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Abstract

In this paper, we argue that the ability to accurately spot random and social re-
lationships in dynamic networks is essential to network applications that rely on
human routines, such as, e.g., opportunistic routing. We thus propose a strategy to
analyze users’ interactions in mobile networks where entities act according to their
interests and activity dynamics. Our strategy, namedRandom rElationship ClAS-
sifier sTrategy (RECAST), allows classifying users’ wireless interactions, separat-
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ing random encounters from different kinds of social ties. To that end, RECAST
observes how the real system differs from an equivalent one where entities’ de-
cisions are completely random. We evaluate the effectiveness of the RECAST
classification on real-world user contact datasets collected in diverse network-
ing contexts. Our analysis unveils significant differencesamong the dynamics of
users’ wireless interactions in the datasets. We illustrate in a last section how such
differences can be leveraged to exploit the social ties in opportunistic routing.

Keywords: dynamic networks, mobility, social networks, opportunistic routing

1. Introduction

Recent studies have analyzed data generated from mobile individuals in urban
regions, such as cab drivers in San Francisco (USA) [1] or students in large cam-
puses [2, 3]. Particular attention has been paid to the dynamics of user movement,
whose real-world complexity cannot be fully captured through synthetic models.
Indeed, understanding user mobility is of fundamental importance when designing
new communication protocols that exploit opportunistic encounters among users.
In this case, the problem mainly lies in correctly forecasting future contacts. To
that end, the regularity of daily activities comes in handy,as it enforces periodic
(and thus predictable) space-time patterns in human mobility [4]. Building on
such a feature, protocols have been designed to estimate thepotential of mobile
users to act as data forwarders, mainly leveraging complex network analysis met-
rics such as centrality measures.

Although human behavior is characterized by an elevated rate of regularity,
random events are always possible in the routines of individuals. Those are hardly
predictable situations that deviate from the regular pattern and are unlikely to
repeat in the future; they originate from the fact that users’ connections repre-
sent decisions they take based on their personal motivations [5], which may also
change over time. We refer to contact networks deriving fromsuch systems as
Dynamic Complex Wireless Networks (DCWN). For instance, a contact network
composed of wireless hand-held devices is a clear example ofDCWN, since the
user mobility creates neither purely regular nor purely random connections among
the entities composing the network.

The random events in DCWNs veil the ordinary patterns by introducing a
significant amount of noise, thus making the process of knowledge discovery in
such datasets a complex task. The ability to accurately identify random and social
events in DCWNs becomes then essential to social analysis and to applications
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that rely on a precise description of human routines, such asrecommendation
systems, forwarding strategies and opportunistic dissemination protocols.

In this paper, we propose aRandom rElationship ClASsifier sTrategy (RE-
CAST)to classify relationships among users so as to spot contactsdue to random
events in DCWNs. To that end, RECAST examines how the real system would
evolve if users’ decisions were random. More precisely, we use the temporal
graph originated from the real network dataset and a random counterpart of the
same to tell apart edges representing random events from those created by actual
social relationships, such as friendship or professional interactions. By compar-
ing the two graphs in terms of metrics reflecting two major social features, i.e.,
frequent user encounters and shared acquaintances, RECASTprovides a simple
yet very effective way of classifying contacts. RECAST has asingle intuitive and
easily configured parameter, which makes our technique preferable to conven-
tional methods for filtering and cleaning social network data that require arbitrary
thresholds, many parameters, and often a deep knowledge of the system.

When applied to five real-world datasets describing user activity in city and
campus scenarios, the RECAST classification allows us observing the many dif-
ferences in the evolution of relationships in such datasets. Diversities are due to
the intrinsic features of each networking scenario of interest. For instance, we
show that the dataset describing the movement of cab driversin San Francisco
(USA) [6] has mostly non-social properties, which makes itsgraph representation
similar to a random network. The same is not true for people moving in a campus:
however, different campuses yield dissimilar interactiondynamics as well. As a
consequence, we stress that conclusions drawn from evaluating a single dataset
should not be generalized and that the validation of any networking protocol or
service has to consider different types of datasets. In thisdirection, we show that
the neat classification of user relationships in a DCWN dataset provided by RE-
CAST can be leveraged for networking purposes.

In summary, the contribution of this paper is threefold:

• We introduce RECAST, a simple yet very effective way of classifying wire-
less contacts by leveraging metrics that reflect two major features of social
networks: frequent user encounters and shared acquaintances.

• We unveil the large differences among contact datasets, andclaim that con-
clusions drawn from evaluating a single dataset should not be generalized;
rather, the validation of networking protocols or serviceshas to consider
different types of datasets.
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• We show that the knowledge of the wireless relationship a pair of users
share can be leveraged for the design of opportunistic epidemic forwarding.

The paper is organized as follows. Section 2 discusses the related work. Sec-
tion 3 details the design behind RECAST. Section 4 shows how we model real-
world network traces into complex temporal networks. Section 5 details the RE-
CAST implementation. Section 6 shows how RECAST can improveopportunistic
routing solutions. Section 7 compares RECAST classes with friendships in online
social networks. Finally, conclusions are drawn in Section8.

2. Related work

Social network analysis builds on the high predictability of human behav-
iors [7], which are mostly driven by regular, routine activities. As a consequence,
connections among social network nodes can be modeled by mechanisms such as
preferential attachment [8] and triangle formation [5], that leverages the existence
of communities or highly connected hubs [9] in the network. This makes social
networks different from random ones, such as the Erdős and Rényi network [10],
where node connections are purely stochastic, being determined by a constant
probability.

Given this predictability, social ties have been widely exploited in opportunis-
tic mobile networks so as to favor network services. The considered problems
range from multi-hop message forwarding [11] and multicasting [12], to network
security [13]. All studies above try to exploit the regularity and the repeated space-
time patterns expected in the human behavior and tend to ignore the random or
non-social connections among mobile users. Instead, we focus on the analysis
of both random and social ties among users. To the best of our knowledge, the
works of Miklas et al. [14] and Zyba et al. [15] are those the most closely related
to ours. These studies differ in that they classify eitherusersor their interactions
(i.e., vertices or edges in the social graph), respectively. Zyba et al. distinguish
social and vagabond users according to their social mobility behavior. They an-
alyze regularity of appearance and duration of visits in a given area of traces to
sort out users. Hence, the resulting classification only works on a per-individual
per-area basis. Miklas et al. classify links between friends and strangers. They
assume that frequent pairwise node encounters represent friendship interactions,
and empirically decide that pairs of users meeting 10 days ormore out of 101 days
are friends, whereas others are strangers.
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Overall, our work extends the investigations in [14, 15] in the following ways.
First, we propose a finer grained classifier, able not only to clearly character-
ize random interactions, but also to identify different kinds of social interactions:
Friends, AcquaintancesandBridges. As such, we go a step further than [14] as we
are able to identify edges corresponding to, e.g.,familiar strangers, as defined by
Milgram [16]: indeed, the users sharing a bridge interaction repeatedly encounter
but may never experience an explicit social relationship. In addition, unlike the
proposal by Zyba et al. [15], our strategy has no geographical dependency, i.e., it
is of general validity.

3. Rationale

We consider social networks composed of individuals who arewirelessly con-
nected over time. Encounters in these networks are driven bybehaviors that tend:
(i) to be regular and to repeat periodically; (ii) to build persistent communities
of individuals or to generate commons acquaintances between them [17]. The
classification strategy we present in this paper leverages these two behaviors to
efficiently distinguish social from random encounters in DCWNs. In the follow-
ing, we detail our methodology and present the real world datasets considered in
our analysis.
Social and random interactions: In DCWNs, interactions among the system en-
tities are usually a consequence of semi-rational decisions. We say “usually” and
“semi-rational” decisions because any system is subject torandom events and ir-
rational choices. Nevertheless, because most of the interactions still arise from
conscious decisions made by their entities, the evolution of DCWNs is signifi-
cantly different from the evolution of random networks, e.g., Erdős and Rényi
networks [10]. Indeed, while in DCWNs the edges are created from semi-rational
decisions, which tend to be regular and to repeat over time, in a random network
the edges are created independently of the attributes of thenetwork entities, i.e.,
the probability of connecting any two entities is always thesame.

For instance, in a network of people, routines in everyday life correlate to
individuals’ interactions: if Smith and Johnson work at thesame office, they are
likely to meet at 9 AM during weekdays. This is because Smith and Johnson
decideto go to work every day on time, as this is the rational decision to perform.
However, their decision can be affected by random events, such as being stuck in
traffic on a turnpike. Although rational decisions are regular, random events may
occur as well.
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In other words, an individual may take asocial decision, or a random deci-
sion. Intuitively, if its probability of performing a social decision is greater than
its probability of a random one, the network evolves to a well-structured social
network. If the opposite it true, the network evolves as a random network, such as
the Erdös and Rényi one.
Social Communities: A major feature of DCWNs that we exploit in our study
is the presence of communities, i.e., groups of individualswho are strongly con-
nected to each other because they share the same interests oractivity dynamics [5].
In contrast, communities can not be found in random networkswhere, as previ-
ously stated, edges are created stochastically and independently of the attributes
of each node.

The network clustering coefficient has been widely used to discriminate ran-
dom from social networks. Given an undirected graphG(V,E) (whereV rep-
resents the set of network graph nodes, e.g., individuals, and E is the set of
links describing relationships among entities, e.g., contacts among individu-
als), the clustering coefficientci of nodei measures the probability that two of
its neighbors to be also connected among them. Formally, it is calculated as
ci = 2|Ei|/|Ni|(|Ni| − 1), whereNi is the set of neighbors ofi, Ei is the set
of edges between nodes inNi and| · | is the cardinality of the included set. The
clustering coefficient of the whole network is the average ofall node clustering
coefficientsci, ∀i ∈ V .

By introducing the equivalent random networkGR as the random network
constructed with the same number of nodes, edges and empirical degree distribu-
tion of its real world counterpartG, Watts and Strogatz [18] show that the clus-
tering coefficient of a social networkG is one order of magnitude higher than the
clustering coefficient ofGR. Thus, when a given networkG exhibits a clustering
coefficient that is significantly (i.e., orders of magnitude) higher than that of its
random equivalentGR, then we can state that (part of) the decisions made by the
entities that compose the network graphG are non-random.
Real-world DCWN datasets: Our evaluations are performed on five real-world
datasets (also referred to astracesin the following) that describe movements of
entities in campus and city scenarios. TheDartmouthdataset [3] is a mobility
trace of more than1, 000 individuals in the university campus, recorded over eight
weeks using WiFi network access information. TheUSC dataset [2] is also a
mobility trace in a campus scenario, comprising movement information of more
than 4, 000 individuals over eight weeks, again collected through WiFiaccess.
The San Franciscodataset [1] contains records of the mobility of551 taxis in
San Francisco, CA, USA, over one month, gathered through GPSlogging at each

6



cab in the urban area. For both the Dartmouth and USC traces, two individuals
are assumed to generate a contact if they are using the same WiFi access point to
connect to the wireless network on campus. In the San Francisco trace, two taxis
are in contact if their distance is lower than250 meters. Extensive experimental
analysis in [19] shows that a distance of250m grants a50% packet delivery ratio
in urban environments, under common power levels (15-20 dBm) and with robust
modulations (3-Mbps BPSK and 6-Mbps QPSK). These first threedatasets are be
used in Sections 5 and 6 for RECAST assessment.

Moreover, we also evaluate RECAST on two other datasets, where we have
information about the physical encounters among human users, as the Dartmouth
and USC datasets, and also data about the self-reported social networks of these
users. In both cases, the self-reported social network was collected directly from
the Facebook pages of the users. This allows us to construct the social network of
these users, that tells which pairs of users declared a friendship relationship be-
tween them on Facebook. TheSassydataset [20] contains the information about
27 human users associated with University of St Andrews comprising 22 under-
graduate students, 3 postgraduate students, and 2 members of staff. Each user
carried a mobile IEEE 802.15.4 sensors (T-mote invent devices) that are able to
detect each other within a radius of 10m. At each detection anencounter is char-
acterized and stored in the dataset. Participants were asked to carry the devices
whenever possible over a period of 79 days starting on February, 15, 2008.

TheUPB dataset [21] was also collected in an academic environment,at Uni-
versity Politehnica of Bucharest, from the mobility of 22 participants. The par-
ticipants were twelve Bachelor students (one in the first year, nine in the third,
and two in the fourth), seven Master students (four in the first year and three in
the second) and three research assistants. The data was collected only inside the
grounds of the faculty between 8 AM and 8 PM during week-days.Data was
collected from November 11th, 2011 to December 22nd, 2011, using an Android
application that registers contacts between mobile devices with Bluetooth. These
two datasets are used in Section 7 to compare RECAST classes with friendships
on online social networks.

In all cases, the contact events between two individuals aretraced using start
date of contact and its duration. Table 1 summarizes the features of the different
datasets.
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Table 1: Datasets used in the presented investigations.

Dataset Local Number of entities Duration Entities type Avg. # encounters/node/day
Dartmouth [3] University campus 1156 2 months Individuals 145.6

USC [2] University campus 4558 2 months Individuals 23.8
San Francisco [1] City 551 1 month Cabs 834.7

Sassy [20] City 27 79 days Individuals 69.4
UPB [21] University campus 22 42 days Individuals 6.56

4. Modeling

This section introduces the main properties of interest of the first three
datasets, which will then be employed to evaluate the performance of RECAST
in Sections 5 and 6. Section 4.1 shows how we model the dynamicDCWN as a
temporal aggregation graph. Section 4.2 details the algorithm we employ to obtain
the equivalent random graph of a given temporal aggregationgraph, and discusses
how these two graphs compare in terms of clustering coefficient.

(a) Dartmouth (b) USC (c) San Francisco

Figure 1: Snapshots of the temporal accumulation graphGt after two weeks, for each examined
dataset. In all cases, random encounters mix with non-random ones and hide the social structure
of the contact network.

4.1. Temporal Aggregation Graph

As previously discussed, the datasets we employ list contacts among individ-
uals or vehicles, and associate to each encounter a start time and a duration. In
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order to generate the temporal graph, we discretize time into steps of durationδ 1,
and represent all the encounters occurring at time stepk as a graphGk(Vk, Ek).
The set of verticesVk is composed of all network nodes (i.e., individuals or ve-
hicles) involved in a contact during thek-th time step, while the edges in the set
Ek represent the pairwise contacts during the same time step. Therefore, an edge
between two nodesi andj, with i, j ∈ Vk, exists inEk if i andj have met during
time stepk.

We can then define a time varying representation of the DCWN using a tem-
poral accumulation graphGt = (Vt, Et). Formally,Gt = {G1 ∪ G2 ∪ ... ∪ Gt}.
As such,Vt (respectivelyEt) is the set of all vertices (edges) that have appeared
in the dataset between time 0 and time stept included. Note thatGt evolves over
time and aggregates all the contacts in the dataset, thus comprising both social
encounters and random encounters between network entities.

This aspect is clear in Figure 1, showing the temporal accumulation graph
Gt calculated whent = 14, i.e., for 2 weeks of data, drawn using a force-direct
layout algorithm (FDLA) [22]. Although the FDLA draws the graph so there are
as few crossing edges as possible, the presence of random contacts is mixed with
the social structure of the network, making it difficult to extract useful knowledge
from the temporal accumulative graph.

In Figure 2, we show the densification ofGt. First, in Figure 2-a, we show
the number of new edges added byGk to G1 ∪ G2 ∪ . . . ∪ Gk−1 per each dayk.
Observe the oscillations in the curves, which are clearly a consequence of the
presence of dynamics spanning over several days: namely, weekdays yield more
activity, and thus more contacts, than weekends. Also, observe that the number of
new edges added to the USC network is, in general, orders of magnitude higher
than the other networks. However, when we normalize the number of new edges
by the number of possible edges|Vt|×|Vt−1|

2
, in Figure 2-b, we see that the San

Francisco dataset is the one with the highest densification,reaching almost80% of
the fully connected graph in the first day of the analysis. Note that the USC and the
Dartmouth networks, both referring to campus environments, densify similarly.

4.2. Comparison with Random Graphs
The first step to analyze the mobility patterns of the temporal accumulation

graphGt is to build its random versionGR
t . The latter must feature similar topo-

logical characteristics as the originalGt graph, i.e., the same number of nodes,

1In our study, we considered a duration ofδ = 1 day, since the data sets originate from human
activities that feature daily routines.
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Figure 2: The densification of the temporal graphGt(Vt, Et) per dayt. (a) The number of new
edges added toGt(Vt, Et) per dayt. (b) The percentage of the fully connected graph that is
covered by the new edges.

edges, and empirical degree distribution. That way, the only difference between
Gt andGR

t lies in the way nodes are connected to each other. While inGt the
nodes connect in a “semi-rational” way, inGR

t the connections happen in a purely
random fashion. As we will show later, this difference can beleveraged to ac-
curately determine the extent of randomness in the mobilityof individuals in
DCWNs.

We use two algorithms to generateGR
t from Gt. The first algorithm, which

we will call RND, is well known in the network science community [23]. The
algorithmGR=RND (G) receives a graphG(V,E) as a parameter and returns a
random graphGR(V,ER) with the same topological characteristics asG, i.e., the
same number of nodes, number of edges and degree distribution. In this way, we
guarantee that the only difference between the real graphG andGR is to whom
each node connects, that is the focus of our analysis. Thus, given the degree
distributionD = (d1, d2, . . . , dn) of G with n nodes, this algorithm assigns an
edge between nodesi andj with probabilitypij = (di × dj)/

∑|V |
k=1 dk.

The second algorithm, which we callT-RND, is an extension ofRND and is
able to generate random graphs from a temporal networkGt. As mentioned in
Section 4.1, the temporal aggregation graphGt = {G1∪G2∪ . . .∪Gt} is the union
of event graphsGt. Thus, the algorithmGR

t =T-RND (G1,G2, . . . ,Gt) receives as
parameters a set of consecutive event graphsGt and returns a random temporal
graphGR

t . It constructsGR
t by executingRND in each event graphGt and then

aggregating it in a way thatGR
t = {RND(G1) ∪ RND(G2) ∪ . . . ∪ RND(Gt)}. In
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summary, bothRND andT-RND randomly replicate the total number of contacts
with distinct persons each individual had in a given time snapshot. In the follow-
ing study, we generate multiple instances ofT-RND and average the results over
these instances.

We first demonstrate the potential of random comparison in Figure 3, where
we show the behavior of the clustering coefficient for graphsGt andGR

t over time
for the three analyzed networks. As we have previously mentioned, the clustering
coefficient is a good metric to differentiate social networks from random ones. As
we observe in Figure 3-a, for the Dartmouth dataset, the clustering coefficient of
Gt andGR

t are different in orders of magnitude over the first days. However, as
time goes by, their values get closer, as random encounters grow in number and
tend to veil the social network structure. On the other hand,as we see in Figure 3-
b, the clustering coefficients ofGt andGR

t for the USC dataset are almost constant
over time. However, the difference between them is not exceedingly high, since
they have the same order of magnitude. We discuss these differences in detail later
on.
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(c) San Francisco

Figure 3: Evolution of the clustering coefficient in theGt of the three datasets, and in their random
equivalentsGR

t .

Finally, as we observe in Figure 3-c, the clustering coefficients of the San
Francisco networks are practically the same, being close to1. In fact, after a few
hours, the network becomes similar to a clique, indicating aglobal high mobility,
allowing each individual taxi encountering most of the other taxis at some point
of the day. Formally, this indicates thatGt andGR

t are very similar for the San
Francisco dataset, i.e., the probability of random encounters is much higher than
the probability of social contacts, what makes the San Francisco network similar
to a random mobile network. This makes sense since taxis’ decisions depend
on occasional customers’ requests rather than on routine mobility patterns of the
driver.
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5. Classifier

In this section, we describe theRandom rElationship ClASsifier sTrategy (RE-
CAST)we propose to differentiate relationships among individuals in a social net-
work. More precisely, the purpose of RECAST is to tell apart random interactions
from social-driven ones. To that end, Section 5.1 presents the DCWN features
used by RECAST. Then, Section 5.2 introduces the RECAST algorithm and, fi-
nally, Section 5.3 discusses the results obtained by applying RECAST to the pre-
viously introduced datasets.

5.1. Social Networks Features

In order to identify social relationships, we must point outwhich features dis-
tinguish a social relationship from a random one. Indeed, two characteristics are
always present in social relationships [24, 25]:

1. Regularity. It is well known that social relationships are regular, in that
they repeat over time. If two individuals are, for example, friends, co-
workers, or daily commuters, they see each other regularly.

2. Similarity . It is expected that two individuals who share a social relation-
ship have common acquaintances between them. As an example,two indi-
viduals who share a large number of friends will most probably know each
other as well.

Regularity andSimilarity can be mapped into DCWN features that, in turn,
can be computed from a contact dataset so as to identify what kind of relationship
two individuals share. In the following, we discuss such features.

5.1.1. Edge Persistence
A complex network metric mapping of theRegularity of a relationship is the

edge persistence. Basically, considering the set of event graphs{G1, . . . ,Gt}2,
the edge persistencepert(i, j) measures the percentage of times the edge(i, j)
occurred over the past discrete time steps1, 2, . . . , t. Formally, it is defined as
pert(i, j) = 1

t

∑t

k=1 1[(i,j)∈Ek ], where1[(i,j)∈Ek ] is an indicator function that as-
sumes value1 if the edge(i, j) exists inEk at timek, and0 otherwise.

2Note that edge persistence is computed over the set of graphsGt and not over the temporal
accumulation graphGt.
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For instance, assuming that each day of the week is a time step, if Smith and
Johnson met each other twice in a week, their edge persistence is the number of
times they encountered, i.e., 2, divided by the total numberof time steps, i.e., 7,
or pert=7(Smith, Johnson) = 2/7. The edge persistence allows spotting regular
relationships between two entities. We again emphasize that in the aggregated
graphGt, only one edge exists between Smith and Johnson after this week.

We show in Figure 4 (first column) the edge persistence as measured
in the three datasets. Considering the set of event graphs{G1, ...,Gt}
of all three real networks and theirRND-generated random counterparts3

{RND(G1), ...,RND(Gt)}, we portray the complementary cumulative distribution
function (CCDF)F pert(x) = P [pert > x]. There, the time step is one day and
each curve is obtained by analyzing four weeks of contacts, since t = 28 corre-
sponds to the length of the shortest considered dataset, i.e., the San Francisco one.
From Figures 4-a and 4-c, we observe that the Dartmouth and USC networks have
edge persistence distributions that significantly differ from those computed in their
random equivalents. More precisely, while the CCDFs of random networks show
an exponential decay, the individuals in the real network tend to see each other
regularly, i.e., for reasons beyond pure randomness, leading to a heavy-tailed dis-
tribution. Conversely, as from Figure 4-e, the encounters in the San Francisco
dataset show an edge persistence similar to that obtained inthe random equivalent
graphs.

5.1.2. Topological Overlap
TheSimilarity of contacts can be mapped to the topological overlap featureof

a complex network. This metric is extracted from the aggregated temporal graph
Gt. The topological overlaptot(i, j) of a pair of nodesi andj is defined as the
ratio of neighbors shared by two nodes, or, formally,

tot(i, j) =
|{k | (i, k) ∈ Et} ∩ {k | (j, k) ∈ Et}|

|{k | (i, k) ∈ Et} ∪ {k | (j, k) ∈ Et}|
.

In Figure 4 (second column), we show the CCDFF to(i,j)(x) = P [tot(i, j) >
x] of the topological overlap of the edges of the real networksGt and their respec-
tive random networksGR

t , generated by theT-RND mechanism4. Again, we pick

3We generated five instances for every random graph and the cumulative distribution considers
all of them.

4Again, we generated five instances for every random graph andthe cumulative distribution
considers all of them.
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Figure 4: The complementary cumulative distribution function of the edge persistence (a)(c)(e)
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one day as the time step and consider four weeks of contacts (i.e.,t = 28 days).
Similar to what occurred to the edge persistence, we note that the Dartmouth and
USC network CCDFs significantly differ from their random counterparts, in Fig-
ures 4-b and 4-d. Indeed, pairs of individuals in these datasets share common
neighbors in a way that could not happen randomly. Conversely, in Figure 4-f,
the San Francisco network again behaves like a random contact network. Since
all results indicate that the San Francisco network is random by nature, in the
remainder of this work we will focus on the Dartmouth and the USC datasets.

5.2. The RECAST algorithm
We have seen that both the edge persistence and the topological overlap be-

have differently in contact graphs generated from real-world social networks and
in their random equivalent graphs. We exploit such a diversity to identify which
edges are consequences of random or social events. In particular, we propose
a classification of relationships among network entities into four categories, de-
pending on whether the edge corresponding to the relationship features random-
like persistence and topological overlap. The four classesof relationships are
described in Table 2. A feature value is called “social” if there is an almost zero
probability of this value being generated randomly. On the other hand, a feature
value is called “random” if there is a significant probability of this value be gen-
erated randomly. In fact, as we explain in the following paragraphs, the unique
parameterprnd of RECAST defines if a given feature value is social or random.

Table 2: RECAST relationships classes.

Class Edge persistence Topological overlap
Friends social social

Acquaintance random social
Bridges social random
Random random random

Relationships classified asFriends characterize pairs of individuals whose
connection shows social edge persistence and topological overlap, i.e., who meet
each other regularly and also tend to know the same set of people5. The Ac-

5It is worth mentioning that, although thefriend terminology implies attachment among two
individuals by affection or personal regard, we use it here to describe strong social ties in terms of
regularity and similarity.
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quaintanceclass includes relationships among individuals sharing many common
encounters, but not meeting often. As an example, friends offriends who see each
other once in a while, in occasions such as birthday parties,graduation ceremonies
or weddings, would be classified asAcquaintance. The last social class is that of
Bridges, characterizing pairs of individuals who see each other regularly, but do
not share a large number of common acquaintances. E.g., the so-called familiar
strangers, people who meet every day but do not really know each other (e.g., be-
cause they just commute between common home and work areas) are very likely
to be classified asBridges. Finally, when an edge is neither persistent nor charac-
terized by topological overlap, it is considered the resultof a random contact, and
we classify it asRandom.

In order to distinguish “social” from “random” values of theDCWN’s features,
we resort to the distributions we previously discussed. More precisely, we define
a valueprnd, theonly parameter in RECAST, and we identify the feature valuex̄
for whichF (x̄) = prnd for the random networkGR

t . The valuēx represents then
a threshold, such that feature values higher thanx̄ occur with a probability lower
thanprnd in a random network. If we setprnd to some small value, we can fi-
nally state that feature values higher thanx̄ are very unlikely to occur in a random
network, i.e., they are most probably due to actual social relationships. The pa-
rameterprnd can also be seen as the expected classification error percentage. For
instance, a value ofprnd = 10−3 in Figure 4-a provides a threshold ofx̄ = 0.17. In
this case, all values ofx higher than0.17 can be classified as social edges in terms
of edge persistence. Moreover, in this case there is aprnd = 10−3 that RECAST
misclassified random edges as social ones in terms of edge persistence. In other
words, we expect that10−3 = 0.1% of the edges classified as social in terms of
edge persistence to be, in fact, random. The full RECAST mechanism is described
in Algorithm 1, where the criteria used in each classification are detailed. In this
algorithm, indext is omitted forper andto metrics for clarity purposes.

The complexity of RECAST is upper bounded by the construction of GR
t us-

ing T-RND, which is O(t × (|Vt| + |E
R
t |)), i.e., the minimum complexity for

the generation of a degree sequence-based random graph available to date [23].
After the construction ofGR

t , the complexity of the classification mechanism is
O(|ER

t | × |Vt|), whereO(|Vt|) is the cost of computing the topological overlap of
an edge.

5.3. Classification results

We apply RECAST to the Dartmouth and the USC networks. We are omitting
the results for the San Francisco dataset, since, as previously stated, the random-
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Algorithm 1 RECAST: classify edges ofGt

Require: prnd ≥ 0
return class(i, j) ∀(i, j) ∈ ∪tEt

ConstructGR
t and set{RND(G1), ...,RND(Gt)} usingT-RND

GetF to(x) andF per(x) fromGR
t

Getx̄to | F to(x̄to) = prnd andx̄per | F per(x̄per) = prnd
for all edges(i, j) ∈ Et do

if per(i, j) > x̄per andto(i, j) > x̄to then
class(i, j)← Friends

else ifper(i, j) > x̄per andto(i, j) ≤ x̄to then
class(i, j)← Bridges

else ifper(i, j) ≤ x̄per andto(i, j) > x̄to then
class(i, j)← Acquaintance

else
class(i, j)← Random

end if
end for

like nature of taxi routes makes the analysis uninteresting, with all edges classified
asRandom. In Figure 5, we show the number of edges per class as a function of
theprnd value. An initial and quite surprising observation is that,by varyingprnd
through four orders of magnitude, the number of edges per class stays in the same
magnitude. This shows that RECAST is robust with respect toprnd, i.e., it does not
need a fine calibration of the parameter to return a consistent edge classification.

Secondly, in both datasets, the number ofBridgesis orders of magnitude lower
than for the other classes, a clear indication that in the analyzed social networks
regular connections among different communities are rare.Also the number of
Friendsedges is similar in the two networks, implying similar dynamics in tight
relationships among individuals in the two campuses. This also agrees with the
biological constraint on a social interaction that limits human social networks’
size, i.e., the number ofFriends relationships [26]. However, the two datasets
differ when looking at the number of edges classified asAcquaintancesandRan-
dom, that are one order of magnitude larger in USC than in Dartmouth. This is
the result of the actual size of the two campuses, USC accounting for a popula-
tion around ten times larger than that of Dartmouth. This aspect is also reflected
by the size of the traces in Table 1 that clearly leads, in the USC network, to (i)
many moreRandomcontacts among individuals who do not actually know each
other, but just happen to cross each other while strolling oncampus, and (ii) an
increased presence of strangers who happen to know the same people, leading to
moreAcquaintancesedges.
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Figure 5: The number of edges of a given class that appears in the first four weeks of data versus
prnd.

The observations above are even more evident when observingthe percentage
of individual encounters of each type in the Dartmouth and USC networks. In
Figure 6, we show the percentage of encounters of a given class that appear in
the first four weeks of data for a given value ofprnd. The percentage ofRandom
encounters in the Dartmouth network is close to zero, varying from1.7% to 3.6%
asprnd decreases. On the other hand, in the USC network, this percentage varies
from 16% to 29%. In fact, the proportion ofRandomencounters provides a good
estimate of the probability of random decisions mentioned in Section 4. Thus, the
USC network has a significantly higher tendency to evolve to arandom topology
than the Dartmouth network.

The analysis is confirmed by Figure 7, portraying the snapshots of the Dart-
mouth and USC networks after two weeks of interactions, whenconsidering only
social edges (i.e., those classified asFriends, AcquaintancesandBridges) or only
edges tagged asRandom. Edges of the former networks in Figures 7-a and 7-c
are distinguished by colors, according to the same code usedin Figures 5 and 6
(Friendsedges are in blue,Bridgesin red, Acquaintancesin gray, andRandom
in orange). The difference between the social-only networks and the random-
only ones is striking. Social networks are characterized bya complex structure of
Friendscommunities, linked to each other byBridgesandAcquaintances. More
precisely, when comparing the Dartmouth and USC social networks, the former
appears to be dominated byFriends interactions, while the sheer number ofAc-
quaintancesin the latter drives its graph structure.

Conversely, networks containing onlyRandomedges do not show any struc-
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Figure 6: The percentage of encounters of a given class that appears in the first four weeks of data
versusprnd.

ture and look like random graphs. A rigorous way to verify therandomness of
such networks, and thus validate the efficiency of the RECASTclassification, is
to perform a clustering coefficient analysis. Figure 8 compares the clustering co-
efficients of the Dartmouth and USC networksGt when only Random edges are
presentagainst the same metric computed in their random counterpartsGR

t . The
clustering coefficient, commonly employed to determine theactual randomness
of a network, has very similar evolutions inGt andGR

t : this proves that the net-
work of contacts tagged asRandomby RECAST is actually a random network.
Therefore, RECAST is able to extract from a real-world contact dataset edges that
correspond to random encounters.

6. RECAST Application

In this section, we use the Dartmouth and USC contact traces to simulate an
epidemic dissemination. We consider that the users communicate with each other
in an opportunistic fashion, i.e., without any infrastructure and exchanging mes-
sages only when they are within physical proximity. Thus, ifuseri wants to send
a message to userj, he (she) has to deliver it personally toj or has to ask other
users to relay it for him (her), through a multi-hop carry-and-forward path. Also,
we consider the transfer to be epidemic, i.e., in order to reach j, useri sends a
message to all other users he (she) is in contact with at a given timet. The latter
forward it to all of the users they later meet and so on, until user j is reached.
Such an epidemic approach allows us characterizing the lower bound on the delay
required by the opportunistic transfer. As discussed hereafter, the two used traces
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(a) Dartmouth, social edges (b) Dartmouth, random edges

(c) USC, social edges (d) USC, random edges

Figure 7: Snapshots of the Dartmouth and USC networks after two weeks of interactions, consid-
ering only the social edges and only the random edges.Friendsedges are painted in blue,Bridges
in red,Acquaintancesin gray andRandomin orange. This figure is best viewed in colors.
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Figure 8: Evolution of the clustering coefficient ofGt when onlyRandomedges are present,
compared to their random correspondentsGR

t .

present significant differences. In particular, more contacts exist in the Dartmouth
trace, which explains the high delivery ratio of the evaluated opportunistic trans-
fer. On the other hand, USC trace presents temporal disconnections, resulting in
undelivered messages.

For both Dartmouth and USC contact traces, we use RECAST to classify the
relationships between users over one month of contact data,which we refer to as
theclassifying stage. Then, we simulate the opportunistic transfer scenario above
during the two following weeks, termed therouting stage, containing only future
encounters, not known previously by RECAST. For each useri, we randomly
pick a timet0,i within the first week of therouting stagefor him/her to start the
epidemic transfer process, and a destination userj. We leave one week for the
message to reach its destination: if the message is not delivered by then, the trans-
fer is deemed failed and the data lost. In this way, the following results consider all
the routing attempts between every pair of users that have a class of relationship
given by RECAST in theclassifying stage. When a message is successfully de-
livered, we consider the path that delivered the message first. Moreover, to make
the comparison fair, we remove from the traces all the users who did not appear in
therouting stage, most of them sharing aRandomrelationship with their contacts.
Our goal is to study how the different classes of relationships between the source
i and the destinationj affect the epidemic transfer of the message itself. We are
also interested in understanding the nature of the contactsused by successfully
delivered messages.

In Figure 9, we show the overall forwarding efficiency. Figures 9-a and 9-b
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show the percentage of messages that were successfully delivered to their destina-
tions in the Dartmouth and in the USC scenarios, respectively. Each bar represents
one relationship shared by the message source and destination, and within each
bar we depict the fraction of edges of a given class of relationship that was used to
deliver the message. First, we observe that all the messagesreached their destina-
tions in the Dartmouth scenario, a consequence of the limited network size. More-
over, the edges classified asFriendswere the most used to deliver the messages
and theRandomones the least used. In fact, considering all the paths directed to
Friends, less than2% of the hops in these paths were given by users who share a
Randomrelationship.

Different from the Dartmouth scenario, not all messages aredelivered in the
USC scenario. The lower delivery ratio is partially due to the larger network that
is harder to navigate. Moreover, we removed from therouting stageall encoun-
ters between users who do not share a RECAST class, or approximately25% of
all encounters. However, those are not the only reasons, andthe social relation-
ship between the source and destination significantly affects the probability of
success. Socially connected pairs (tagged asFriends, BridgesandAcquaintances)
can actually exchange data:90% of the messages were successfully delivered to
Friends, 92% to Bridgesand77% Acquaintances. If one wants to send a message
to aRandomcontact in the USC scenario, there is only44% of chances that this
message will arrive successfully. Moreover, although the majority of the classified
edges in the USC scenario areRandom(see Figure 5), the majority of the hops in
the paths are between users who share a social relationship.Considering all the
paths directed toFriends, less than13% of the hops in these paths were given by
users who share aRandomrelationship.

In Figure 10, we show how much time it was necessary for the mes-
sages to reach their destinations. We grouped together all the routings
from source useri to destination userj by the class of relationshipc ∈
{Friend,Bridge,Acquaintance,Random} that i and j share. Then, we cumula-
tively count how many destinations of the classc are reached at each hour, con-
sidering the total number of routings that were performed between sources and
destinations of classc. Observe that the expected time to reach aRandomcontact
is significantly higher than the time needed to reach a socialcontact. Moreover,
observe that the majority of the messages sent toFriendsarrive in the first hours
for both scenarios. These results may serve to leverage the performance of various
routing solutions for opportunistic networks. If we previously know the class of
relationship the destination share with the source, we alsoknow the chances and
the probable time the message will take to arrive.
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Figure 9: The forwarding efficiency when useri sends a message to userj in the opportunistic
network, andi andj share a specific RECAST relationship. Within each bar we alsoshow the
fraction of edges of a given class of relationship that was used to deliver the message.
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Figure 10: The% of users who were reached over the time.
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It is not only the time it takes for a message to arrive at its destination that
is relevant to the design of forwarding solutions for opportunistic networks. An-
other fundamental aspect is the number of hops required to reach the destination.
In Figure 11, we show the cumulative distribution function (CDF) of the path
lengths of messages between usersi andj who share a determined class of re-
lationship. Observe that the expected number of hops for a message to arrive at
a Randomcontact is significantly higher than to arrive at a social contact. For
the USC scenario,89%, 92% and81% of the routes toFriend, Bridge andAc-
quaintancedestinations, respectively, have path lengths lower or equal to 3. In
the meanwhile, only65% of the routes toRandomdestinations have path lengths
lower or equal to3. This difference is even more striking for the Dartmouth sce-
nario, where65%, 57% and28% of the routes toFriend, BridgeandAcquaintance
destinations, respectively, have path lengths lower or equal to 3, and only6% to
Randomdestinations have path lengths lower o equal to3.
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Figure 11: The histogram of the path lengths of messages between usersi and j who share a
determined class of relationship.

Overall, our results show how the RECAST classification allows identifying
those who share social relationships with the sender, whoseopportunistic paths
are usually short and reliable. In fact, such paths usually pass through a few num-
ber of hops, mostly using social ties among users, and rarelyleverage random
encounters. As an intuitive corollary, reaching users thatshare some social rela-
tionship is significantly easier than attaining users one does not know, especially
in large systems. These results may serve to leverage the performance of various
routing solutions for opportunistic networks. If we previously know the class of
relationship the destination share with the source, we alsoknow the chances and
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the probable time the message will take to arrive.

7. RECAST vs. Online Friendship

We are living in a time where online social networks (OSNs) such as Facebook
and Google+ are present in the lives and routines of billionsof people. In such
systems people are able to maintain a personal list of other users whose they share
a social relationship with, such as their friends and colleagues. In the context of
this paper, questions that naturally arise are: what are thedifferences between
the relationships labeled associal by RECAST and by OSNs? Considering the
same set of people, their self-reported social relationships on OSNs have a signifi-
cant intersection with their social relationships given byRECAST? If not, can we
also use the social relationship given by OSNs to route messages in opportunistic
scenarios?

In order to answer these questions, we refer to the two remaining real-world
mobility datasets introduced in Section 3. In these two datasets, we have informa-
tion about the physical encounters among human users, as theDartmouth and USC
datasets, and also data about the self-reported social networks of these users. In
both cases, the self-reported social network was collecteddirectly from the Face-
book pages of the users. This allows us to construct the social network of these
users, that tells which pairs of users declared a friendshiprelationship between
them on Facebook.

The first dataset, that from now on we refer as theSassydataset, contains
the information about 27 human users associated with University of St Andrews
comprising 22 undergraduate students, 3 postgraduate students, and 2 members of
staff. Each user carried a mobile IEEE 802.15.4 sensors (T-mote invent devices)
that are able to detect each other within a radius of 10m. At each detection, an
encounter is characterized and stored in the dataset. Participants were asked to
carry the devices whenever possible over a period of 79 days starting on February,
15, 2008. For more details see [20].

The second dataset, that from now on we refer as theUPB dataset, was also
collected in an academic environment, at University Politehnica of Bucharest,
from the mobility of 22 participants. The participants weretwelve Bachelor stu-
dents (one in the first year, nine in the third and two in the fourth), seven Master
students (four in the first year and three in the second) and three research assis-
tants. The data was collected only inside the grounds of the faculty between 8
AM and 8 PM during week-days. Data was collected from November 11th, 2011
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to December 22nd, 2011, using an Android application that registers contacts be-
tween mobile devices with Bluetooth. For more details see [21].

In order to verify if RECAST classes are able to indicate the presence of
friendship in online social networks, we classified the relationships in both
datasets using RECAST after 3 weeks of encounters. After that, we verified which
of the classified relationships are and are not labeled asfriendshipon Facebook.
Table 3 shows the number of friends (and non-friends) on Facebook (lines) who
were classified in a given RECAST class (column) for the Sassyand the UPB
datasets. Observe that there is not a RECAST class that clearly yields more (or
less) friendships on Facebook. This strongly suggests thatRECAST classes are
not related with friendship in online social networks. This is not a surprising out-
come: while RECAST aims at spotting social interactions induced by physical
mobility, online social networks register social relationships that do not neces-
sarily map to physical encounters. For instance, it is common to see Facebook
friendships between people from different countries, ex-colleagues who still want
to keep in touch, or even classmates who do not go along very well.

Table 3: RECAST classes vs. Facebook friendships in the Sassy dataset.

Sassy
- Friends Bridges Acquaintances Random Total

Friends on Facebook 3 0 19 43 65
Non-friends on Facebook 2 1 15 35 53

Total 5 1 34 78 118

UPB
- Friends Bridges Acquaintances Random Total

Friends on Facebook 0 0 16 17 33
Non-friends on Facebook 0 0 26 12 38

Total 0 0 42 29 71

Since RECAST classes are not related with Facebook friendships, one could
ask which classes are more valuable for opportunistic routing scenarios, i.e., is it
better to know my RECAST relationships or my Facebook friends when I need
to deliver a message in a opportunistic network? To address this question, we
simulate an epidemic dissemination in the same way we described in Section 6.
After classifying the relationships using three weeks of data, we simulate the op-
portunistic transfer scenario during the following week (routing stage), containing
only future encounters. Again, for each useri, we randomly pick a timet0,i within
the first day of therouting stagefor him/her to start the epidemic transfer process,
and a destination userj. If the message is not delivered within one week, the
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transfer is deemed failed and the data is lost. The followingresults consider all
the routing attempts between every pair of users that have a class of relationship
given by RECAST in theclassifying stage. Moreover, together with the RECAST
class, we also group the results by the friendship relationship on Facebook, i.e.,
we verified if Facebook friends are more likely to be reached than non Facebook
friends.

In Figures 12 we show how much time it was necessary for the messages to
reach their destinations for the Sassy and UPB datasets. We grouped together
all the routings from source useri to destination userj by the class of RECAST
relationshipc1 ∈ {Friend, Bridge, Acquaintance, Random} that i and j share
(Figures 12a and 12c) and also by their Facebook friendship statusc2 ∈ {FB
friends, non-FB friends} (Figures 12b and 12d). Then, as done previously, we cu-
mulatively count how many destinations of the classci are reached per each hour,
considering the total number of routings that were performed between sources
and destinations of classci. Again, observe that among the RECAST classes the
expected time to reach aRandomcontact is significantly higher than the time
needed to reach a social contact. Moreover, contrary to our intuition, observe
that, for both datasets, non Facebook friends are more likely to be reached than
Facebook friends. We argue that this is a clear proof of the significant abstraction
of online social relationships from physical encounters driven by social mobility.
Therefore, we conclude that Facebook relationships are of small use for decision
making in opportunistic data transfers. Conversely, RECAST classes are useful to
opportunistic routing. As a matter of fact, as already observed in the Dartmouth
and USC datasets, and also in the Sassy and UPB scenarios, RECAST social
classes are reached faster and more likely than both Facebook classes.

8. Conclusions

The contribution of this paper is threefold. First, we modeled three real-world
mobile user encounter datasets as temporal contact graphs and we proposed the
use of random equivalent graphs to outline their hidden social structure. Our orig-
inal approach shows that different mobility traces can yield completely different
social structures, determined by diverse behaviors of the entities participating in
the system. These results let us speculate that researchersshould not general-
ize their results based on the analysis of a single dataset. Second, we proposed
the RECAST strategy to lazily classify random and social relationships in tempo-
ral social networks, and demonstrate its simplicity and effectiveness. Third, we
employed the RECAST classification to the case of epidemic opportunistic trans-

27



10
0

10
1

10
2

0

25

50

75

100

time (hours)

no
de

s 
re

ac
he

d 
(%

)

 

 

friends
bridges
acqua.
random

(a) Sassy: RECAST

10
0

10
1

10
2

0

25

50

75

100

time (hours)

no
de

s 
re

ac
he

d 
(%

)

 

 

FB friends
not FB friends

(b) Sassy: Facebook

10
0

10
1

10
2

0

25

50

75

100

time (hours)

no
de

s 
re

ac
he

d 
(%

)

 

 

acqua.
random

(c) UPB: RECAST

10
0

10
1

10
2

0

25

50

75

100

time (hours)

no
de

s 
re

ac
he

d 
(%

)

 

 

FB friends
not FB friends

(d) UPB: Facebook

Figure 12: The% of users who were reached over time grouped by RECAST classesand Facebook
(FB) friendship.
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fers, and showed its relevance towards the identification offaster, reliable paths
leveraging social ties among users. Moreover, RECAST benefits for opportunis-
tic forwarding was highlighted when compared to the use of friendship status in
online social networls.
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