Séminaire STORE - 13 avril 2021.

INCdeep: Intelligent Network Coding with Deep Reinforcement Learning

Qi Wang *, Jianmin Liu *, Katia Jaffres-Runser+, Yongqing Wang *, Chentao He *, Cunzhuang Liu *, Yongjun Xu *

* Institute of Computing Technology, Chinese Academy of Sciences, China + University of Toulouse, IRIT/ENSEEIHT, France

Institute of Computing Technology, Chinese Academy of Sciences

Network coding

- Network coding has been introduced to achieve higher transmission rates and improve transmission reliability
 - Source, relay node: selects a vector of coefficients and combines received packets into one or several output packets
 - > **Destination (decoder)** : decodes original packets from a set of received ones by Gaussian elimination if coefficient matrix is full rank **Original Packet** Coding Coefficients $X_1 \mid X_2 \mid X_3 \mid \cdots \mid$ $\bullet \bullet \bullet \mid \bullet \bullet \bullet \mid X_{k-l} \mid X_k$ \mathbf{g}^{I} Packet_s $P_{i} = g^{1} \chi_{1} + g^{2} \chi_{2} + g^{3} \chi_{3} + \dots + g^{k-1} \chi_{k-1} + g^{k} \chi_{k}$ Encoding —— Encoding Vector — $\| g^2 \|$ e^{k-l} Encoded g^k $|\mathbf{g}^{I}|$ Packet

Related works

• Existing linear network coding

2

- Deterministic network coding(cf. [1][2])
 - Coding coefficients determined by dedicated deterministic algorithms
 - Requiring global network information, incapable of adapting to varying network conditions, high complexity, low robustness.
- Random linear network coding(cf. [3][4])
 - Coding coefficients randomly selected in a finite field in random linear network coding
 - Easily implemented in a distributed fashion
 - Coefficients can not be adjusted to network dynamics (time-varying link quality, changing number of relays)

Problem: How to automatically build coding coefficients to adapt to network dynamics?

[1] S.-Y. Li, R. W. Yeung, and N. Cai, "Linear network coding," IEEE transactions on information theory, vol. 49, no. 2, pp. 371-381, 2003.

[2] R. Koetter el., "An algebraic approach to network coding," IEEE/ACM transactions on networking, vol. 11, no. 5, pp. 782–795,2003.

[3] T. Ho, el., "The benefits of coding over routing in a randomized setting," in ISIT, July 2003.

[4] T. Ho, el., "A random linear network coding approach to multicast," IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413–4430, Oct 2006.

Opportunity of Deep Reinforcement Learning

- 3
 - Deep reinforcement learning combines deep learning with reinforcement learning (RL) to implement machine learning from perception to action.
 - Network variations can be automatically and continually expressed as Markov decision process (MDP) state transitions.
 - RL agent learns to optimize coding coefficients to maximize a decoding probability objective, through the rewards obtained by interacting directly with the network.

Motivation: How to devise a DQN to automatically select coding coefficients to adapt to network dynamics?

Network code model

- Source S encodes linearly K equally sized packets at each episode until it receives an end-to-end ACK from D.

- Relays recode linearly the <u>M previously received</u> coded packets until they receive the ACK from D.

- D decodes if coding matrix is full rank.

Architecture of INCdeep

Deep Q Network (DQN)

How to keep track of the decoding matrix at the next relay?

- Buffer B_{last} (Encoded packets received from its previous node) of size M
 - Each relay R_i has a buffer B_{last}(R_i) to store the latest M encoded packets received from its previous hop.
- Buffer B_{all} (Encoded packets received by next node) of size M

- Source S and each relay R_i have a buffer $B_{all}(S)$ (or $B_{all}(R_i)$) to keeping track of encoded packets received by its next hop node ($C_{R_{i+1}}$, i = 1...N) using ACK messages.
- ACK is used to confirm the transmitted encoded packet received successfully by the next hop node

DQN model for source (DQN_S)

State input:

7

- The information of the *j*-th packet *x_j* of a message
- M encoded packets in the buffer of the first relay R_1

Action output:

- Coding coefficient of *j*-th packet of the message
- Run K times DQN_s to derive coefficient vector G_s to create a single encoded packet P_s

Reward:

- The rank of linear system of equations formed by these packets in the buffer of next node \mathbf{B}_{all} increases, reward is +1
- Otherwise, reward is -1

DQN model for relays (DQN_R)

State input:

8

- New encoded packet produced by current node at step *j*
- The *j*-th encoded packet in the buffer of current node
- *M* encoded packets in the buffer of the next node

Action output:

- Coding coefficient of *j*-th encoded packet in its buffer
- Run *M* times DQN_R to derive coefficient to create a single encoded packet P_{Ri}

Reward:

- The rank of linear system of equations formed by these packets in the buffer of next node increases, reward is +1
- Otherwise, reward is -1

Simulation Setup

9

Relays Relays Source Destination Source P_{R_2} Decode at destination $P_{R_{n}}$ Encode at source **Recoding at relays** Encode at source Decode at destination

Destination

D

Recoding at relays

- Network topologies: Linear topologies and Parallel topologie
- **Simulation platform**: Python 3.5-based framework and TensorFlow 1.15; Ubuntu 16.04 server with 2 RTX2080 Ti GPUs and Intel 2 Xeon E5-2660.
- **Results assessment**:

 - **Root Mean Squared Error (RMSE)** $RMSE = \frac{1}{n}\sqrt{\sum_{i=1}^{n} \frac{(d(i) \tilde{d}(i))^2}{d(i)^2}},$ **Overhead** $= \frac{1}{k}(E) * 100 = \frac{1}{k}(Nr K) * 100$ •

Benchmark coding algorithms

- Traditional random network coding: Source nodes uses a fountain code and relays combine coded packets using RLNC [1]
- RL-aided SNC[2]: Reinforcement learning-aided sparse network coding.

^[1] T. Ho,el., "A random linear network coding approach to multicast," IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413–4430, Oct 2006. [2] R. Gao, Y. Li, J. Wang, and T. Q. S. Quek, "Dynamic sparse coded multihop transmissions using reinforcement learning," IEEE Communications Letters, vol. Early Access, no. 1-5, June 2020.

• Performance Evaluation Results

10

- > Training efficiency: reward converges in about 10000 episodes for field size q = 8 and PER = 0.1, and 7000 episodes for finite field size q = 8 and PER = 0 as well as finite field size q = 2.
- **Runtime cost**: for both topologies, the runtime is 0.8 ms and 1.6 ms to obtain coding coefficients for an encoded packet under K = 5 and K = 10, respectively

Generalization ability: verify generalization on link quality and number of relays

INCdeep model obtained with a training setting that consider channel setting can be leveraged at runtime.

11

Performance Evaluation Results

> Performance of INC deep with *different PER* and *different number of relays N*

• Performance Evaluation Results

Comparison between INCdeep and benchmark coding algorithms

TABLE I: Comparison of the overhead

Topology	N	Coding Method				
Topology		INCdeep	Fountain+RLNC	RL-aided SNC		
Linear	2	14.26 %	24.86 %	30.1%		
	6	19.6 %	25.1 %	596 %		
	10	22.2 %	26.3 %	9855 %		
Parallel	2	222.68 %	89.5 %	292.64 %		
	6	290.48 %	345.66 %	936.6 %		
	10	454.26 %	598.8 %	1605.32 %		

- ✓ In linear topology, INCdeep has smallest overhead.
- ✓ In parallel topology, INCdeep outperforms benchmark algorithms as the number of relays increases.

13

Performance Evaluation Results

Fast Changing Environment: evaluate INCdeep and benchmark coding algorithms in dynamic environments where PER vary much faster.

Here, PER_{SR} and PER_{RD} are independently randomly drawn from a uniform distributions over [0.0,0,4] for every five packets emitted by source

Decoding probability of INCdeep outperforms benchmark coding algorithms. INCdeep can adapt well to a dynamic environment.

Testbed experiments

• Experimental Setup

- ➢ Use Raspberry Pi 3 Model B+ [1] to conduct experiments
- Exploit TensorFlow Lite [2] to deploy the trained INCdeep to the Raspberry Pi 3B+

Testbed for Network coding on Raspberry Pi 3B+

Testbed experiments

• Experimental Results

Experimental and simulated decoding probability for single-relay network, $PER_{SR=RD} \in \{0, 0.1\}, q=2$ and K=5.

Smallest	RMSE for experimental and simulated results									
	\rightarrow	INC	deep	Fountain+R	NLC RL-ai	ded SNC				
KMSE	PER=0	0 0.0042		0.0109	0	.0283				
	PER=0.1			0.0153	0	.0379				
	PER=0.3	0.0	117	0.0237	0	.0154				
Higher CPU usage	gher CPU usage Performance on CPU usage and decoding probability									
han traditional			CPU usage		Decoding PER=0	g Prob. (K=5) PER=0.1				
coding, but	INCdeep)	15.9	% (+28.2%)	1.00 (0%)	0.86 (0%)				
when PER =0	Fountain+RNLC RL-aided SNC		12 18.0	2.4% (0%) 6% (+50%)	0.37 (-63%) 0.05 (-95%)	0.70 (-18.6%) 0.16 (-81.4%)	_			

Conclusions

- Propose INCdeep, an adaptive, DRL approach to automatically build adaptive coding coefficients
 - ➢ Good generalization ability that adapts well in dynamic scenarios.
 - Higher decoding probability and lower coding overhead compared with benchmark algorithms.
 - > **Converges fast** and runtime costs within 0.8 ms and 1.6 ms to obtain coding coefficients for K = 5 and K = 10, respectively.
 - Experimental results coincide with the simulation results, showing that INCdeep is feasible to offer a practical deployment.

• Future Work

Whether coding is beneficial or not for an overall multi-objective performance goal

Institute of Computing Technology, Chinese Academy of Sciences

