurements aren’t syn-
chronized with the SYNC dates and as such, the measurements
may be taken at various times of the synchronization cycle.
For instance, if the previous synchronization stage takes place
a few nanoseconds before the measurement time, the precision
measured using the PPS signal is much better than if the last
synchronization stage takes place a few tens of milliseconds
before.

Unlike real measurements based on the PPS signal, we
can measure in simulation the synchronization precision at
specific times which are related to the main protocol execution
steps. The worst precision can thus be measured just before
the synchronization procedure takes place and the best one just
after it. Since we can’t compare measurements and simulation
at exactly the same dates, we leverage the track the best and
the worst synchronization by simulation, and plot the real mea-
surements in the same figure to validate whether measurements
lie in between best and worst simulation precision. Figure 11
shows the precision measured on the first hop, as well as
the simulated precision before and after sync for 3600s. With
this figure, we observe that the simulator allows to bound the
result obtained with the real device on the first hop, despite
the limitations of the PPS signal. There results are reasonable,
even though they don’t allow us to judge the accuracy of the
bounds obtained with the simulator.

2) Accuracy of simulated precision bounds: By repeating
the previous experiment, we observed gaps in the precision
measured using the PPS signal as shown in the figures 12, 13
and 14. These figures show the measured precision, as well
as the simulated precision before and after synchronization
respectively at the first, second and third hops. These PPS
gaps represent the situation where we move from measuring
precision just after synchronization takes place to measuring
precision in reality just before synchronization takes place.
Over a campaign of 200 one-hour measurements, we have
observes these PPS gaps 19 times.

Fig. 11: Offset between the Grandmaster clock and the switch
clock at hop #1 in reality and the simulator. The simulator
is configured with the granularity, mean link delay and the
standard deviation estimated in the previous experiments.
For the clock drift, we use the drift measured before each
experiment.

Fig. 12: Identification of a PPS gap in the offset measurement
between the Grandmaster clock and the switch clock at hop #1
in reality. Simulated best and worst offset are plotted as well.



Fig. 13: Identification of a PPS gap in the offset measurement
between the Grandmaster clock and the switch clock at hop #2
in reality. Simulated best and worst offset are plotted as well.

Fig. 14: Identification of a PPS gap in the offset measurement
between the Grandmaster clock and the switch clock at hop #3
in reality. Simulated best and worst offset are plotted as well.

Hop 1 Hop 2 Hop 3
Minimal RMSE (ns) 0.89 1.1 2.1
Maximal RMSE (ns) 7.1 4.8 6.2
Median RMSE (ns) 2.3 2.8 3.9
Mean RMSE (ns) 3.4 2.9 4.2

TABLE III: Result of the RMSE calculation using 10 different
simulations

Switch 2 Switch 3 Switch 4
ppm -1.850 0.817 1.997

TABLE IV: Clock drift of the different devices measured
before the simulator validation experiment

Thus, close to the PPS gap, it’s possible to determine
when the synchronization cycle takes place. In this situation,
it becomes possible to compare the bounds obtained with the
simulator with the worst and best precision measured around
the PPS gap. With the figures 12, 13 and 14, it can be seen
that the simulator makes it possible to precisely limit the
synchronization precision reachable with this Ethernet switch.
Indeed, we observe the best case, just after the synchroniza-
tion, and the worst case, just before the synchronization, in
a single measurement for the three hops. Furthermore, the
measurements and comparisons with the simulation for hop
#2 and #3 make it possible to validate the implementation of
the calculation of the correction field and thus the measurement
of the residence time. We also observe that the dispersion of
the precision values remains similar despite our pessimistic
simulation of the PHY jitter.

These observations are validated by the calculation of the
RMSE between the measured and simulated sliding average
of the synchronization precision. Sliding average is computed
over a window of 150 samples for the 500 samples preceding
the PPS gap for each one of the three hops. Due to the
progressive shift of the synchronization cycle relatively to the
PPS measurement time, we are bound to use a small window.
This small window isn’t large enough to capture all possible
variation in simulation. To compensate for this variability, we
perform an RMSE calculation over 10 different simulations.
Results are are presented in the table III. As shown in this
table, the average RMSE is approximately 3 ns. There is
also an increase in the median RMSE as the number of hops
increases. This increase in the differences between reality and
simulation is mainly caused by the pessimistic estimation of
the PHY jitter, introduced during the calibration phase of the
delay measurement mechanism.

Using the three figures, we also observe a large variation
in the precision before synchronization as a function of the
number of hops. This variation is due to the relative drift
between the Grandmaster and the device in question. Indeed,
before synchronization, the precision error is mainly caused by
the drift which has taken effect since the last synchronization,
here since 125ms. Before this measurement, we measured the
relative drift between the Grandmaster and the different devices
and observed a lower drift for switch 3 (hop #2) than for the
other devices as shown in the table IV.



V. CONCLUSION

This paper presents the enhancement of an open source
simulation library of the IEEE802.1AS synchronization proto-
col available here [12]. The integration of logical syntonization
and real hardware inaccuracies brings the simulation library
closer to reality. Our tests show the fidelity of the simulator
after calibration compared to the result obtained with real
TSN switches, as evidenced by the MSEs of the order of
4 ∗ 10−6 % of occurrence between the distribution of values
obtained by the simulated and measured link delay measure-
ment mechanisms, as well as the RMSEs of approximately
3 ns between sliding average of the precision measured and
simulated. This library now allows to study the precision of
the synchronization and its impact on the clients according
to parameters such as topology, protocol configuration, filters
for measuring propagation delay and clock servo algorithm.
In addition, we also propose a method which is repeatable to
calibrate the simulator for other switches or end stations.

Future works will investigate the impact of other PHY
layers like 1000Base-T and 10Base-T1S on precision using this
library. This work will also allow us to focus on the calculation
of the worst case precision to optimize the protocol parameters
according to the intended use.

ACKNOWLEDGMENT

The authors thank all people and industrial partners in-
volved in the EDEN project. This work is supported by the
French Research Agency (ANR) and the partners of IRT Saint-
Exupéry Scientific Cooperation Foundation: Airbus Operation,
Airbus Defence and Space, CNES, Continental Automotive,
INPT/IRIT, ISAE-SUPAERO, ONERA, Safran Electronics and
Defense, Thales Alenia Space and Thales Avionics.

REFERENCES

[1] “IEEE Standard for Local and Metropolitan Area Networks–Timing and
Synchronization for Time-Sensitive Applications,” IEEE Std 802.1AS-
2020 (Revision of IEEE Std 802.1AS-2011), pp. 1–421, 2020.

[2] “IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems,” IEEE Std 1588-2019
(Revision ofIEEE Std 1588-2008), pp. 1–499, 2020.

[3] G. M. Garner, A. Gelter, and M. J. Teener, “New simulation and test
results for IEEE 802.1 AS timing performance,” in 2009 International
Symposium on Precision Clock Synchronization for Measurement, Con-
trol and Communication. IEEE, 2009, pp. 1–7.

[4] M. Gutiérrez, W. Steiner, R. Dobrin, and S. Punnekkat, “Synchroniza-
tion quality of IEEE 802.1 AS in large-scale industrial automation
networks,” in 2017 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 2017, pp. 273–282.

[5] H.-T. Lim, D. Herrscher, L. Völker, and M. J. Waltl, “IEEE 802.1 AS
time synchronization in a switched Ethernet based in-car network,” in
2011 IEEE Vehicular Networking Conference (VNC). IEEE, 2011, pp.
147–154.

[6] H. Puttnies, P. Danielis, E. Janchivnyambuu, and D. Timmermann, “A
Simulation Model of IEEE 802.1 AS gPTP for Clock Synchronization
in OMNeT++.” in OMNeT++, 2018, pp. 63–72.

[7] (2021) Omnet++ simulator version 5.2. [Online]. Available:
https://omnetpp.org/

[8] (2021) Inet framework version 3.6.3. [Online]. Available:
https://inet.omnetpp.org/

[9] W. Wallner, A. Wasicek, and R. Grosu, “A simulation framework
for IEEE 1588,” in 2016 IEEE International Symposium on Precision
Clock Synchronization for Measurement, Control, and Communication
(ISPCS). IEEE, 2016, pp. 1–6.

[10] P. Loschmidt, R. Exel, and G. Gaderer, “Highly accurate timestamping
for ethernet-based clock synchronization,” Journal of Computer Net-
works and Communications, vol. 2012, 2012.

[11] P. Loschmidt, “On enhanced clock synchronization performance
through dedicated ethernet hardware support,” Ph.D. dissertation, 2010.

[12] (2021) The simulation library. [Online]. Available: https://gitlab.amd.e-
technik.uni-rostock.de/peter.danielis/gptp-implementation


