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Abstract

In this paper, we address the problem of building adaptive network coding coefficients under dynamic
network conditions (e.g., varying link quality and changing number of relays). In existing linear net-
work coding solutions including deterministic network coding and random linear network coding, coding
coefficients are set by a heuristic or randomly chosen from a Galois field with equal probability, which
can not adapt to dynamic network conditions with good decoding performance. We propose INCdeep,
an adaptive Intelligent Network Coding with Deep Reinforcement Learning. Specifically, we formulate
a coding coefficients selection problem where network variations can be automatically and continuously
expressed as the state transitions of a Markov decision process (MDP). The key advantage is that IN-
Cdeep is able to learn and dynamically adjust the coding coefficients for the source node and each relay
node according to ongoing network conditions, instead of randomly. The results show that INCdeep
has generalization ability that adapts well in dynamic scenarios where link quality is changing fast, and
it converges fast in the training process. Compared with the benchmark coding algorithms, INCdeep
shows superior performance, including higher decoding probability and lower coding overhead through
simulations and experiments. The average CPU usage and end-to-end delay when deploying INCdeep in
practical are almost the same with benchmark algorithms.

1 Introduction

Network coding [1] has been introduced two decades ago to disseminate data over communication networks to
achieve higher transmission rates and improve transmission reliability. Intermediate network nodes recombine
received packets into one or several output packets before forwarding them to relay or destination nodes.
Final destination decodes original packets from a set of received ones to achieve either higher throughput or
improved reliability to fading. Linear network coding [2] is a class of network coding, where a network code
is obtained by a linear combination using coefficients chosen from a finite field set. Each of the intermediate
nodes (hereinafter called relays) can therefore encode the data by linearly combining the received packets,
with coefficients selected from the field of operation. Compared to nonlinear network coding [3] that leverages
nonlinear combination functions, linear network coding offers a reduced complexity and simpler models, and
thus has been deeply studied and widely used.

In linear network coding, the node selects a vector of coefficients as the weight of the original packets
in the encoded packet, and then combines the packets using addition and multiplication over a Galois field
of size q. In order to recover the full information, a destination (decoder) has to collect at least as many
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linearly independent coefficient vectors as the number of packets that were originally mixed in, and then solve
the resulting system of linear equations. It means that a destination may be unable to successfully decode
the received data packets due to linearly dependent coefficient vectors. The decoding probability depends
on the network code design, especially on the selection of coefficients. Over the past two decades, coding
coefficients were determined either by dedicated deterministic algorithms [2] or randomly selected in a finite
field in random linear network coding [4]. [2] paved the way towards deterministic network coding algorithms
by offering a solid theoretical framework. Deterministic network coding [2] promises that the receiver can
decode successfully, but it requires global information such as network topology and link capacities. There are
many kinds of topologies in reality, as such it is not practical to design specific coding methods for different
kinds of network. Moreover, it is not suitable for dynamic networks, as gathering global information from
distributed nodes in real-time is complex to apply at a large scale.

Random linear network coding (RLNC) [4] [5] is one simple realization of network coding, where all
participating network nodes keep all packets received so far in their buffer, and forward linear combina-
tions of these packets with random coefficients from some infinite field. Due to its main characteristic of
randomly choosing the coefficients of linear combinations, RLNC is rateless and suitable for networks with
unknown or changing conditions because it can be easily implemented in a distributed fashion. Moreover,
it is asymptotically capacity-achieving for networks with packet loss in a wide range of scenarios [6] [7]. [8]
showed that the probability of decoding with success (i.e. the probability that the coefficient matrix has full
rank) can be high enough as long as codes are chosen in a sufficiently large finite field. However, infinitely
large field size are not practical as shown in [9] [10]: they trigger high computational complexity at encoding
and decoding stages. Moreover, the failure of decoding may occur not only due to the fact that relay nodes
may extract linearly-dependent coefficients, but also because relay nodes do not receive some of the packets
to be encoded. In RLNC, coefficients are randomly extracted from a Galois field Fq, with equal probability.
Thus, coefficients can not be adjusted according to network dynamics imposed by time-varying link quality
and changing number of relays.

This paper aims to investigate a novel network coding design technique that adjusts to network dynamics
in real-time. We propose INCdeep, an adaptive, deep reinforcement learning (DRL) approach for network
coding. In recent years, DRL has been prevailing in natural language processing problems, robotics, decision
games, etc., and achieves superior results, like the Deep Q Learning (DQN) [11] algorithm and AlphaGo
[12]. DRL combines deep learning with reinforcement learning (RL) to implement machine learning from
perception to action [13]. We believe that DRL is a good fit for our problem. First, based on a Markov
decision process (MDP), RL trains an intelligent agent to learn policies directly through interacting with the
environment and automatically maximizing the reward. Our DRL based network coding approach learns
to optimize coding coefficients for maximizing the decoding probability objective. It receives the rewards
by interacting with the network, and is thus fitted to network dynamics. Second, when making coding
coefficients decision, we do not know whether that coding decision was a good one (i.e., whether it leads to
a full rank matrix) before the destination decodes successfully. RL naturally captures this characteristic as
it does not assume that the impact of a given decision on the performance objective is known immediately.

In this work, we consider a single-source, multiple-relays, and single-destination linear and parallel mul-
tihop network employing INCdeep at all transmitting nodes including source and relays. In INCdeep, we
first setup an MDP model to capture dynamic network state transitions. Then, as [14] demonstrates the
superiority of encoding at both source and relay nodes, we derive two different DQN models to optimize
coding coefficients for source and relays nodes, respectively. Relaying nodes simply re-encode packets, with-
out resorting to decoding and follow the same DQN model. In INCdeep, we need a link layer feedback (cf.
MORE [15]) that acknowledges whether the next hop relay received an encoded packet, as packets may be lost
due to varying link quality. In this way, dynamic network variations can be automatically and continually ex-
pressed as MDP state transitions. To increase the probability of successful decoding at the destination node,
we devise a DQN to automatically select coding coefficients to adapt to network dynamics. In our INCdeep,
the state space for both source and relay DQNs are associated to coded packets in the buffer of the node of
interest and the ones in the next hop buffer (which are impacted by link quality). The frequency of state
transition is positively correlated with the number of packets to be encoded. INCdeep can be generalized to
networks with different link channel models as the coding coefficient evaluation method is independent from
the link packet error rate distribution. Moreover, it scales constantly with the number of relays as a unique
DQN model is used for the coefficient optimization of all relays. This feature is very important to adjust
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to network dynamics. As such, INCdeep DQN models trained under given network settings can be directly
leveraged for different network settings. In summary, the DQN based INCdeep can automatically provide
adaptive coding coefficients with high probability of successful decoding at the destination node. The main
contributions are summarized as follows: Through extensive simulations, we demonstrate that INCdeep not
only handles dynamic network variations well, but also achieves superior performance as compared with the
classical benchmark coding algorithms (fountain code at source and RLNC at relays), in which the relaying
nodes simply recode packets, without resorting to decoding.

• In order to adapt to network dynamics, we propose INCdeep, an adaptive, deep reinforcement learning
(DRL) approach to automatically build coding coefficients. Specifically, INCdeep learns to optimize
coding coefficients to maximize a decoding probability objective, through the rewards obtained by
interacting directly with the network, and thus fitting to network dynamics.

• We setup an MDP model to formulate the coding coefficients selection problem, where network vari-
ations can be automatically and continually expressed as MDP state transitions. INCdeep has good
generalization ability on networks with different link qualities and with different number of relays,
which is an important feature for offering a practical deployment.

• We have performed simulations and testbed experiments to evaluate INCdeep. The extensive results
verify the generalization ability of INCdeep that adapts well in dynamic scenarios and also demonstrate
that INCdeep converges fast. Compared with benchmark algorithms, INCdeep has higher decoding
probability and lower coding overhead through simulations and experiments.

The rest of paper is organized as follows. Section 2 reviews the related research efforts. Section 3 presents
the system model. Section 4 introduces INCdeep. Section 5 and section 6 validate INCdeep. Finally, Section
7 concludes the paper.

2 Related work and Motivation

2.1 State-of-the-art Network Coding

Traditional coding techniques consist of two parts: source coding and channel coding. Source coding allows
source nodes to encode packets to seamlessly adapt to the offered rate of the transmission and thus improve
reliability. Traditional solutions are random linear fountain codes [16] or Luby-transform codes [17]. Channel
coding converts noisy channel into a noiseless one by introducing redundant bits in the information sequence.

In 2000, Ahlswede [1] proposed network coding which is regarded as the commencement of network coding
theory, whose main benefit is to increase the capacity of a network over the practical limit achieved by regular
routing. Additionally, network coding is shown to increase as well the robustness of the transmission. [2]
proposed linear network coding and proved it can achieve max-flow bound on the information transmission
rate by applying a linear code multicast, a network code obtained by linearly combining information using
coefficients chosen from a finite field. [2] paved the way towards deterministic network coding algorithms by
offering a solid theoretical framework. Authors of [18] were the first to propose deterministic network coding.
The authors in [18] presented an algebraic framework for investigating capacity issues in networks using
linear network. [19] considers a multicast configuration with two sources. Deterministic network coding’s
main characteristic is that coding vector is determined by an algorithm. Deterministic network coding
promises that the receiver can decode successfully, but it requires global network information, which makes
it incapable of adapting to varying network conditions. Moreover, it has other shortcomings such as high
complexity and low robustness.

[18]’s work prepared the fertile ground for the formulation of random linear network coding. Ho et al.
proposed random network coding in [20] which makes network coding adaptive to network dynamics. In [8],
the same authors model a network as a delay-free acyclic graph with unit capacity directed links and one
or more discrete sources and gives a lower bound on the success probability of random network coding for
multicast connections. The probability of decoding successfully can be high enough as long as codes are
in a sufficiently large finite field. Random linear network coding is suitable for networks with unknown or
changing conditions because it can be implemented in a distributed way.
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However, the failure of decoding may occur not only due to the fact that relay nodes may extract linearly-
dependent coefficients, but also because relay nodes do not receive some of the packets to be encoded due to
network dynamics with time-varying link quality. In existing linear network coding including deterministic
network coding and random linear network coding, coding coefficients are either determined by an algorithm
or randomly selected from Galois field with equal probability. The coding coefficients can not adapt to the
dynamic network condition with good decoding performance.

2.2 Adopting a DQN-based DRL Approach

Reinforcement learning (RL) [21] is a learning process in which an agent can periodically make decisions,
observe the results, and then automatically adjust its strategy to achieve the optimal policy. Recently,
[22]’s work proposed RL-aided dynamic sparse network coding (RL-aided SNC), a reinforcement learning
framework for dynamically adjusting coding parameters to improve the performance. They adopt Q-learning
to decide the optimal degree (i.e., the number of intermediate packets, which are randomly drawn from a set
of pre-coded packets) on the batch transmission size. They neither decide on the optimal coding coefficients,
nor consider improving decoding probability. Moreover, reinforcement learning using tabular methods is
unsuitable and inapplicable when the state space is large. Recently, deep learning [23] has been introduced
as a new breakthrough technique. It can overcome the limitations of reinforcement learning, and thus open
a new era for the development of reinforcement learning, namely Deep Reinforcement Learning (DRL). DRL
has been adopted in numerous applications of reinforcement learning in practice such as robotics, computer
vision, etc [23].

In the areas of communications and networking, DRL has been recently used as an emerging tool to
effectively address various problems and challenges [24–26]. We believe that DRL is a good fit for our problem.
First, with DRL, INCdeep learns to optimize coding coefficients for maximum decoding probability objective,
by the rewards obtained through interaction with network, and thus fit for the network dynamics. When
the adapted coding coefficients are found, learning-based solutions often outperform random selected coding
coefficients. Second, when making coding coefficients decision, we do not know whether that coding decision
was a good one (i.e., whether it leads to a full rank matrix) before the destination decodes successfully.
RL naturally captures this characteristic as it does not assume that the impact of a given decision on the
performance objective is known immediately.

3 System model

In this work, we investigate two different atomic topologies that are at the core of many deployment scenarios
of wireless multi-hop communications. We will concentrate first on a linear deployment scenario as shown in
Fig.1(a). In this example, source S aims to transmit a message of K equally sized packets to the destination
D using a daisy chain of relays where Ri can only communicate with relay Ri+1 (i = 1, ...N − 1) and D can
only receive messages from RN . The second parallel topology has been investigated as shown in Fig.1(b),
where source S delivers a message of K equally sized packets to the destination D with the help of multiple
parallel relays. In this work, we enable encoding at the source node S to further mitigate packet losses.
Source S continuously sends coded packets until the destination D can successfully recover the original
message. All relay nodes simply re-encode packets, without resorting to decoding. A perfect link layer
feedback that acknowledges whether the next hop relay received an encoded packet is needed.

3.1 Benchmark coding algorithms

INCdeep is compared to benchmark algorithms including the traditional random linear network coding and
state-of-the-art reinforcement learning-aided sparse network coding [22].

3.1.1 Traditional random network coding

Our benchmark implementation considers that the source nodes uses a fountain code and relays combine
coded packets using RLNC.
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(a) Linear topology

(b) Parallel topology

Figure 1: Investigated multihop network topologies composed of N relay nodes: (a) Linear topology; (b)
Parallel topology.
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Fountain code at the source. Fountain codes [16] are rateless erasure codes in the sense that a
potentially limitless sequence of encoded packets can be generated from the source message. The coding
process ends as soon as the destination has received enough packets. We consider random linear fountain
codes in this work where a message from source is first partitioned into K fragments (packets) x1, x2, ..., xK
with equal length when being sent to destination. For each fragments xj , a coding coefficient gjS ∈ Fq is
picked independently with uniform probability. The source as the encoder generates the output encoded
packet PS =

∑K
j=1 g

j
Sxj , where all operations are performed in Galois field Fq. The sum can be done by

successively exclusive-or-ing (XOR) the packets together. Then the source generates a stream of encoded
packet PS until the destination can successfully decode the original message. Coding coefficients are encoded
in packet header.

RLNC at relay nodes. As mentioned above, a source S transmits a random linear encoded flow to a
destination D through the multi-hop network as shown in Fig. 1. RLNC [5] is employed at relays, which is
traditionally used in multihop networks due to its simplicity and scalability [27]. When a relay node receives
an encoded packet P from previous node, P is XORed with randomly selected buffered packets in this relay.
Before transmission to the next hop node, the relay generates recoded coefficients in Fq and applies it to
its selected buffered packets. The new recoded coefficients are transmitted in the recoded packet headers.
RLNC is in line with sending RL encoded packets at the source. The buffer size M of RLNC is the same as
the one considered in INCdeep.

3.1.2 RL-aided SNC

The recently proposed reinforcement learning-aided sparse network coding (RL-aided SNC) [22] is the other
benchmark algorithm in this paper. In the RL-aided SNC, the packet transmission operates batch-by-batch.
For every batch, the node takes the action, which consists of two parts: degree and batch transmission size.
After a batch transmission completes, source node will get the message from destination node that the rank
of coefficient matrix, then Q-learning is adopted to get the optimal action.

3.2 Decoding at the destination

INCdeep and benchmark coding algorithms use the same Maximum Likelihood decoding (ML-decoding)
method. When the destination receives at least K encoded packets, the decoding process is started. Encoded
packets are mapped to a linear system of equations, that can be solved with Gaussian elimination if the
coefficient matrix is full rank. The ML-decoding provides small error probability of decoding, however its
complexity can grow rapidly with both Nr (number of received packets) and K, in the order of O(NrK) [28].
K is the dimension K of the RL code.

4 Network coding with deep Reinforcement Learning

This section introduces our proposition of network coding design using a DRL whose objective is to maximize
decoding probability. We formalize the network coding problem into a learning task, and propose INCdeep,
a deep reinforcement learning (DRL)-based intelligent network coding method.

4.1 Problem definition

Since the coding strategy of source S is different from the coding strategy of relay nodes, we design two
DQN models DQNS and DQNR. DQNS is used to optimize the coding strategy of source S, and DQNR is
used to optimize the coding strategy of relay nodes.

Except for the source node, each relay Ri and destination D have a buffer Blatest(Ri) (or Blatest(D)),
which is used to store the latest M coded packets that relay Ri (or destination D) has received from its
previous node. Meanwhile, except for destination D, source S and each relay Ri have a buffer Ball(S) (or
Ball(Ri)), which stores all packets received by its next hop node. We use ACK to confirm the transmitted
encoded packet is received by the next hop node. If source S (or relay Ri) receives an ACK for a previously
transmitted packet, source S (or relay Ri) stores the transmitted packet into its Ball(S) (or Ball(Ri)),
otherwise, the transmitted packet is not stored in Ball(S) (or Ball(Ri)).
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Suppose there are N relays in the multi-hop network, we use a set CRi(i = 1, 2, ..., N) to represent the
M encoded packets in buffer Blatest(Ri) of Ri and a set CD to represent the M encoded packets in buffer
Blatest(D) of D. For R1, set CR1

= {PS(1), ..., PS(j), ..., PS(M)} is defined, where packet PS(j) is the j-th
encoded packet received from source S in buffer Blatest(R1) of R1. For relay Ri(i = 2, 3, ..., N), set CRi

is
defined as CRi

= {PRi−1
(1), ..., PRi−1

(j), ..., PRi−1
(M)}, where packet PRi−1

(j) is the j-th encoded packet
received from previous relay Ri−1 in buffer Blastet(Ri) of Ri.

For destination D, we set CD = {PRN
(1), ..., PRN

(j), ..., PRN
(M)}, where packet PRN

(j) is the j-th
encoded packet received from relay RN in buffer Blatest(D).

4.2 An adaptive Intelligent Network Coding with Deep Reinforcement Learning

Figure 2: Architecture of INCdeep

To improve decoding probability of the destination, the encoded packet sent by the node (source or relay)
improves the decoding probability of the next hop node. Specifically, each node adaptively selects the coding
coefficients based on the coding coefficients of the latest M coded packets received by the next hop node
instead of randomly selecting a value from Galois field of size with equal probability. The discrete state is
associated to the latest M coded packets received by the next hop node. Suppose a message from source is
partitioned into K fragments. A coded packet will have K coding coefficients, so the size of state space is
about M x K. As M or K becomes larger, the state space increases. However, the general RL approaches
are not capable of dealing with large state space due to maintaining a look-up table to store policies. To
solve this problem, DRL approaches emerge, e.g., deep Q-learning, which uses a deep neural network (DQN)
as an approximate Q-function in lieu of a lookup table. Therefore, we propose the INCdeep, an intelligent
network coding method by using DQN to optimize the coding coefficients.

In INCdeep, we estimate the coding coefficients of the packets before sending an encoded packet, and
formulate the estimation process with an MDP. The estimation of the coding coefficients of one packet is
executed at one discrete decision step. Fig.2 illustrates the architecture of INCdeep. INCdeep is implemented
by an alternative approach where coding coefficients optimization of packets is distributively executed at
source and each relay node, while training of DQN is centralized to simplify implementation and accelerate
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training. Each node (source or relay node) is considered as INCdeep agent. Source and each relay node have
the same copy of DQNS and DQNR, respectively. The environment is the network including nodes, links
in the network topology and encoded packets in the buffer of each relay node. In the execution procedure,
at each decision step j, source (or relay node) takes an action aj under the state sj to optimize the coding
coefficient of the j-th packet of a message (or the j-th encoded packet in the buffer of the relay) by DQNS

(or DQNR). After aj is taken, the state transforms from sj to sj+1, and the node (source or relay) gets a
reward rj from the environment. The node (source or relay) then stores experience (sj , aj , rj , sj+1) to replay
memory MS (or MR). In the training procedure, the centralized optimizer optS (or optR) randomly samples
mini-batch DS (or DR) from the experience-reply memory MS (or MR) to update parameters θS (or θR)
of DQNS (or DQNR) by minimizing the loss. After the parameter θS (or θR) is updated, the centralized
optimizer optS (or optR) sends updated parameters θSj+1 (or θRj+1) to source (or each relay node). When
receiving updated parameters, source (or each relay node) updates parameters of its DQNS (or DQNR).

4.2.1 DQN model for source

When sending an encoded packet PS , a source S firstly determines a coding coefficient vector GS =
[g1S , ..., g

j
S , ..., g

K
S ] for K packets X = [x1, ..., xj , ..., xK ] of a message, where PS = GS · X. We consider

a decision process for generating coding coefficients of K packets through a Markov decision process. Fig. 3
shows the process of optimizing GS by our coding model DQNS . The state, action and reward are depicted
as follows:

Figure 3: Coding coefficients optimization of source by DQNS

(1) State, s: At each decision step j (j = 1, 2, ...,K), the state of the source S consists of two components,
including the information of the j-th packet xj of a message and M encoded packets in buffer Blatest(R1)
of the first relay R1. Specially, the state of source is represented as sj = [xj , CR1

].

(2) Action, a: The action space of source S is given by AS = {0, 1, ..., (q − 1)}, where q is finite field size
Fq. At each decision step j, source S determines coding coefficient gjS of the j-th packet xj according to

action aj ∈ AS , i.e., gjS = aj .

(3) Reward, r: After sending an encoded packet PS , source evaluates the optimized coding coefficient
vector GS . For the network coding problem considered in this paper, our goal is to maximize decoding
probability. According to ML-decoding principle, when the rank of the linear system of equations, which
is formed by the packets received at the destination, is equal to the dimension of the RL code K,
destination D can recover original information successfully. To achieve our goal, the reward is designed
as the increment of the rank offered by the packets that have reached the buffer of the next hop node.

In this paper, we consider the multi-hop network with lossless links. In the case of lossless links,
packet error rate PER = 0, i.e., the packets can reach the next hop node with a probability of 1, while
PER of channel is more than 0 over lossy links.
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The encoded packet might be dropped over lossy links, thus source S may not receive an ACK
packet for packet PS . In this case, coding coefficients cannot be evaluated by adding PS to buffer
Ball(S), so we introduce a new buffer Bnew to evaluate the case. For example, suppose source S has sent
two packets (PS(1) and PS(2)) and the two packets are received by the first relay R1, i.e., Ball(S) =
{PS(1), PS(2)}. Source now sends the third packet PS(3), but R1 does not receive PS(3). We copy all
packets (PS(1),PS(2)) in buffer Ball(S) to a new buffer Bnew, and add PS(3) to Bnew to evaluate the
coefficient of PS(3), instead of Ball(S). After adding PS(3) to Bnew, if the rank of equations formed
by packets (PS(1),PS(2),PS(3)) in Bnew increases, the reward rj for optimized coding coefficient gjS is
+1, otherwise, the reward is -1. If source S receives an ACK packet for packet PS , as with the case of
lossless links, the reward is calculated by adding packet PS to its buffer Ball(S).

4.2.2 DQN model for relays

When relay Ri receives an encoded packet from the previous node, it starts to re-encode the packet. For
re-encoding, relay Ri generates a coefficient vector GRi for M packets of its buffer Blatest(Ri). The decision
process of coding coefficients for M packets is a Markov decision process. At each decision step j(j =
1, 2, ...,M), relay Ri optimizes coefficient gjRi

relative to the j-th packet in its buffer, and produces a new

encoded packet P j
new(Ri). After M steps, relay Ri transmits a new packet PRi

= PM+1
new (Ri), as shown in

Fig. 4.

Figure 4: Coding coefficients optimization of relays by DQNR

(1) State, s: At each decision step j (j = 1, 2, ...,M), the state of the first relay R1 consists of three
components, the new encoded packet P j

new(R1) produced by R1 at step j, the j-th packet PS(j) in its
buffer Blatest(R1), and M encoded packets CR2

in buffer Blatest(R2) of its next relay R2. In summary,
the state of the first relay R1 is represented as sj = [P j

new(R1), PS(j), CR2 ].

At each decision step j, the state of relay Ri(i = 2, ..., N − 1) consists of three components, the new
encoded packet P j

new(Ri) produced by Ri at step j, the j-th packet PRi−1
(j) (from Ri−1) in Ri’s buffer

Blatest(Ri), and M coded packets CRi+1
in buffer Blatest(Ri+1) of its next relay Ri+1. In summary, the

state of relay Ri is represented as sj = [P j
new(Ri), PRi−1

(j), CRi+1
].

For the last relay RN , at each decision step j, its state consists of three components, the new encoded
packet P j

new(RN ) produced by RN at step j, the j-th packet PRN−1
(j) in its buffer Blatest(RN ), and M

encoded packets CD in buffer Blatest(D) of destination D. In summary, the state of the last relay RN is
represented as sj = [P j

new(RN ), PRN−1
(j), CD].

At the beginning of coding coefficient generation, the new coded packet P 1
new(Ri) is the latest encoded

packet that relay Ri receives from the previous relay Ri−1 (or source S). When generating a coding
coefficient for the j-th packet PRi−1(j) in its buffer Blatest(Ri), the new encoded packet P j+1

new (Ri) at
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step j + 1 can be determined by an XOR operation on packet P j
new(Ri) and packet PRi−1(j), i.e.,

P j+1
new (Ri) = P j

new(Ri)
⊕

(gjRi
∗ PRi−1

(j)).

(2) Action, a: At each step j, relay Ri determines the coding coefficient gjRi
of the j-th packet in its buffer

Blatest(Ri) according to an action aj ∈ AR, where AR = {0, 1, ..., (q − 1)}, and gjRi
= aj .

(3) Reward, r: After transmitting packet PRi , relay Ri evaluates optimized coding coefficient vector GRi .
Similar to the reward calculation on source, after adding the packet PRi to the buffer Ball(Ri) (or Bnew)
in the case of lossless links (or lossy links), if the rank of linear system of equations formed by these
packets in buffer Ball(Ri) (or Bnew) increases, reward rj for each optimized coding coefficient gjRi

is +1,
otherwise, reward is -1.

The implementation of INCdeep is shown in Algorithm 1. First, source obtains the coefficient vector
by Algorithm 2. Then, source generates an encoded packet by multiplying the coefficient vector and the
message vector, and sends the encoded packet to its next hop. When a relay Ri receives an encoded packet
from its last hop, it sequentially calculates the coefficient of the encoded packet in its buffer by Algorithm 3.
Then relay Ri recodes the message by M XOR operations on the encoded packet from its last hop and all
encoded packet in its buffer, and transmits the recoded packet. Once the destination can successfully recover
the message, source stops sending the encoded packet.

Algorithm 1 INCdeep: intelligent network coding with DRL

1: while Destination can not recover message X do
2: Source obtains coefficient vector GS from Algorithm 2.
3: Source sends an encoded packet PS = GS ·X
4: for each relay Ri do
5: if Ri receives an encoded packet P from the last node then
6: for j = 1, 2, ...,M do
7: Ri obtains coefficient gjRi

of j-th packet PRi−1(j) of its buffer from Algorithm 3

8: P ← P
⊕

(gjRi
∗ PRi−1(j)).

9: end for
10: Ri transmits that recoded packet P
11: end if
12: end for
13: end while

Algorithm 2 Calculate coefficients for source

Input: Message X = [x1, ..., xj , ..., xK ].
Output: Coding coefficient vector GS .
1: for j=1,2,...,K do
2: State of source sj = [xj , CR1 ]
3: Calculate Q-values by CNN of DQNS with sj as the input
4: choose an action aj by ε-greedy algorithm
5: coefficient gjS ← aj

6: end for
7: Return GS = [g1S , ..., g

j
S , ..., g

K
S ]

4.3 Training Methodology

For better modeling the matrix information in state, we adopt convolutional neural network (CNN) to extract
key features. In our model, the first layer of CNN is fed by the state vector. Each neuron of the output
layer gives an estimate of the Q-function for a given state input and corresponding action output. The
total number of output neurons is equal to the size of the action space. Since the state of relays consists
of M packets in the buffer of its next node and extra two packets (a current recoded packet and a packet
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Algorithm 3 Calculate coefficients for relay

Input: Encoded packet P j
new(Ri).

Output: Coding coefficient gjRi
.

1: if Relay is the first relay then
2: State sj = [P j

new(Ri), PS(j), CR2 ]
3: else if Relay is the last relay then
4: sj = [P j

new(Ri), PRN−1(j), CD]
5: else
6: sj = [P j

new(Ri), PRi−1(j), CRi+1 ]
7: end if
8: Calculate Q-values by CNN of DQNR with state sj as the input
9: choose an action aj by ε-greedy algorithm

10: coefficient gjRi
← aj

11: Return gjRi

considered to be XORed in its buffer), the size M of buffer is set to K − 2 to build a square matrix of the
state as the input of CNN.

5 SIMULATION RESULTS

5.1 Simulation Setup

5.1.1 Network topology

We consider two different atomic topologies of multihop communications as shown in Fig. 1. For any link
within a considered topology, an erasure channel model is characterized by its Packet Error Rate (PER).

5.1.2 Simulation platform

We use a Python 3.5-based framework, TensorFlow 1.15, to construct the architecture of INCdeep and its
deep neural network. All results are conducted on Ubuntu 16.04 server with 2 RTX2080 Ti GPUs and Intel
2 Xeon E5-2660. We trained our model for 10000 episodes. After training, we tested it for a period of T = 10
episodes.

5.1.3 Results assessment

To validate the generalization ability and measure the closeness of decoding probability by simulation and

experiment, the root mean squared error (RMSE) is calculated. RMSE = 1
n

√∑n
i=1

(d(i)−d̃(i))2

d(i)2 , with n the

number results to be compared, d(i) the decoding probability derived by training directly (or simulation),
and d̃(i) the decoding probability derived by generalization ability (or experiment).

The overhead measures the coding efficiency representing the percentage of overhead packets required to
decode the original message. It is derived as overhead = 1

K (E) ∗ 100 = 1
K (Nr −K) ∗ 100 where K is the

dimension of the network coding, E is the number of excess packets when using network coding and Nr is
the number of packets received at destination.

5.2 Performance Evaluation Results

5.2.1 Training efficiency

The convergence of INCdeep is evaluated in different combinations of finite field size q and PER. To achieve
better training effect and accelerate the training speed, we adjust parameters including the number of neurons
of CNN, ε = 0.1 for ε−greedy algorithm and learning rate λ = 0.001. As a result, the reward converges in
about 10000 episodes for field size q = 8 and PER = 0.1, and 7000 episodes for finite field size q = 8 and
PER = 0 as well as finite field size q = 2. Consequently, INCdeep can converge fast in the training process.
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5.2.2 Runtime cost

In the process of network coding, source and relay needs to run the trained model to obtain coding coefficients,
leading to extra runtime cost with INCdeep. However the runtime cost is very small, and the runtime is 0.8
ms and 1.6 ms to obtain coding coefficients under K = 5 and K = 10, respectively.

5.2.3 Performance of INCdeep with different PER and different number of relays N

We investigate the performance of INCdeep on the two atomic linear and parallel topologies of Fig. 1. A
general multihop network can be decomposed to line up or parallel such paths. We start with a single-relay
linear network. Fig. 5(a) illustrates the solution of INCdeep on the decoding probability as a function of the
number of transmissions for various combinations of source message size K, finite field size q and PER for
each link. It can be observed that decoding probability increases as q increases for the same K and the same
PER. For the same finite field size q, as the PER increases, decoding probability decreases much for the
same K. We also study the impact of relay number on decoding probability with different K on multihop
lossy link as shown in Fig. 5(b). For the same K, decoding probability decreases much as the number of
relays increases. Increasing the number of relays with lossy links reduces the number of successful arrivals
in D, decreasing the decoding probability.

In the parallel network, we first consider the two-relay parallel network and also study the decoding
probability for various combinations of K, finite field size q and PER for each link, as illustrated in Fig. 6(a).
Similarly, the decoding probability increases as q increases. For the same finite field size q, as the PER
increases, decoding probability decreases much. Fig. 6(b) illustrates the decoding probability for different
number of relays with different K. It is seen that as the number of relays increases, the decoding probability
increases for the same K, which is contrary to the linear network. The reason is that packets from S to D
travel over two hops maximum. Increasing the number of relays increases the number of successful arrivals
in D, increasing the decoding probability.
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5.2.4 Generalization ability

We verify the generalization of proposed INCdeep on link quality and number of relays in Fig. 7. The
generalization ability indicates whether INCdeep can be generalized to the networks with different link
qualities and with different number of relays. This feature is very important to adapt to network dynamics.
As such, INCdeep DQN models trained under given network settings can be directly leveraged for different
network settings.

To verify the generalization ability for different PER, we trained INCdeep (including DQNS and DQNR

model) with a specific setting PERSR = 0.3 and PERRD = 0.3, presented as TrainPERSR=0.3,PERRD=0.3.
We tested these trained well models for other different PERSR and PERRD to validate the generaliza-
tion ability, presented as TestPERSR=i,RD=j

, i ∈ {0, 0, 1} and j ∈ {0, 0.3, 0.5}. As shown in Fig. 7(a), the
results obtained by generalization ability match well with the one trained directly. For instance, the de-
coding probability when PERSR=0,RD=0 obtained by trained well model under TrainPERSR=0.3,PERRD=0.3

matches well with the same PERSR=0,RD=0 in training and testing. The RMSE of decoding probability
for (PERSR = 0, PERRD = 0), (PERSR = 0.1, PERRD = 0.3), (PERSR = 0.1, PERRD = 0.5) are 0,
0.002 and 0.003 respectively. The really small RMSE indicates that quasi-perfect generalization ability of
INCdeep on link quality. This generalization ability is because the coding coefficient evaluation method is
independent from the link PER distribution.

Similarly, to verify the generalization ability on number of relays N , we trained INCdeep for a single-relay
network, TrainN=1. We adopt this trained INCdeep TrainN=1 for other different relay number, presented
as TestN , N ∈ {2, 4, 6, 8}. In Fig. 7(b), the results obtained by generalization ability match well with the
one trained directly. The RMSE of decoding probability for N = 2, 4, 6, 8 are 0.0034, 0.0072, 0.011 and 0.015
respectively, which indicates good generalization ability for different N . It is because a unique DQN model
is used for the coefficient optimization of all relays.

5.2.5 Comparison between INCdeep and benchmark coding algorithms

Fig. 8 and Fig. 9 illustrate the comparison between the decoding probability obtained by INCdeep, fountain
code at source and RLNC at relays, and RL-aided SNC. For linear topology network with PER=0.1 on
each link, INCdeep outperforms the benchmark coding algorithms for different relay number N=2,6,10 as in
Fig. 8. For parallel topology network with PERSR =0.1, PERRD =0.3 and PERSD =0.8, INCdeep performs
better than benchmark coding algorithms as increasing of relay number, seen in Fig. 9. For both of topology,
INCdeep always performs better than the RL-aided SNC, since we optimize the decoding probability directly
by building optimal network coding coefficients.

Besides, coding overhead that measures the coding efficiency is compared in Table 1. It is observed that
INCdeep has the smallest overhead compared with benchmark coding algorithms for the linear topology. In
parallel topology, INCdeep has higher overhead than traditional coding when relay number is small, but as
the number of relays increases, the overhead of INCdeep outperforms benchmark algorithms.

Table 1: Comparison of the overhead

Topology N
Coding Method

INCdeep Fountain+RLNC RL-aided SNC

Linear
2 14.26 % 24.86 % 30.1%
6 19.6 % 25.1 % 596 %
10 22.2 % 26.3 % 9855 %

Parallel
2 222.68 % 89.5 % 292.64 %
6 290.48 % 345.66 % 936.6 %
10 454.26 % 598.8 % 1605.32 %
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Figure 8: Performance comparison for linear topology, K = 5.
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Figure 9: Performance comparison for parallel topology, K = 5.
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5.2.6 Fast Changing Environment

Finally we evaluate INCdeep using its generalization ability to compare with benchmark coding algorithms in
environments where PER vary much faster. In Fig. 10 we consider PERSR and PERRD be independently
randomly drawn from a uniform distributions over [0.0,0,4] for every five packets emitted by source. It is
shown that decoding probability of INCdeep outperforms benchmark coding algorithms and further validate
that INCdeep adapts well to a dynamic environment.

6 Testbed Experiments

6.1 Experimental Setup

We use Raspberry Pi 3 Model B+ [29] to conduct experiments as in Fig. 11. The Raspberry Pi is a popular
single board computer that was initially released in 2012 and has been widely used for numerous applications,
including sensor networks [30] [31], internet-of-things [32] [33] and robotics [34] [35]. Raspberry Pi 3B+ has a
1.4 GHz ARM A53 Processor, 1 GB of RAM and integrated wireless and Bluetooth capabilities. We exploit
TensorFlow Lite [36] to deploy the trained INCdeep to the Raspberry Pi 3B+.

Figure 11: Testbed for Network coding on Raspberry Pi 3B+

6.2 Experimental Results

As seen from Fig. 12 and the small RMSE in Table 2, the results coincide with the simulation results
and the decoding probability of INCdeep is higher than the benchmark coding algorithms. As seen from
Table 3, the average CPU usage for INCdeep is higher than the traditional random network coding due to
the computational complexity in DQN. However, the increased CPU usage gains more efficiency on decoding
performance. It shows that the traditional Fountain+RNLC method has 63% performance reduction in
decoding performance when the number of K packets sent by source over perfect link PER = 0. Meanwhile,
comparing to RL-aid SNC, INCdeep performs better in both CPU usage and decoding performance. It
proves the great potential of our proposed method on real applications.

18



0 5 10 15 20 25 30

Number of packets send by S

0

0.2

0.4

0.6

0.8

1

d
e
c
o
d
in

g
 p

ro
b
a
b
ili

ty

INCdeep-simulated

INCdeep-experimental

Fountain+RLNC-simulated

Fountain+RLNC-experimental

RL-aided SNC-simulated

RL-aided SNC-experimental

(a) PER=0

0 5 10 15 20 25 30

Number of packets send by S

0

0.2

0.4

0.6

0.8

1

d
e
c
o
d
in

g
 p

ro
b
a
b
ili

ty

INCdeep-simulated

INCdeep-experimental

Fountain+RLNC-simulated

Fountain+RLNC-experimental

RL-aided SNC-simulated

RL-aided SNC-experimental

(b) PER=0.1

Figure 12: Experimental and simulated decoding probability for single-relay network, PERSR=RD ∈ {0, 0.1},
q=2 and K=5.

Table 2: RMSE for experimental and simulated results

INCdeep Fountain+RNLC RL-aided SNC
PER=0 0 0.0109 0.0283

PER=0.1 0.0042 0.0153 0.0379
PER=0.3 0.0117 0.0237 0.0154

Table 3: The performance on CPU usage and decoding probability

CPU usage
Decoding Prob. (K=5)
PER=0 PER=0.1

INCdeep 15.9% (+28.2%) 1.00 (0%) 0.86 (0%)
Fountain+RNLC 12.4% (0%) 0.37 (-63%) 0.70 (-18.6%)
RL-aided SNC 18.6% (+50%) 0.05 (-95%) 0.16 (-81.4%)
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7 Conclusions

This paper addresses the problem of building adaptive network coding coefficients under the dynamic net-
work. Existing linear network coding including deterministic network coding and RLNC, can not adapt to
the dynamic network condition with good decoding performance. We propose INCdeep, an adaptive, DRL
approach to automatically build adaptive coding coefficients. Extensive simulation results show that IN-
Cdeep has good generalization ability that adapts well in dynamic scenarios, and it achieves higher decoding
probability and lower coding overhead compared with benchmark algorithms. Moreover, INCdeep converges
fast and runtime costs within 0.8 ms and 1.6 ms to obtain coding coefficients for K = 5 and K = 10,
respectively. Finally, experimental results coincide with the simulation results and also show that INCdeep
is feasible to offer a practical deployment.
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