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l Network coding has been introduced to achieve higher 
transmission rates and improve transmission reliability 
Ø Source, relay node: selects a vector of coefficients and combines 

received packets into one or several output packets
Ø Destination (decoder) : decodes original packets from a set of 

received ones by Gaussian elimination if coefficient matrix is full 
rank .
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l Existing linear network coding
Ø Deterministic network coding(cf. [1][2])

l Coding coefficients determined by dedicated deterministic algorithms
l Requiring global network information, incapable of adapting to 

varying network conditions, high complexity, low robustness.
Ø Random linear network coding(cf. [3][4])

l Coding coefficients randomly selected in a finite field in random linear 
network coding

l Easily implemented in a distributed fashion
l Coefficients can not be adjusted to network dynamics (time-varying 

link quality, changing number of relays)
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l Deep reinforcement learning combines deep learning with reinforcement 
learning (RL) to implement machine learning from perception to action.

l Network variations can be automatically and continually expressed as 
Markov decision process (MDP) state transitions.

l RL agent learns to optimize coding coefficients to maximize a decoding 
probability objective, through the rewards obtained by interacting 
directly with the network. 
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Motivation: How to devise a DQN to automatically select coding 
coefficients to adapt to network dynamics?
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l Propose INCdeep�
Ø An adaptive approach to automatically build coding coefficients
Ø Optimize coding coefficients to maximize a decoding probability at 

the destination

l Design an MDP model�
Ø Formulate the coding coefficients selection problem with an MDP

Ø Good generalization ability on networks with different link qualities 
and different number of relays

l Evaluate INCdeep with extensive simulations and testbed 
experiments: 
Ø Compared to benchmark algorithms, INCdeep has higher decoding 

probability and lower coding overhead
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- Source S encodes linearly K equally sized packets at each episode 
until it receives an end-to-end ACK from D.

- Relays recode linearly the M previously received coded packets 
until they receive the ACK from D. 

- D decodes if coding matrix is full rank. 
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Coding coefficients optimization
of packets is distributively
executed at source and at each
relay node

Training of DQN is centralized
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l Buffer Blast  (Encoded packets received from its previous node) of size M 
Ø Each relay Ri has a buffer Blast(Ri ) to store the latest M encoded packets received from its 

previous hop.

l Buffer Ball (Encoded packets received by next node ) of size M 
Ø Source S and each relay Ri have a buffer Ball (S) (or Ball(Ri )) to keeping track of encoded 

packets received by its next hop node (         , i = 1…N ) using ACK messages. 

l ACK is used to confirm the transmitted encoded packet received successfully by 
the next hop node
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State input:
• The information of the j-th

packet xj of a message
• M encoded packets in the 

buffer of the first relay R1

Action output:
• Coding coefficient of j-th

packet of the message
• Run K times DQNs to derive 

coefficient vector Gs to create 
a single encoded packet Ps

Reward: 
• The rank of linear system of equations formed by these packets in the buffer of 

next node Ball increases, reward is +1
• Otherwise, reward is -1
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State input:
• New encoded packet produced 

by current node at step j
• The j-th encoded packet in the 

buffer of current node 
• M encoded packets in the 

buffer of the next node

Action output:
• Coding coefficient of j-th

encoded packet in its buffer
• Run M times DQNR to derive 

coefficient to create a single 
encoded packet PRi

Reward: 
• The rank of linear system of equations formed by these packets in the buffer of 

next node increases, reward is +1
• Otherwise, reward is -1
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l Simulation Setup
Ø Network topologies: Linear topologies and Parallel topologies

Ø Simulation platform: Python 3.5-based framework and TensorFlow 1.15; 
Ubuntu 16.04 server with 2 RTX2080 Ti GPUs and Intel 2 Xeon E5-2660. 

Ø Results assessment:
• Root Mean Squared Error (RMSE)

• Overhead !"#$ℎ#&' = 1
* + ∗ 100 = 1

* .$ −0 ∗ 100

l Benchmark coding algorithms
Ø Traditional random network coding: Source nodes uses a fountain code 

and relays combine coded packets using RLNC [1]

Ø RL-aided SNC[2]: Reinforcement learning-aided sparse network coding. 

[1] T. Ho,el., “A random linear network coding approach to multicast,” IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413– 4430, Oct 2006.
[2] R. Gao, Y. Li, J. Wang, and T. Q. S. Quek, “Dynamic sparse coded multihop transmissions using reinforcement learning,” IEEE Communications
Letters, vol. Early Access, no. 1-5, June 2020.
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l Performance Evaluation Results
Ø Training efficiency: reward converges in about 10000 episodes for field size q = 8 

and PER = 0.1, and 7000 episodes for finite field size q = 8 and PER = 0 as well as 
finite field size q = 2. 

Ø Runtime cost: for both topologies,  the runtime is 0.8 ms and 1.6 ms to obtain 
coding coefficients for an encoded packet under K = 5 and K = 10, respectively

Ø Generalization ability: verify generalization on link quality and number of relays

Fig.2 Generalization ability on relay number NFig.1 Generalization ability on PER
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l Performance Evaluation Results
Ø Performance of INCdeep with different PER and different number of relays N

Linear network Parallel network
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l Performance Evaluation Results
Ø Comparison between INCdeep and benchmark coding algorithms

Linear network Parallel network

ü In linear topology, INCdeep has
smallest overhead.

ü In parallel topology, INCdeep 
outperforms benchmark algorithms as 
the number of relays increases.
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l Performance Evaluation Results
Ø Fast Changing Environment:  evaluate INCdeep and benchmark coding 

algorithms in dynamic environments where PER vary much faster.
Here, PERSR and PERRD are independently randomly drawn from a uniform distributions 
over [0.0,0,4] for every five packets emitted by source
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l Experimental Setup
Ø Use Raspberry Pi 3 Model B+ [1] to conduct experiments

Ø Exploit TensorFlow Lite [2] to deploy the trained INCdeep to the Raspberry 
Pi 3B+

Testbed for Network coding on Raspberry Pi 3B+
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l Experimental Results

RMSE for experimental and simulated results

Performance on CPU usage and decoding probability

Experimental and simulated decoding probability for single-relay network, PERSR=RD � {0, 0.1}, q=2 and K=5.
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Smallest 
RMSE

Higher CPU usage
than traditional
coding, but
decoding prob. =1 
when PER =0

(a) PER=0 (b) PER=0,1 
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l Propose INCdeep, an adaptive, DRL approach to automatically 
build adaptive coding coefficients
Ø Good generalization ability that adapts well in dynamic scenarios.
Ø Higher decoding probability and lower coding overhead compared

with benchmark algorithms.
Ø Converges fast and runtime costs within 0.8 ms and 1.6 ms to obtain

coding coefficients for K = 5 and K = 10, respectively.
Ø Experimental results coincide with the simulation results, showing that

INCdeep is feasible to offer a practical deployment.

l Future Work

Ø Whether coding is beneficial or not for an overall multi-objective 
performance goal
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