

Crowdsourcing mobile networks

Katia Jaffrès-Runser

University of Toulouse, INPT-ENSEEIHT, IRIT lab, IRT Team

Jiaotong University, Shanghai

Fête Nationale / Bastille day, July 14, 2015

N7 Engineering school, Toulouse

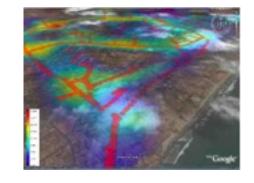
The smartphone phenomenon

- Multiple sensing and communication capabilities
 - Sensors, camera, GPS, microphone
 - 3G, WiFi, Bluetooth, etc.
 - Storage capabilities (several Gbytes)
 - Computing power

Mobile Traffic is growing constantly

- Increasing volume of mobile data between 2014-2018
 - "...worldwide mobile data traffic will increase nearly 11-fold over the next four years and reach an annual run rate of 190 exabytes (10¹⁸⁾ by 2018..."
 - 54% of mobile connections will be 'smart' connections by 2018

[Cisco VNI Global Mobile Data Traffic Forecast (2013-2018)]



In 2013, 4.1 billion users worldwide

Next Big Networking Challenge: meet traffic demand!

- If data is not delay sensitive:
 - e.g. Videos, Application / system updates, music, podcasts, etc.

Leverage opportunistic encounters to route or flood **delay tolerant** data hop by hop

Benefit: Reduce downloads from infrastructure wireless network

- 2. If several connectivity options exist:
 - e.g. 3G/4G, WiFi, Femto cells

Offload / Pre-fetch data using

the 'best' available connectivity, at the best time and location

Benefit: Load balancing between available infrastructures

Crowdsourcing (part of) this huge network

- This huge network of users is constantly active.
 - The context each user is evolving in is changing
 - The content each user is consuming / sending is evolving as well
- To provide the next intelligent data communications, we need to understand how this network evolves
- How is this big dynamic network evolving?
 - Getting network traces
 - Model the interactions of this dynamic network to capture its evolution
- How to get network traces?
 - Network operator monitoring
 - Crowdsourcing using smartphone capabilities

Outline of this talk

- 1. Building a Mobile app for crowdsourcing
- 2. First statistics of Macaco Project and trace description
- 3. Use case exemple: Classifying social interactions from such contact traces

EU CHIST-ERA MACACO Project

Mobile context-Adaptive CAching for COntent-centric networking www.macaco.inria.fr

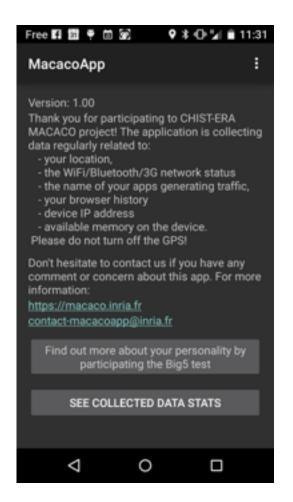
INRIA (Paris), University of Toulouse, SUPSI (Lugano), University College London, CNR-IEIIT (Torino), UFMG (Brazil)

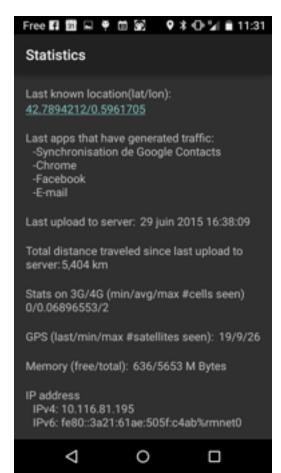
Crowdsourcing Mobile app

Goal: Sample user context and content data

- Runs in background on volunteer phone users
 - Monitors different sensors periodically (5 mins)
- Should be seamless with respect to regular phone usage
 - Upload data to our servers before memory is full
 - Full memory = no reactivity
 - But: does not ruin the 3G data plan!
 Favor uploads on WiFi
 - Energy constraint !!
 - Monitoring all sensors is costly

www.macaco.inria.fr





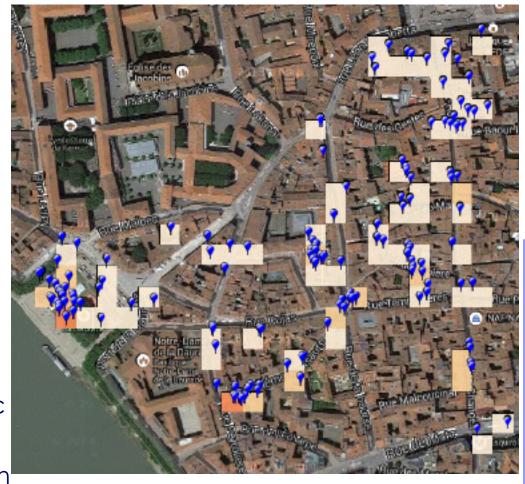
Macaco App

Measured data every minute:

- Context data
 - Location (GPS, Internet)
 - WiFi connectivity
 - Bluetooth connectivity
 - Cellular network towers
 - Battery discharge
 - Accelerometer
 - Big 5 personality test

Content data

- Name of applications
 that have generated traffic
- Browser history
- Name of applications run



Main issue: getting volunteers:-)

- Privacy issues (discussion with CNIL)
 - Keep data within project partners,
 - Have data anonymized (hashed IMEI location)
 - Limit storage duration of non-anonymized data use
 - Option to remove its own data from the collection

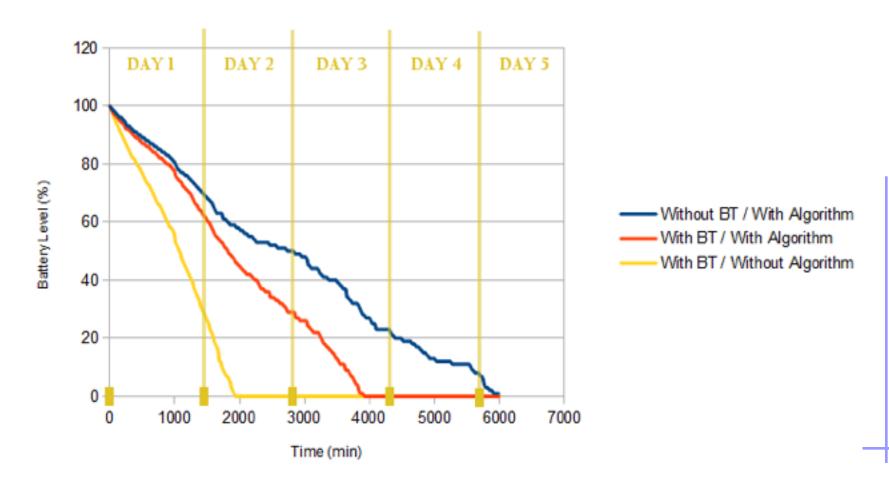
Energy efficient app design

- Keep the volunteers using the app
- Provide a motivation for participating
 - Added value of the app (e.g. visualize its own data, game, ...)
 - Financial retribution (voucher)
 - Lottery
 - For the greater good :-) ...

Energy depletion with movement detection

% remaining battery if the phone stands still

- w./w.o. movement detection
- w./w.o. bluetooth measurements



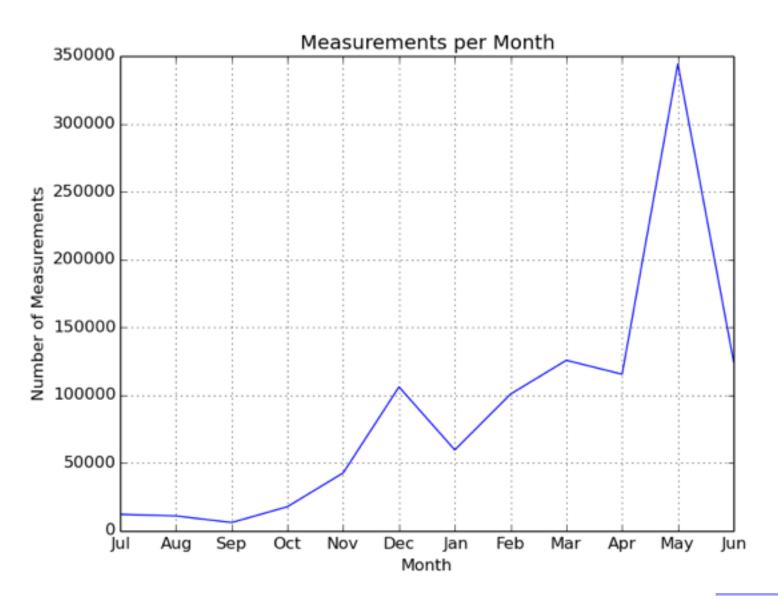
First Macaco data statistics

- Collected with MacacoApp
 - Up to now, for one year (2014 July 2015 June)
 - 57 devices over one year
 - 1,069,083 Measurements

• Top contributors:

Hash(IMEI)	Period	# measurements
203a	2014-11-04 - 2015-06-22	187879
bacd	2014-08-27 - 2015-06-22	145619
f1d9	2014-08-06 - 2015-06-20	126215
46bd	2014-08-19 - 2015-06-13	119634
4517	2012-01-01 - 2015-06-22	65812
e6d2	2015-05-05 - 2015-06-22	59997
008f	2015-05-07 - 2015-06-22	55059

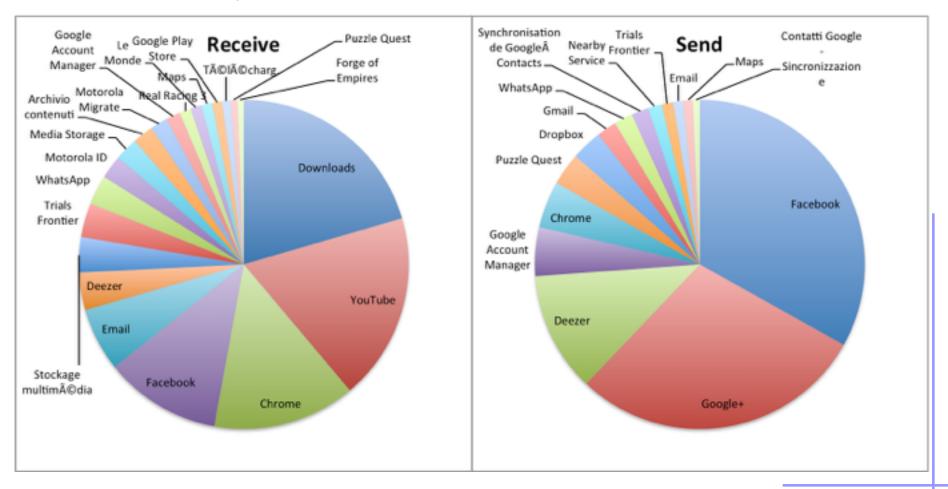
First Macaco data statistics



First Macaco data statistics

Total traffic download: 55534 MB

Total traffic upload: 10679 MB



Now, what can we do with this data?

- Mobility analysis:
 - Plot the trajectory of one user.
 - Extract points of interest for users: Home, Office, School ...
 - Find regular patterns in mobility (working / non working days)
- Understand App usage of the phone:
 - Which apps are the favorite ones?
 - When are these apps used? How often? When in the week?
 - Where do the users start these favorite apps?
- Understand the networks around:
 - With WiFi or Bluetooth: map location of APs, BT networks
 - Understand when is WiFi/3G/Bluetooth available / actually used

Macaco Mobility trace (for a given device)

Latitude	<u>Longitude</u>
43602061	1455570
43601951	1455536
43603029	1454255
43604800	1456844
43606018	1456409
43609879	1455394
43611817	1457947
43612946	1456268
43617212	1455507
43619232	1456513
43620054	1457180
	43602061 43601951 43603029 43604800 43606018 43609879 43611817 43612946 43617212 43619232

Information:

- Id of measurement in whole database
- Timestamp (Unix epoch since Jan 1st. 1970)
- Origin of measurement (gps / network)
- Measurement accuracy
- Latitude and Longitude

Macaco Apps trace (for a given device)

id	timestamı	0	UID	Label	<u>Packages</u>	rx_traffic	tx_traffic
685383 0	143099045 1224	51320	10115	"Reconno	aissance voc	ale" com.	vlingo.client.samsung
599898 4991	685385 2750	143099057	71708	10062	"Google Pla	ay Store"	com.android.vending
com.goo	•	d.syncadar	com.googl	e.android.		n.google.	y" android.gms adapters.contacts

Information:

- Id of measurement
- **Timestamp** (Unix epoch since Jan 1st. 1970)
- UID: app identifier on Android
- Label in Android
- Name of installation **package** in Android
- Number of bytes downloaded since last measurement
- Number of bytes uploaded since last measurement

Macaco Bluetooth trace (for a given device)

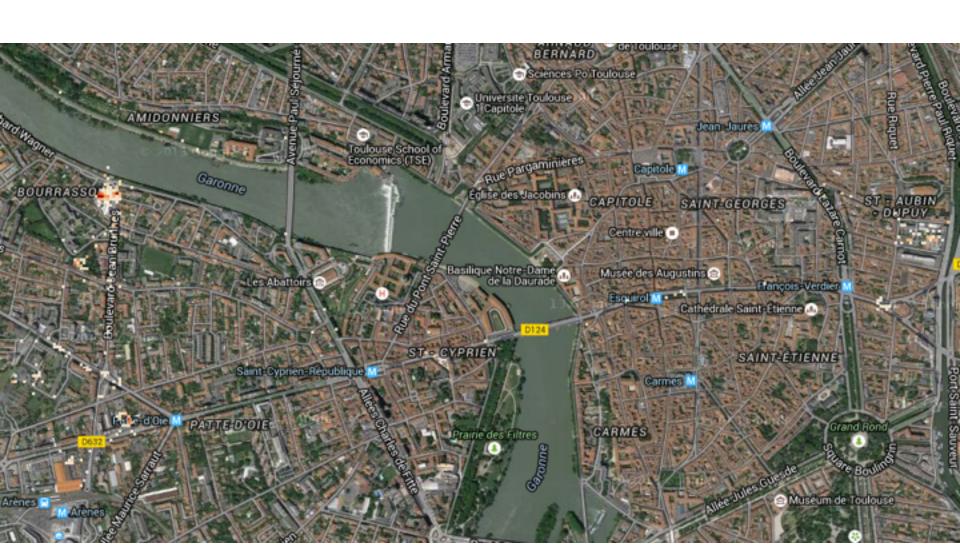
id	timestamp	NetworkName	MAC@	bond	<u>state</u>	RSSI (dBm)
9193333	1431154755555	scala rider Q3	00:0A:9B:2A	:81:91	0	-77
9194850	1431242655321		00:03:19:1D:	:F4:85	0	-91
9196198	1431320962110		6C:A7:80:87	:F3:DB	0	-83
9196202	1431321198797	99249	00:07:80:76:	E1:6C	0	-76
9196203	1431321259218		00:0B:CE:09	:A1:98	0	-94
9196432	1431334999027	EVERTEK E29	0C:2E:B7:E0	:62:50	0	-93
9196434	1431335116777	EVERTEK E29	OC:2E:B7:E0	:62:50	0	-95

Information:

- Id of measurement in whole database
- Timestamp (Unix epoch since Jan 1st. 1970)
- Bluetooth network name
- Measurement accuracy
- MAC address (BT device physical address)
- Bond_state: connected to ? 0/1
- RSSI received signal strength (dBm)

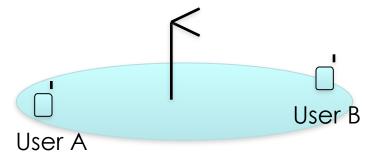
Network Traffic Device1 WiFi

Network Traffic mapping Device1 - 3G traffic



How to exploit such datasets?

- Other open datasets exist (cf. Crawdad http://crawdad.cs.dartmouth.edu/)
- Different types of temporal contact measurements
 - Measure a direct link between User A and B (e.g. Bluetooth, WiFi Direct connectivity)
 - Assume a link exists between User A and User B if they are connected to the same WiFi access point



 Measure location of users (GPS): if users are close enough, assume they are connected

Example open data sets

Data collection to build *contact traces*

- Log the contact time and duration of a node to an access point
- Log the GPS coordinates of mobile nodes regularly

Derive a time-varying contact graph

Dataset	Local	#	Duration	Туре	Avg. # encounters/
		entities			node/day
Dartmouth ¹	campus	1156	2 months	Individuals	145.6
USC ²	campus	4558	2 months	Individuals	23.8
San Francisco ³	City	551	1 month	Cabs	834.7

- Dartmouth and USC collect connection dates/durations to WiFi APs,
- San Francisco collects GPS locations of taxi cabs.

Crowdsourcing mobile networks, KJR, 07/14/2015

¹T. Henderson et al. "The changing usage of a mature campus-wide wireless network," in Proc. of ACM MobiCom 2004

²W. jen Hsu et al. "Impact: Investigation of mobile-user patterns across university campuses using wlan trace analysis," CoRR, vol. abs/cs/0508009, 2005

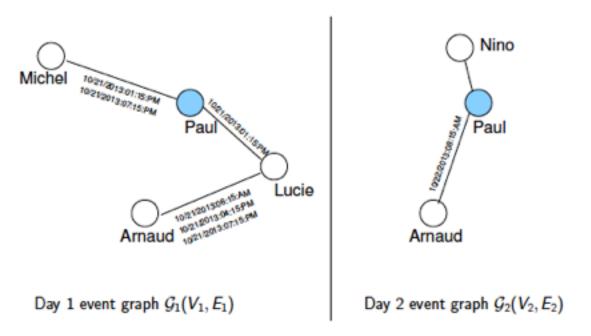
³A. Rojas et al. "Experimental validation of the random waypoint mobility model through a real world mobility trace for large geographical areas," in Proc. of the 8th ACM MSWiM 2005

4 □ ▶ 4

Graphs extracted from contact traces

Two possible representations

1. δ event graph: $\mathcal{G}_k(\mathcal{V}_k, \mathcal{E}_k)$ There is an edge in \mathcal{E}_k if contact within $\delta = 1$ day for instance.

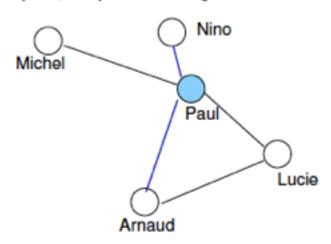


2. Accumulative graph $G_t(V_t, E_t)$

Graphs extracted from contact traces

Two possible representations

- 1. δ event graph: $\mathcal{G}_k(\mathcal{V}_k, \mathcal{E}_k)$ There is an edge in \mathcal{E}_k if contact within $\delta = 1$ day for instance.
- 2. Accumulative graph $G_t(V_t, E_t)$: $G_t = \{G_1 \cup G_2 \cup ... \cup G_t\}$



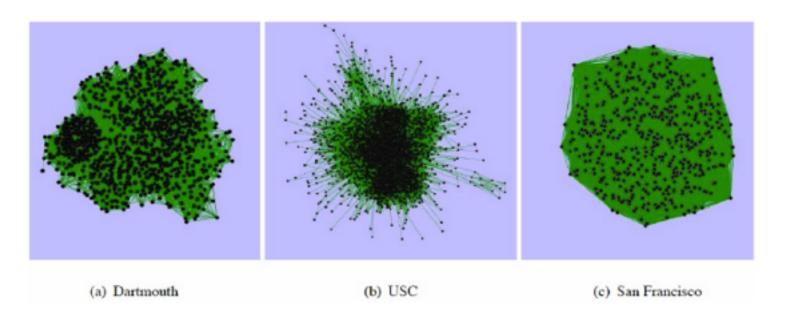
 $G_2(V_2, E_2)$ Accumulative graph up to Day 2

Accumulates all event graphs up to time step t.

Graphs extracted from contact traces

Example accumulative graph G_t for t = 2 weeks

For $\delta=1$ day and using force-direct layout algorithm for plotting



Seems difficult to extract any knowledge from these social graphs:

→ gathers all social AND random interaction!

RECAST classifier [1]

- Characterizes the interactions of nodes based on their probability to originate from a random or social behavior
- Identify different kinds of social interactions (friends, acquaintances, bridges or random)
- No geographical dependency, i.e., is of general validity

Together with

Pedro O. Vaz de Melo, Antonio Loureiro – UMFG Brazil Aline Viana - Inria, Marco Fiore - IIT-CNR Italy Frédéric Le Mouël – INSA Lyon

[1] RECAST: Telling Apart Social and Random Relationships in Dynamic Networks, P. Olmo Vaz de Melo, A. Viana, M. Fiore, K. Jaffrès-Runser, F. Le Moüel and A. A. F. Loureiro, 16th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (ACM MSWim 2013), Barcelona, Spain, 3-8 November 2013.

Social network features: Regularity and Similarity

Social nodes' behavior tend to

- ▶ repeat on a regular basis (because of daily activities for instance)
 → Regularity
- build persistent communities and generate common acquaintances
 Similarity

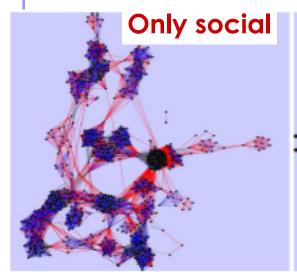
Mathematical metrics

- ▶ Edge persistence $per(i,j)^{-7}$: Percentage of time steps an edge exists over the past discrete time steps in the event graphs $\{\mathcal{G}_i\}_{i\in[1,..,t]}$
- ▶ Topological overlap to(i,j) 8: Ratio of neighbors shared by two nodes calculated for the accumulative graph G_t .

⁷N. Eagle et al., "From the Cover: Inferring friendship network structure by using mobile phone data," Proceedings of the National Academy of Sciences, Sept. 2009

⁸J. P. Onnela et al., "Structure and tie strengths in mobile communication networks", Proc. of the National Academy of Sciences, May 2007

Classification after 2 weeks



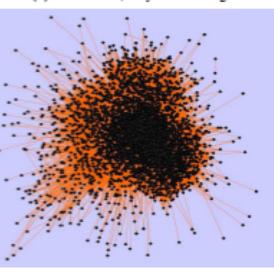
Only random



Friends edges are in blue
Bridges edges are in red
Acquaintance edges are in gray
Random edges are in orange

- (a) Dartmouth, only social edges

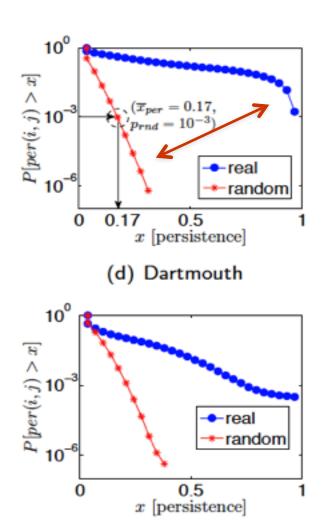
(b) Dartmouth, only random edges



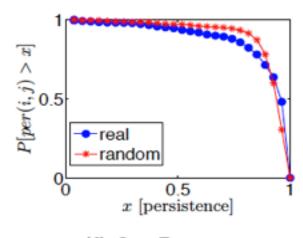
- Social-edges network
 Complex structure of
 Friendship communities,
 linked to each other by
 Bridges and
 Acquaintanceship
- Random-edges network No structure appears, looking like random graphs

CCDF of edge persistence after 4 weeks

Individuals tend to see each other regularly



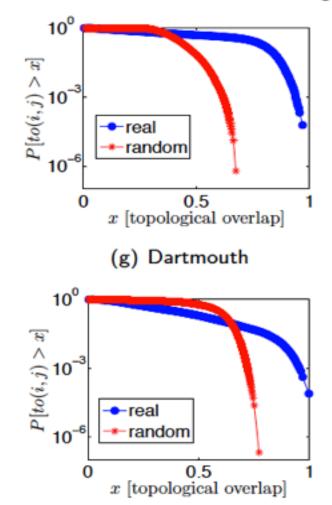
Encounters occur almost in a random fashion



(f) San Francisco

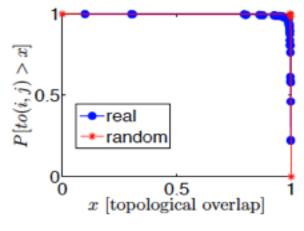
CCFD of topological overlap after 4 weeks

Individuals of G_t have common neighbors



(h) USC

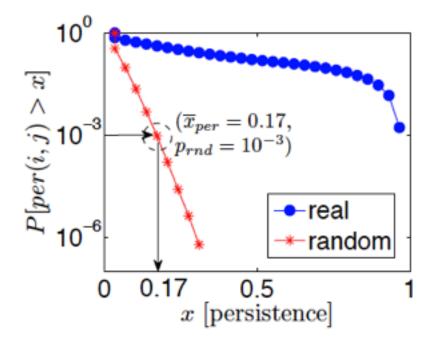
Common neighbors occur in a random fashion



(i) San Francisco

Social vs. Random Edges

In the random network, we only have a probability of 10^{-3} to have edges with a persistence of more than $\bar{x}_{per} = 0.17$.



- \rightarrow Thus, in the social graph G_t :
 - edges with $per(i,j) > \bar{x}_{per}$ can be classified as social edges
- edges with $per(i,j) < \bar{x}_{per}$ can be classified as random edges Note that there is a p_{rnd} chance that a social edge is actually random (mis-classification)

Social graph and its random counterpart

Random graph equivalent of G

Calculate a random graph G^R from a graph G(V, E):

- Keep same number of vertices and edges,
- Randomly assign edges to keep the same node degree distribution using RND algorithm⁶:

An edge is set between nodes of degree d_i and d_j with probability $p_{ij} = (d_i \times d_j) / \sum_{k=1}^{|V|} d_k$

Random accumulative graph G_t^R

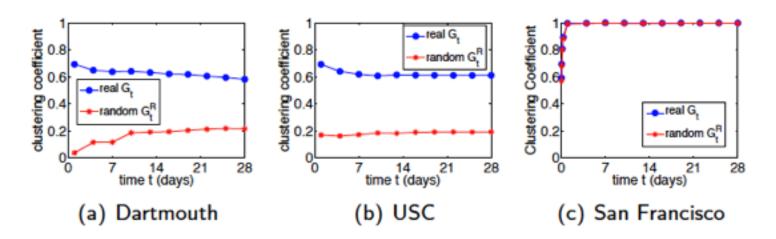
Random accumulative graph derived from event graphs $\{\mathcal{G}_i\}_{i\in[1,..,t]}$

$$G_t^R = \{RND(\mathcal{G}_1) \cup RND(\mathcal{G}_2) \cup \ldots \cup RND(\mathcal{G}_t)\}$$

Comparison social vs. random graphs

Network clustering coefficient can identify a network with an elevated number of clusters (i.e. communities).

▶ If $\bar{cc}(G) >> \bar{cc}(G^R)$, parts of the decisions of the nodes of G are NOT random



- ▶ Dartmouth / USC traces have an order of magnitude higher \bar{cc} than $G^R \rightarrow$ social decisions
- San Francisco: each individual taxi in the trace encounters most of the other taxis → closer to a random behavior

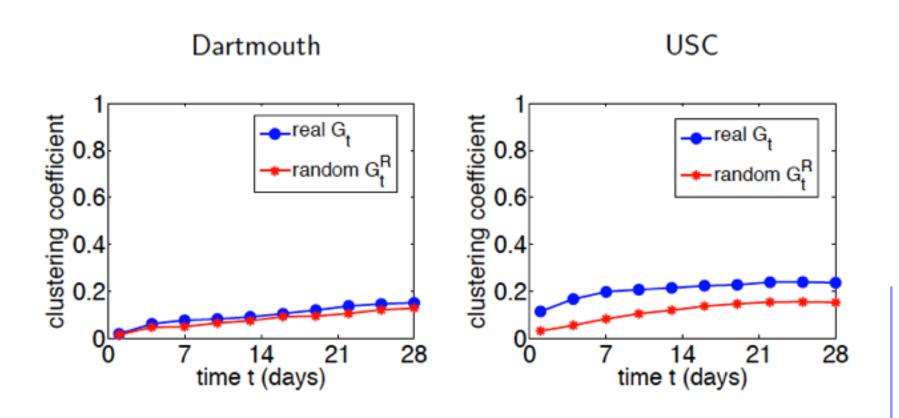
RECAST classification algorithm

Only parameter of RECAST: p_{rnd} , the mis-classification error bound. Main steps

- ▶ Calculate the per(i,j) and to(i,j) for each edge
- ▶ Knowing p_{rnd} , calculate \bar{x}_{per} and \bar{x}_{to} from CCDF's
- For each edge,
 - if $per(i,j) > \bar{x}_{per} \rightarrow (i,j)$ is social for edge persistence else (i,j) is random for edge persistence
 - if $to(i,j) > \bar{x}_{to} \to (i,j)$ is social for topological overlap else (i,j) is random for topological overlap
- Classify edges into classes of relationships according to:

Class	Edge persistence	Topological overlap
Friends	social	social
Acquaintances	random	social
Bridges	social	random
Random	random	random

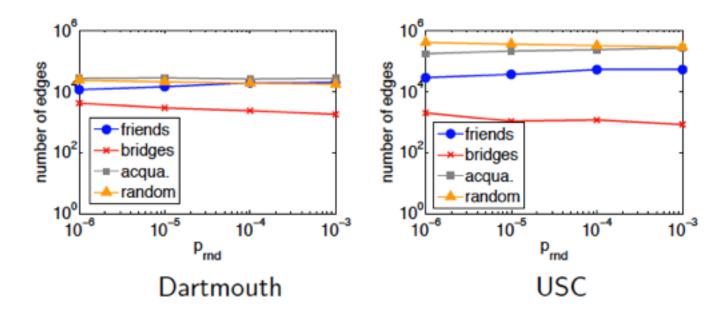
Cluster coefficient analysis for random edges only



Validates the efficiency of RECAST to identify random edges for Dartmouth and USC

Impact of p_{rnd}

Number of edges of a each class that appear in the first 4 weeks vs. p_{rnd}



RECAST is not sensitive to p_{rnd} !

Forwarding using relationship information

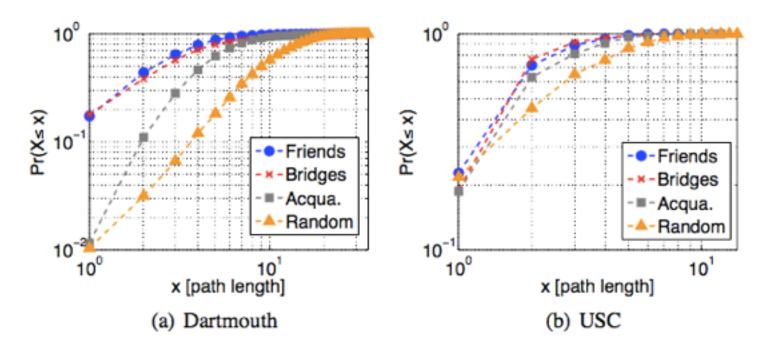


Figure 11: The histogram of the path lengths of messages between users i and j who share a determined class of relationship.

Forwarding with recast or FB data

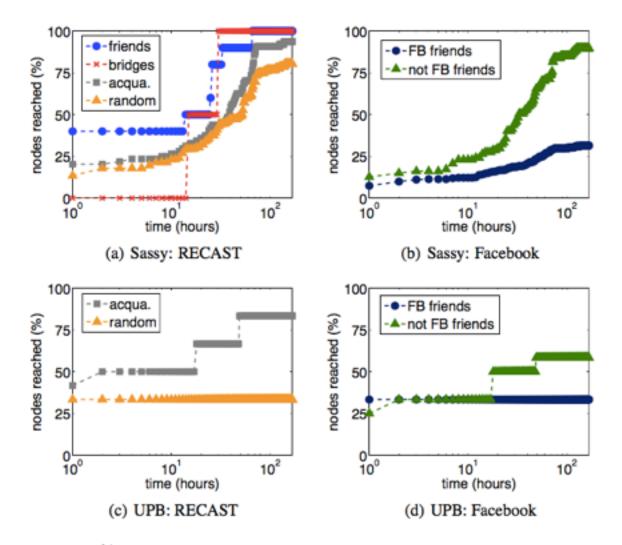


Figure 12: The % of users who were reached over time grouped by RECAST classes and Facebook (FB) friendship.

39

Next...

- Having this data, exhibit the correlations between content and context
 - Do users have regular habits in data usage?
 - If yes, is it possible to model these networks with the content plane in mind?
- Using network models, deriving data pre-fetching strategies to adjust the load off available networks

• • • •