
Towards robust network synchronization with IEEE
802.1AS

Quentin Bailleul
IRT Saint Exupéry
Toulouse, France

quentin.bailleul@irt-saintexupery.com

Katia Jaffrès-Runser, Jean-Luc Scharbarg
IRIT, Université de Toulouse, Toulouse INP

Toulouse, France
{katia.jaffres-runser, jean-luc.scharbarg}

@irit.fr

Philippe Cuenot
Continental

Toulouse, France
philippe.cuenot@continental-corporation.com

Abstract—IEEE 802.1AS is the synchronization protocol as-
sociated to the novel real-time switched Ethernet solution called
Time Sensitive Networking (TSN). We discuss and provide first
insights on the design choices required for a critical embedded
network context. More specifically, our aim is to extract the key
features that offer both a target synchronization precision and a
robust setting to mitigate the loss of synchronization.

I. INTRODUCTION

Fieldbuses cannot cope with the increasing communication
needs of current embedded systems that aim at supporting a
diverse set of flows, some of them carrying video and neces-
sitating thus a large bandwidth. As such, real-time Ethernet
solutions have been designed to bring much higher bandwidth
and advanced quality of service policies. The challenge is then
to guarantee that time sensitive flows can meet very strong
latency constraints in a network composed of multiple Ethernet
switches. Moreover, some embedded distributed applications
may require precise timestamping. For all these reasons, syn-
chronization has become a central service in real-time switched
Ethernet networks. This paper investigates the IEEE 802.1AS
protocol [1], proposed by the IEEE TSN working group.
Synchronization is required for the implementation of the real-
time TSN shapers such as the Time-Aware Shaper (TAS) or
the Cyclic Queuing and Forwarding (CQF) one.

The IEEE 802.1AS protocol is a profile of the IEEE 1588
[2] synchronization standard already in use in non-critical
systems. IEEE 802.1AS has been designed with the goal of
reaching a precision of less than 1 microsecond in a linear
network setting where a master clock and an ordinary clock
are separated by 7 hops. Simulation and worst case analysis
[3] but also experimental measurements [4] have assessed its
performance in the absence failure. However, for a standard to
be adopted in a critical network, it is necessary to study the
behavior of the protocol in this case.

In this paper, we address the problem of designing a robust
and precise configuration of 802.1AS. First, we underline how
robustness can be enforced with this standard. Second, we
analyze what impacts the quality of synchronization using sim-
ulations to guide the design of a robust and precise deployment
methodology for IEEE 802.1AS.

II. IEEE 802.1AS OVERVIEW

IEEE 802.1AS [1] is a profile of IEEE 1588 Precision
Timing Protocol [2] for Time Sensitive Networking. Some-
times called generalized Precision Time Protocol (gPTP), this
protocol is used to synchronize clocks across a network using

the master slave paradigm. Each port of a time-aware system
has one of the following states:

• Master : sends time synchronization information to the
slave port of a time-aware system located at the other
end of the physical link.

• Slave : receives time synchronization information from
the master port.

• Passive : ignores time synchronization information to
avoid loops in the spanning tree.

The time-aware system with all its ports in master state is
called Grandmaster and it is the time source of the network.
It can be synchronized by an external time source (GPS, NTP,
...) or use its internal clock.

To determine port states, IEEE 802.1AS provides two
methods. The first method is the external port state config-
uration. This method allows to statically define the state of the
ports for all the devices involved in the synchronization. The
second method is the Best Master Clock Algorithm (BMCA).
This distributed algorithm is executed on each time-aware
system to eventually determine the state of the local ports
and to elect the Grandmaster by comparing the information
received from each Grandmaster candidate.

Synchronization itself is based on two core mechanisms:
i) the distribution of synchronization information and ii) the
measurement of the link delay using the peer-to-peer delay
mechanism.

The distribution mechanism is based on the transmission
of Sync and Follow_Up messages that allow each time-
aware system to synchronize to the Grandmaster clock. Every
synchronization interval, which is typically of 125ms, the
Grandmaster sends a Sync message out of its master ports,
followed by a Follow_Up message containing t0, the exact
sending time of the Sync message, as pictured in Fig. 1. These
two messages are received via the slave ports of the equipment
connected to the Grandmaster. If the receiving device has at
least one port in the master state then it will forward the Sync
message to the next time-aware system. It forwards as well the
Follow_Up message that carries t0 and the data Tprop+Tres.
Here, Tprop is the propagation delay measured with the other
peer-to-peer delay mechanism and Tres is the residence time of
the Sync message in the switch. These operations are repeated
at each hop, until the complete set of network equipment is
reached.

The peer-to-peer delay mechanism defined in IEEE
802.1AS measures the link propagation delay. It consists in an



Fig. 1: Distribution mechanism.

Fig. 2: Peer to peer delay mechanism.

exchange of Pdelay messages carrying timestamps between
two time-aware systems that are separated by one hop. This
mechanism is executed every Pdelay interval (1s by default).
To measure this propagation delay, the protocol needs four
timestamps as depicted in Fig. 2. The first timestamp t1 is
measured when the Pdelay_req is issued. Timestamp t2
is obtained upon receipt of this message. Timestamp t3 is
measured when the Pdelay_resp is sent. Finally, t4 is
measured upon reception of Pdelay_resp. With the formula
(1), the mechanism can calculate the delay of the link, Tprop,
from the timestamps. Moreover, with the t3 and t4 timestamps
of two consecutive Pdelay procedures, the requester can extract
the neighbor rate ratio nr of Eq. (2) in order to compensate
the relative clock drift in Eq. (1).

Tprop =
(t2− t3) + nr.(t4− t1)

2
(1)

Equation (1) makes the hypothesis of the symmetry of the
link but the protocol makes it possible to compensate for the
existing asymmetries if they can be estimated (typically in a
calibration step).

Using the two mechanisms described above, each device
can adjust its local clock. Indeed, to deduce the current time,
the device just sets its clock to t0, the original time of
transmission of the Sync, and adds the previous propagation
delay and residence times accumulated in the Follow_Up
message and the propagation delay of the last hop Tprop

measured with the peer-to-peer delay mechanism.

nr =
freq
fresp

=
t3i − t3i−1

t4i − t4i−1
(2)

In the 2020 version of IEEE 802.1AS [5], a domain mechanism
has been added. A domain is made up of several time-
aware systems participating in the synchronization including
a Grandmaster. A time-aware system can belong to several
domains, originating from the same Grandmaster or from
different ones. In the latter case, the backup Grandmaster is
called the hot-standby Grandmaster. It is important to note that
all these domains are active together at the same time, with
proper Sync and Follow_Up messages sent in the network.
However, the function that determines which domain to use
has not yet been standardized. Defining this function is one of
the objectives of the upcoming IEEE 802.1ASdm amendment.

III. A CONFIGURATION FOR ROBUST SYNCHRONIZATION

For a critical on-board network, ensuring robustness is
compulsory for the deployment of IEEE802.1AS. The BMCA
offers robustness in the event of a link, time-aware system or
Grandmaster failure by re-configuring the state of the ports
to allow synchronization information to be broadcast again.
This is a very flexible mechanism, but for which it may be
difficult to predict which spanning tree will be used for the
dissemination of Sync and Follow_Up messages at any
time. In addition, the reconfiguration time may depend on
the order of arrival of the messages describing the quality of
a Grandmaster candidate and reconfiguration may take up to
several seconds.

Nonetheless, the use of multiple domains combined with
the external configuration of the port state makes it possible
to obtain robustness under certain conditions. Indeed, it is
necessary that the spanning trees used to distribute synchro-
nization information in the different domains offer robustness
to time-aware system or link failures. It is also possible to use
several Grandmasters to overcome the failure of one of the
Grandmasters. This solution is less dynamic than the BMCA
but unlike a network which uses the BMCA, a network using
the domains with the external configuration of the ports has
a very low and deterministic reconfiguration time. Indeed,
in the event of a loss of synchronization information, once
the loss is detected, the device can decide to set its clock
to the synchronization information of another domain that is
already available with gPTP. This short reconfiguration time is
therefore dominated by the time to detect the failure.

Despite the fact that the fault detection function is not
standardized, it is reasonable to assume that the fault detection
mechanism works similarly to the one of the legacy BMCA.
Thus, for a default configuration of the standard, a time-
aware system has to wait for the loss of 3 consecutive Sync
messages, i.e. 3 intervals of 125ms, to detect a failure. With
the syncLocked mode activated, the detection of the loss takes
place at the same time in all the network up to the residence
time. The syncLocked mode forces the device to forward a
Sync via its master ports directly upon the reception of its
parent Sync message. We can conclude that it is possible to
modify the syncInterval and the syncReceiptTimeout to change
the fault detection duration in order to match our robustness
constraint.

Given the lower reconfiguration time in the event of a
failure and the strong design preference of the industrial world
for static configurations for safety reasons, we will therefore



focus on the implementation of multiple domains using static
port configuration.

With the static configuration, we have control over the state
of each port in the network, and thus we can choose at set of
domains that offer redundancy. A synchronization domain is
mathematically represented by a spanning tree, rooted at the
Grandmaster node. Ideally, to resist k failures, we should find
a set of k + 1 independent spanning trees. That is, the paths
joining every pair of vertices x and y in any two spanning
trees should be vertex disjoint. Finding a set with this property
ensures that the loss of k link or time-aware system will have
no impact on the distribution of synchronization information,
but it is difficult to observe this property on a real topology.
Indeed, let us take the example of a TSN topology reminiscent
of a standard automotive use case as presented in Fig. 3. In
this topology, nodes 0 to 6 and 17 are switches and others
are end systems. Device 4 is the Grandmaster. Two domains
are defined at most since we can only find at most two
independent paths between the Grandmaster and the other
time-aware systems. It is possible to observe as well that end
stations are not accessible by independent paths.

Fig. 3: A robust configuration of two domains for an automo-
tive topology.

Ensuring the complete independence of a set of spanning
trees may be intractable in real network. Thus, we are looking
for the “most independent set of spanning trees”. As such, we
look for instance for two spanning trees where the loss of a
link or of a node prevents the distribution of synchronization
information for as few nodes as possible. The configuration
shown in Fig. 3 is one of the possible configurations that
reduces the impact of a link or device failure compared to
weaker one of Fig. 4. For example, a failure of the link between
0 and 4 has no impact on the synchronisation distribution
thanks to the presence of the red domain that doesn’t use this
link. This is not the case for the configuration of Fig. 4. This
weak configuration is also more sensitive to device failures
because the distribution of Sync and Follow_Up messages
is centralized by a few device such as device 0.

IV. A CONFIGURATION FOR PRECISE SYNCHRONIZATION

On top of creating a robust set of synchronisation domains,
another challenge is to ensure the synchronisation service these

Fig. 4: A weak configuration of two domains for an automotive
topology

domains offers is, at least, precise as needed by the networked
system. First, let’s define more explicitly the term precision.
Given the reference time of the Grandmaster, we can compute
for any time-aware system the difference between its local time
and the reference time. This is the time deviation that can be
expressed or measured for any time-aware system composing
the network and at any reference time. Thus, a precise device
has a small time deviation from the Grandmaster. A theoretical
definition of the precision of the complete networked system
is given by the maximum time deviation experienced by any
given time-aware system and at any time.

A. Source of imprecision

The first parameter that can impact a device’s precision is
the quality of its clock. Indeed, any real clock tends to drift
because of tiny changes in frequency of the oscillator due to
factors like aging or external temperature. If the clock drift is
limited to +/- 10ppm (parts per million), the clock drifts at the
maximum of +/- 1.25µs compared to an ideal clock within a
syncInterval of 125ms.

The second parameter which can affect the precision of
the synchronization is the accuracy of the time-stamping
necessary for the propagation and residence time measurement
mechanisms. Despite the hardware time-stamping used in
devices supporting IEEE 802.1AS, which eliminates software-
related inaccuracies, several phenomena impact the accuracy
of timestamps such as oscillator noise, jitter caused by the
PHY layer and clock granularity. In the following, we are only
interested in the granularity of the clock and the PHY layer
jitter. Indeed these two combined phenomena can add up to
16ns to the real timestamp, compared to the noise related to
the oscillator which is less than 1ns according to P. Loschmidt
et al. in [6].

B. Simulation study

In order to study the impact of inacurate timestamps on
precision, simulations with an OMNeT ++ library created by
H. Puttnies et al. [7] are presented next. We have added new
features to this library: i) the rate ratio, which allows a logical



Fig. 5: The simulated daisy chain network.

syntonization with the Grandmaster, ii) the PHY jitter and iii)
the clock granularity.

For our simulations, we consider a daisy chain network,
as shown in Fig. 5, where 10 hops separate the Grandmaster
from the most distant time-aware system. We use 5m cables
between each pair of gPTP devices, enforcing a propagation
delay of 25ns. Clocks have a constant -10ppm drift, a PHY
jitter evenly distributed between 0 and 8ns and a granularity
of 8ns. The default IEEE802.1AS parameters of syncInterval=
125ms and the time between Pdelay_req of 1 second are
set. Results are extracted from 30 simulations of 1000s each.
The results obtained with perfect and inaccurate timestamping
mechanisms are presented in the Table I.

From these results, we observe that for the perfect times-
tamping scenario, the worst precision is of -1250ns regardless
the distance between the device and the Grandmaster. This
value is the drift that a clock of -10ppm undergoes between
two Sync messages spaced by 125ms. This time deviation can
be reduced by using better clocks of lower drift or by reducing
the syncInterval resulting in an increase in synchronization
traffic. Moving to a syncInterval of 31.25ms and using clocks
with a drift between -5ppm and 5ppm, the time deviation can
be reduced to a value ranging between -162.5 and 162.5 ns.

By adding the timestamp inaccuracies in the simulations,
we observe that the precision decreases with the number
of hops. In fact, at each new hop, the inaccuracies in the
measurement of the propagation and residence times are added
to the Follow_Up message which is forwarded to the next
device. The inaccuracies have a reduced impact on the first hop
device because only the propagation measurement is needed
to adjust its clock. Since we consider the Grandmaster to be
perfect, due to the superior quality of its oscillator compared to
other time-aware systems, the first hop device is not impacted
by the Grandmaster drift or its timestamping inaccuracies. For
the last jumps, the inaccuracies that accumulate are lower
because the timestamping errors compensate for each other.
Approaching a worst case is therefore more difficult. The error
caused by the imprecision of timestamps can be reduced by
using clocks with a lower granularity, by using a filter to

Hops Worse precision with
perfect timestamp in ns

Worse precision with
inaccurate timestamps in ns

1 -1250 -1259
2 -1250 -1274
3 -1250 -1281
4 -1250 -1285
5 -1250 -1288
6 -1250 -1295
7 -1250 -1301
8 -1250 -1302
9 -1250 -1307

10 -1250 -1317

TABLE I: Simulation results

average the propagation delay measurements or by reducing
the number of jumps. Thus, the choice of the state of the
different ports of the time-aware devices, and therefore of
the spanning tree, impacts the precision reachable by the
synchronization because of the number of hops.

V. CONCLUSION

This work has investigated the design of a robust and
precise synchronisation service for critical on-board networks.
In terms of robustness, we advocate for the use of static
independent domains. We have shown that it is difficult to
ensure strict independence of domains on real topologies.
However, it is possible to find spanning tree sets that reduce the
number of devices affected by a failure. In terms of precision,
we illustrated through simulations the fact that timestamp
inaccuracies cause measurement errors which propagate in the
rest of the network. It is therefore reasonable to minimize the
number of hops between the Grandmaster and the different
time-aware system when designing a spanning tree.

Future works will investigate other sources of imprecision
of the timestamp, by validating the behavior of the simulator
using experimental measurements on device supporting IEEE
802.1AS and finally by proposing a method to find the sets of
spanning trees that best meet the constraints of robustness and
precision of on-board networks.

ACKNOWLEDGMENT

The authors thank all people and industrial partners in-
volved in the EDEN project. This work is supported by the
French Research Agency (ANR) and by the partners of IRT
Saint Exupéry Scientific Cooperation Foundation (FCS): Air-
bus Operation, Airbus Defence and Space, CNES, Continental
Automotive, INPT/IRIT, ISAE-SUPAERO, ONERA, Safran
Electronics and Defense, Thales Alenia Space and Thales
Avionics

REFERENCES

[1] “IEEE Standard for Local and Metropolitan Area Networks - Timing and
Synchronization for Time-Sensitive Applications in Bridged Local Area
Networks,” IEEE Std 802.1AS-2011, pp. 1–292, 2011.

[2] “IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems,” IEEE Std 1588-2008
(Revision of IEEE Std 1588-2002), pp. 1–269, 2008.

[3] M. Gutiérrez, W. Steiner, R. Dobrin, and S. Punnekkat, “Synchronization
quality of IEEE 802.1 AS in large-scale industrial automation networks,”
in 2017 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 2017, pp. 273–282.

[4] G. M. Garner, A. Gelter, and M. J. Teener, “New simulation and test
results for IEEE 802.1 AS timing performance,” in 2009 International
Symposium on Precision Clock Synchronization for Measurement, Con-
trol and Communication. IEEE, 2009, pp. 1–7.

[5] “IEEE Standard for Local and Metropolitan Area Networks–Timing and
Synchronization for Time-Sensitive Applications,” IEEE Std 802.1AS-
2020 (Revision of IEEE Std 802.1AS-2011), pp. 1–421, 2020.

[6] P. Loschmidt, R. Exel, and G. Gaderer, “Highly accurate timestamping
for ethernet-based clock synchronization,” Journal of Computer Networks
and Communications, vol. 2012, 2012.

[7] H. Puttnies, P. Danielis, E. Janchivnyambuu, and D. Timmermann, “A
Simulation Model of IEEE 802.1 AS gPTP for Clock Synchronization
in OMNeT++.” in OMNeT++, 2018, pp. 63–72.


