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Abstract

In this paper, we argue that the ability to accurately spotiomn and social re-
lationships in dynamic networks is essential to networkliappons that rely on
human routines, such as, e.g., opportunistic routing. \We pinopose a strategy to
analyze users’ interactions in mobile networks whereiestéct according to their
interests and activity dynamics. Our strategy, narRaddom rElationship CIAS-
sifier sTrategy (RECAS Tallows classifying users’ wireless interactions, separa
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ing random encounters from different kinds of social ties.tfat end, RECAST

observes how the real system differs from an equivalent dmereventities’ de-

cisions are completely random. We evaluate the effects®iné the RECAST

classification on real-world user contact datasets cateat diverse network-

ing contexts. Our analysis unveils significant differenae®ng the dynamics of
users’ wireless interactions in the datasets. We illusiraa last section how such
differences can be leveraged to exploit the social ties podpnistic routing.

Keywords: dynamic networks, mobility, social networks, opportuicsisbuting

1. Introduction

Recent studies have analyzed data generated from mobiveduals in urban
regions, such as cab drivers in San Francisco (USA) [1] afestts in large cam-
puses [2, 3]. Particular attention has been paid to the digsamhuser movement,
whose real-world complexity cannot be fully captured tlglogynthetic models.
Indeed, understanding user mobility is of fundamental irtggace when designing
new communication protocols that exploit opportunisticamters among users.
In this case, the problem mainly lies in correctly foreaagtiuture contacts. To
that end, the regularity of daily activities comes in haralyjt enforces periodic
(and thus predictable) space-time patterns in human niyppdl]. Building on
such a feature, protocols have been designed to estimapotastial of mobile
users to act as data forwarders, mainly leveraging compexork analysis met-
rics such as centrality measures.

Although human behavior is characterized by an elevatedahtegularity,
random events are always possible in the routines of indalgl Those are hardly
predictable situations that deviate from the regular patsend are unlikely to
repeat in the future; they originate from the fact that usewssnections repre-
sent decisions they take based on their personal motiwafidnwhich may also
change over time. We refer to contact networks deriving feuoh systems as
Dynamic Complex Wireless Networks (DCWR9Qr instance, a contact network
composed of wireless hand-held devices is a clear exam@u¥N, since the
user mobility creates neither purely regular nor purelygmn connections among
the entities composing the network.

The random events in DCWNs veil the ordinary patterns byodhicing a
significant amount of noise, thus making the process of kedge discovery in
such datasets a complex task. The ability to accuratelytiigggandom and social
events in DCWNs becomes then essential to social analydisoaapplications



that rely on a precise description of human routines, sucreesmmendation
systems, forwarding strategies and opportunistic dissation protocols.

In this paper, we propose Random rElationship CIASsifier sTrategy (RE-
CAST)to classify relationships among users so as to spot cordaetto random
events in DCWNs. To that end, RECAST examines how the reatsys/ould
evolve if users’ decisions were random. More precisely, \se the temporal
graph originated from the real network dataset and a randmmterpart of the
same to tell apart edges representing random events frase thieated by actual
social relationships, such as friendship or professiamakactions. By compar-
ing the two graphs in terms of metrics reflecting two majorigdeatures, i.e.,
frequent user encounters and shared acquaintances, REQi&ities a simple
yet very effective way of classifying contacts. RECAST hasngle intuitive and
easily configured parameter, which makes our techniquesiaiete to conven-
tional methods for filtering and cleaning social networked&iat require arbitrary
thresholds, many parameters, and often a deep knowledbe system.

When applied to five real-world datasets describing usevigctn city and
campus scenarios, the RECAST classification allows us wingethe many dif-
ferences in the evolution of relationships in such datadeigersities are due to
the intrinsic features of each networking scenario of gdgér For instance, we
show that the dataset describing the movement of cab dnne8an Francisco
(USA) [6] has mostly non-social properties, which makegitgph representation
similar to a random network. The same is not true for peopleingan a campus:
however, different campuses yield dissimilar interactignamics as well. As a
consequence, we stress that conclusions drawn from ewvajuaisingle dataset
should not be generalized and that the validation of any owdvwg protocol or
service has to consider different types of datasets. Irdingstion, we show that
the neat classification of user relationships in a DCWN cedtpsovided by RE-
CAST can be leveraged for networking purposes.

In summary, the contribution of this paper is threefold:

e We introduce RECAST, a simple yet very effective way of diggsg wire-
less contacts by leveraging metrics that reflect two majmtutes of social
networks: frequent user encounters and shared acquagstanc

e We unveil the large differences among contact datasets;laimd that con-
clusions drawn from evaluating a single dataset should eaédneralized,
rather, the validation of networking protocols or servibas to consider
different types of datasets.



e We show that the knowledge of the wireless relationship a ausers
share can be leveraged for the design of opportunistic epad®rwarding.

The paper is organized as follows. Section 2 discusses ldiedevork. Sec-
tion 3 details the design behind RECAST. Section 4 shows hewnwdel real-
world network traces into complex temporal networks. Sech details the RE-
CAST implementation. Section 6 shows how RECAST can impopaortunistic
routing solutions. Section 7 compares RECAST classes wihdships in online
social networks. Finally, conclusions are drawn in Sec8on

2. Related work

Social network analysis builds on the high predictabilityhoman behav-
iors [7], which are mostly driven by regular, routine adie$. As a consequence,
connections among social network nodes can be modeled byamisens such as
preferential attachment [8] and triangle formation [Shttleverages the existence
of communities or highly connected hubs [9] in the networkisTmakes social
networks different from random ones, such as the Erd6s @myiRetwork [10],
where node connections are purely stochastic, being detednby a constant
probability.

Given this predictability, social ties have been widelylexpd in opportunis-
tic mobile networks so as to favor network services. The iciamed problems
range from multi-hop message forwarding [11] and multicastl2], to network
security [13]. All studies above try to exploit the regutgand the repeated space-
time patterns expected in the human behavior and tend taeghe random or
non-social connections among mobile users. Instead, wesfon the analysis
of both random and social ties among users. To the best of mawledge, the
works of Miklas et al. [14] and Zyba et al. [15] are those thestdosely related
to ours. These studies differ in that they classify eitlsgrsor theirinteractions
(i.e., vertices or edges in the social graph), respectivBijpa et al. distinguish
social and vagabond users according to their social mgléhavior. They an-
alyze regularity of appearance and duration of visits invegiarea of traces to
sort out users. Hence, the resulting classification onlyke/on a per-individual
per-area basis. Miklas et al. classify links between freeadd strangers. They
assume that frequent pairwise node encounters represamiship interactions,
and empirically decide that pairs of users meeting 10 daysawe out of 101 days
are friends, whereas others are strangers.



Overall, our work extends the investigations in [14, 15]ha following ways.
First, we propose a finer grained classifier, able not onlyléarty character-
ize random interactions, but also to identify differentdgrof social interactions:
Friends AcquaintanceandBridges As such, we go a step further than [14] as we
are able to identify edges corresponding to, dagniliar strangers as defined by
Milgram [16]: indeed, the users sharing a bridge interactepeatedly encounter
but may never experience an explicit social relationshipaddition, unlike the
proposal by Zyba et al. [15], our strategy has no geograpteg@endency, i.e., it
is of general validity.

3. Rationale

We consider social networks composed of individuals whaarelessly con-
nected over time. Encounters in these networks are drivdrebgviors that tend:
() to be regular and to repeat periodically; (ii) to buildrpistent communities
of individuals or to generate commons acquaintances betwesn [17]. The
classification strategy we present in this paper leverdgesettwo behaviors to
efficiently distinguish social from random encounters in\Bs. In the follow-
ing, we detail our methodology and present the real worldsis considered in
our analysis.

Social and random interactions In DCWNSs, interactions among the system en-
tities are usually a consequence of semi-rational de@sidfe say “usually” and
“semi-rational” decisions because any system is subje@rdom events and ir-
rational choices. Nevertheless, because most of the atiena still arise from
conscious decisions made by their entities, the evolutfoRn@WNs is signifi-
cantly different from the evolution of random networks, .e §rd6s and Rényi
networks [10]. Indeed, while in DCWNSs the edges are creatad temi-rational
decisions, which tend to be regular and to repeat over timarandom network
the edges are created independently of the attributes ofi¢iwork entities, i.e.,
the probability of connecting any two entities is alwaysshme

For instance, in a network of people, routines in everydfg dorrelate to
individuals’ interactions: if Smith and Johnson work at Hame office, they are
likely to meet at 9 AM during weekdays. This is because Smitth dohnson
decideto go to work every day on time, as this is the rational deaistoperform.
However, their decision can be affected by random event$, as being stuck in
traffic on a turnpike. Although rational decisions are regulandom events may
occur as well.



In other words, an individual may takesacial decisionor arandom deci-
sion Intuitively, if its probability of performing a social desion is greater than
its probability of a random one, the network evolves to a w#ilictured social
network. If the opposite it true, the network evolves as aoam network, such as
the Erdds and Rényi one.

Social Communities A major feature of DCWNSs that we exploit in our study
is the presence of communities, i.e., groups of individwdie are strongly con-
nected to each other because they share the same interastisity dynamics [5].

In contrast, communities can not be found in random netwatksre, as previ-
ously stated, edges are created stochastically and indep#y of the attributes
of each node.

The network clustering coefficient has been widely used sor@ninate ran-
dom from social networks. Given an undirected gr&plV, £) (whereV rep-
resents the set of network graph nodes, e.g., individuald,/ais the set of
links describing relationships among entities, e.g., acist among individu-
als), the clustering coefficient of nodei measures the probability that two of
its neighbors to be also connected among them. Formallg dalculated as
¢; = 2|E;|/|Ni|(|N;| — 1), whereN; is the set of neighbors af E; is the set
of edges between nodes ¥y and| - | is the cardinality of the included set. The
clustering coefficient of the whole network is the averagalbhode clustering
coefficientse;, Vi € V.

By introducing the equivalent random netwaik? as the random network
constructed with the same number of nodes, edges and eatpieigree distribu-
tion of its real world counterpad, Watts and Strogatz [18] show that the clus-
tering coefficient of a social netwokk is one order of magnitude higher than the
clustering coefficient of7%. Thus, when a given network exhibits a clustering
coefficient that is significantly (i.e., orders of magnitudiégher than that of its
random equivalent”?, then we can state that (part of) the decisions made by the
entities that compose the network gragtare non-random.

Real-world DCWN datasets Our evaluations are performed on five real-world
datasets (also referred to &acesin the following) that describe movements of
entities in campus and city scenarios. Tbhartmouthdataset [3] is a mobility
trace of more tham, 000 individuals in the university campus, recorded over eight
weeks using WiFi network access information. TW8C dataset [2] is also a
mobility trace in a campus scenario, comprising movemedotimation of more
than4, 000 individuals over eight weeks, again collected through \\aEcess.
The San Franciscodataset [1] contains records of the mobility ©@f1 taxis in
San Francisco, CA, USA, over one month, gathered throughlGdfing at each
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cab in the urban area. For both the Dartmouth and USC tragesntlividuals
are assumed to generate a contact if they are using the saf@dess point to
connect to the wireless network on campus. In the San Frantiace, two taxis
are in contact if their distance is lower thab0 meters. Extensive experimental
analysis in [19] shows that a distance26fm grants a&0% packet delivery ratio
in urban environments, under common power levels (15-20)dB1d with robust
modulations (3-Mbps BPSK and 6-Mbps QPSK). These first tHe¢asets are be
used in Sections 5 and 6 for RECAST assessment.

Moreover, we also evaluate RECAST on two other datasetstemie have
information about the physical encounters among humarsuasthe Dartmouth
and USC datasets, and also data about the self-reportead setivorks of these
users. In both cases, the self-reported social network wléected directly from
the Facebook pages of the users. This allows us to constireisotial network of
these users, that tells which pairs of users declared adtep relationship be-
tween them on Facebook. TBassydataset [20] contains the information about
27 human users associated with University of St Andrews cimimg 22 under-
graduate students, 3 postgraduate students, and 2 menilstedfo Each user
carried a mobile IEEE 802.15.4 sensors (T-mote invent @gyithat are able to
detect each other within a radius of 10m. At each detectioen@ounter is char-
acterized and stored in the dataset. Participants werel daskearry the devices
whenever possible over a period of 79 days starting on Fejrifa, 2008.

TheUPB dataset [21] was also collected in an academic environraebi-
versity Politehnica of Bucharest, from the mobility of 22fp@pants. The par-
ticipants were twelve Bachelor students (one in the first,yeiae in the third,
and two in the fourth), seven Master students (four in the yesr and three in
the second) and three research assistants. The data wedtedlbnly inside the
grounds of the faculty between 8 AM and 8 PM during week-dayata was
collected from November 11th, 2011 to December 22nd, 20dihguan Android
application that registers contacts between mobile dewisth Bluetooth. These
two datasets are used in Section 7 to compare RECAST clastbeBiandships
on online social networks.

In all cases, the contact events between two individualsraced using start
date of contact and its duration. Table 1 summarizes theresbf the different
datasets.



Table 1: Datasets used in the presented investigations.

Dataset Local Number of entities | Duration | Entities type | Avg. # encounters/node/day
Dartmouth [3] University campus 1156 2 months | Individuals 145.6
USC [2] University campus 4558 2 months | Individuals 23.8
San Francisco [1] City 551 1 month Cabs 834.7
Sassy [20] City 27 79 days Individuals 69.4
UPB [21] University campus 22 42 days Individuals 6.56
4. Modeling

This section introduces the main properties of interesthaf first three
datasets, which will then be employed to evaluate the paidioce of RECAST
in Sections 5 and 6. Section 4.1 shows how we model the dynB@WN as a
temporal aggregation graph. Section 4.2 details the dlgonve employ to obtain
the equivalent random graph of a given temporal aggreggtaph, and discusses
how these two graphs compare in terms of clustering cosfficie

(a) Dartmouth

(b) USC (c) San Francisco

Figure 1. Snapshots of the temporal accumulation g@phfter two weeks, for each examined
dataset. In all cases, random encounters mix with non-raraes and hide the social structure
of the contact network.

4.1. Temporal Aggregation Graph

As previously discussed, the datasets we employ list ctsgamong individ-
uals or vehicles, and associate to each encounter a startatich a duration. In



order to generate the temporal graph, we discretize tinoestieps of duration ?,
and represent all the encounters occurring at time ktap a graptgy (Vx, & ).
The set of verticed’, is composed of all network nodes (i.e., individuals or ve-
hicles) involved in a contact during theth time step, while the edges in the set
&, represent the pairwise contacts during the same time stegrefore, an edge
between two nodesandj, with i, j € Vy, exists in if < andj have met during
time stepk.

We can then define a time varying representation of the DCWhgus tem-
poral accumulation grapy;, = (V;, E;). Formally,G, = {G; UG, U ... U G, }.

As such,V; (respectivelyFE;) is the set of all vertices (edges) that have appeared
in the dataset between time 0 and time stepluded. Note thafs; evolves over
time and aggregates all the contacts in the dataset, thuprzing both social
encounters and random encounters between network entities

This aspect is clear in Figure 1, showing the temporal actation graph
G, calculated whert = 14, i.e., for 2 weeks of data, drawn using a force-direct
layout algorithm (FDLA) [22]. Although the FDLA draws theaph so there are
as few crossing edges as possible, the presence of randaatitsois mixed with
the social structure of the network, making it difficult tamrct useful knowledge
from the temporal accumulative graph.

In Figure 2, we show the densification @f. First, in Figure 2-a, we show
the number of new edges added &yto G, U G, U ... U G, per each day.
Observe the oscillations in the curves, which are clearlypr@sequence of the
presence of dynamics spanning over several days: namedkdags yield more
activity, and thus more contacts, than weekends. Also,rebdkat the number of
new edges added to the USC network is, in general, orders ghitoae higher
than the other networks. However, when we normalize the mumbnew edges
by the number of possible edgé‘é‘ngé”, in Figure 2-b, we see that the San
Francisco dataset is the one with the highest densificagaching almost0% of
the fully connected graph in the first day of the analysis.eéNbat the USC and the
Dartmouth networks, both referring to campus environmetessify similarly.

4.2. Comparison with Random Graphs

The first step to analyze the mobility patterns of the temipacaumulation
graphG; is to build its random versio6'?. The latter must feature similar topo-
logical characteristics as the origing} graph, i.e., the same number of nodes,

YIn our study, we considered a durationdof 1 day, since the data sets originate from human
activities that feature daily routines.
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Figure 2: The densification of the temporal gragh(V;, E;) per dayt. (a) The number of new
edges added t6/;(V;, E;) per dayt. (b) The percentage of the fully connected graph that is
covered by the new edges.

edges, and empirical degree distribution. That way, thg difference between
G, and G lies in the way nodes are connected to each other. Whitg; ithe
nodes connect in a “semi-rational” way,@#* the connections happen in a purely
random fashion. As we will show later, this difference canldeeraged to ac-
curately determine the extent of randomness in the moludlityndividuals in
DCWNSs.

We use two algorithms to genera®® from G;. The first algorithm, which
we will call RND, is well known in the network science community [23]. The
algorithm G®#=RND (G) receives a grapl(V, E) as a parameter and returns a
random graph©(V, E®) with the same topological characteristicsgd.e., the
same number of nodes, number of edges and degree distribirithis way, we
guarantee that the only difference between the real gfaphd G is to whom
each node connects, that is the focus of our analysis. Thusn ghe degree
distribution D = (d;,ds, ..., d,) of G with n nodes, this algorithm assigns an
edge between nodésind; with probabilityp;; = (d; x d;)/ Z',L'l dp,.

The second algorithm, which we cadlt RND, is an extension oRND and is
able to generate random graphs from a temporal net@workAs mentioned in
Section 4.1, the temporal aggregation gréph= {G; UG, U. .. UG, } is the union
of event graphgj;. Thus, the algorithn@:* =T- RND (G1, G, - . ., G;) receives as
parameters a set of consecutive event graphasnd returns a random temporal
graphGZE. It constructsG by executingRND in each event graplf; and then
aggregating it in a way that® = {RND(G;) U RND(G,) U ... U RND(G;)}. In
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summary, botftRND and T- RND randomly replicate the total number of contacts
with distinct persons each individual had in a given timepshat. In the follow-
ing study, we generate multiple instanceslefRND and average the results over
these instances.

We first demonstrate the potential of random comparisonguifé 3, where
we show the behavior of the clustering coefficient for graphandG % over time
for the three analyzed networks. As we have previously roaetl, the clustering
coefficient is a good metric to differentiate social netvgifom random ones. As
we observe in Figure 3-a, for the Dartmouth dataset, theeaging coefficient of
G andGFE are different in orders of magnitude over the first days. H@#eas
time goes by, their values get closer, as random encountensig number and
tend to veil the social network structure. On the other hasdye see in Figure 3-
b, the clustering coefficients ¢f; andG} for the USC dataset are almost constant
over time. However, the difference between them is not ekogéy high, since
they have the same order of magnitude. We discuss theseedifies in detail later
on.

1 1 . lp—oo oo oo oo
c c -o-real G c
Sos Sos ' 3 0.8
E . E . —random G‘R % . p
206 > L06f S oeoe oo oo S 0.69
o -e-real G, ; g’
o
E 0.4 —%random GR E 0.4 E 0.4 —e-real G
2 ! 2 2 !
g 0.2 /_/._*—4———0———'—‘~ 2 0.2] sy ek ———% e 0.2 —+random G}
o o (@)
0 0 0
0 7 14 21 28 0 7 14 21 28 0 7 14 21
time t (days) time t (days) time t (days)

(a) Dartmouth (b) USC (c) San Francisco

Figure 3: Evolution of the clustering coefficient in the of the three datasets, and in their random
equivalentsz .

Finally, as we observe in Figure 3-c, the clustering coeffits of the San
Francisco networks are practically the same, being close lio fact, after a few
hours, the network becomes similar to a clique, indicatigiphal high mobility,
allowing each individual taxi encountering most of the ottaxis at some point
of the day. Formally, this indicates th&} and G are very similar for the San
Francisco dataset, i.e., the probability of random encagns much higher than
the probability of social contacts, what makes the San kFsaaaetwork similar
to a random mobile network. This makes sense since taxissides depend
on occasional customers’ requests rather than on routirdlibggatterns of the
driver.
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5. Classifier

In this section, we describe tiRandom rElationship CIASsifier sTrategy (RE-
CAST)we propose to differentiate relationships among indivisiutaa social net-
work. More precisely, the purpose of RECAST is to tell apandom interactions
from social-driven ones. To that end, Section 5.1 presdr@DICWN features
used by RECAST. Then, Section 5.2 introduces the RECASTrigthgo and, fi-
nally, Section 5.3 discusses the results obtained by appRECAST to the pre-
viously introduced datasets.

5.1. Social Networks Features

In order to identify social relationships, we must point aich features dis-
tinguish a social relationship from a random one. Indeed,dharacteristics are
always present in social relationships [24, 25]:

1. Regularity. It is well known that social relationships are regular, hiatt
they repeat over time. If two individuals are, for exampleerids, co-
workers, or daily commuters, they see each other regularly.

2. Similarity . It is expected that two individuals who share a social iefat
ship have common acquaintances between them. As an exampliedi-
viduals who share a large number of friends will most prop&blow each
other as well.

Regularity andSimilarity can be mapped into DCWN features that, in turn,
can be computed from a contact dataset so as to identify viulmcoik relationship
two individuals share. In the following, we discuss suchuess.

5.1.1. Edge Persistence

A complex network metric mapping of tiRegularity of a relationship is the
edge persistence. Basically, considering the set of evepthg{G,, ..., G }2,
the edge persistenger;(i, j) measures the percentage of times the gdgg
occurred over the past discrete time step3,...,t. Formally, it is defined as
pery(i, j) = L3701 Ligj)es, Where L ee, is an indicator function that as-
sumes valué if the edge(i, j) exists in&; at timek, and0 otherwise.

°Note that edge persistence is computed over the set of gcapdrsd not over the temporal
accumulation grapby;.
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For instance, assuming that each day of the week is a timeis&mith and
Johnson met each other twice in a week, their edge persesternice number of
times they encountered, i.e., 2, divided by the total nunolbéime steps, i.e., 7,
or per,—7z(Smith Johnson = 2/7. The edge persistence allows spotting regular
relationships between two entities. We again emphasizeinhthe aggregated
graphG;, only one edge exists between Smith and Johnson after tleis.we

We show in Figure 4 (first column) the edge persistence as umews
in the three datasets. Considering the set of event grdghs...,G;:}
of all three real networks and theiRND-generated random counterparts
{RND(G,), ..., RND(G,) }, we portray the complementary cumulative distribution
function (CCDF)F,.,,(z) = P[per; > x]. There, the time step is one day and
each curve is obtained by analyzing four weeks of contatise$ = 28 corre-
sponds to the length of the shortest considered datasethee€san Francisco one.
From Figures 4-a and 4-c, we observe that the Dartmouth ai@iné8vorks have
edge persistence distributions that significantly diffenf those computed in their
random equivalents. More precisely, while the CCDFs of camaetworks show
an exponential decay, the individuals in the real networklt® see each other
regularly, i.e., for reasons beyond pure randomness,rigddia heavy-tailed dis-
tribution. Conversely, as from Figure 4-e, the encounterhe San Francisco
dataset show an edge persistence similar to that obtairied random equivalent
graphs.

5.1.2. Topological Overlap

TheSimilarity of contacts can be mapped to the topological overlap feafure
a complex network. This metric is extracted from the aggesgjéemporal graph
G;. The topological overlapo,(i, 7) of a pair of nodes andj is defined as the
ratio of neighbors shared by two nodes, or, formally,

toy(i ) = WELGR) € B0 {k] (k) € B}
I =G k) € EX Uk | (k) € B

In Figure 4 (second column), we show the CCBF;; ;(z) = Plto.(i,j) >
x] of the topological overlap of the edges of the real netwétkand their respec-
tive random networké&:*, generated by th&- RND mechanisrfi Again, we pick

3We generated five instances for every random graph and thelative distribution considers
all of them.

4Again, we generated five instances for every random graphtendumulative distribution
considers all of them.
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one day as the time step and consider four weeks of contaetg @ 28 days).
Similar to what occurred to the edge persistence, we noteltbdartmouth and
USC network CCDFs significantly differ from their random oterparts, in Fig-
ures 4-b and 4-d. Indeed, pairs of individuals in these é&tashare common
neighbors in a way that could not happen randomly. ConwerseFigure 4-f,
the San Francisco network again behaves like a random ¢orgdgork. Since
all results indicate that the San Francisco network is remtg nature, in the
remainder of this work we will focus on the Dartmouth and tHeGJdatasets.

5.2. The RECAST algorithm

We have seen that both the edge persistence and the todlogerlap be-
have differently in contact graphs generated from realldvsocial networks and
in their random equivalent graphs. We exploit such a diwetsiidentify which
edges are consequences of random or social events. Inubartiove propose
a classification of relationships among network entiti¢e four categories, de-
pending on whether the edge corresponding to the relatipfsatures random-
like persistence and topological overlap. The four clasde®lationships are
described in Table 2. A feature value is called “social” itk is an almost zero
probability of this value being generated randomly. On ttleeohand, a feature
value is called “random” if there is a significant probalyilitf this value be gen-
erated randomly. In fact, as we explain in the following p@agphs, the unique
parametep,.,;, of RECAST defines if a given feature value is social or random.

Table 2: RECAST relationships classes.

Class Edge persistence| Topological overlap
Friends social social
Acquaintance| random social
Bridges social random
Random random random

Relationships classified d&iends characterize pairs of individuals whose
connection shows social edge persistence and topologiedbp, i.e., who meet
each other regularly and also tend to know the same set oflgfeophe Ac-

51t is worth mentioning that, although tHgend terminology implies attachment among two
individuals by affection or personal regard, we use it herggscribe strong social ties in terms of
regularity and similarity.
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quaintanceclass includes relationships among individuals sharingyncammon
encounters, but not meeting often. As an example, frienétssofds who see each
other once in awhile, in occasions such as birthday pagrasluation ceremonies
or weddings, would be classified Asquaintance The last social class is that of
Bridges characterizing pairs of individuals who see each otheulegty, but do
not share a large number of common acquaintances. E.g.ptballed familiar
strangers, people who meet every day but do not really knoWw ether (e.g., be-
cause they just commute between common home and work areagrg likely
to be classified aBridges Finally, when an edge is neither persistent nor charac-
terized by topological overlap, it is considered the restit random contact, and
we classify it alRandom

In order to distinguish “social” from “random” values of tB&€WN's features,
we resort to the distributions we previously discussed. eMmecisely, we define
a valuep,..q, theonly parameter in RECAST, and we identify the feature value
for which F'(Z) = p,.q for the random network:’*. The valuer represents then
a threshold, such that feature values higher thaccur with a probability lower
thanp,,q in a random network. If we set.,, to some small value, we can fi-
nally state that feature values higher thaare very unlikely to occur in a random
network, i.e., they are most probably due to actual soclatiomships. The pa-
rameter,,,; can also be seen as the expected classification error pageerfor
instance, a value of.,,;, = 1072 in Figure 4-a provides a thresholdof= 0.17. In
this case, all values af higher thar).17 can be classified as social edges in terms
of edge persistence. Moreover, in this case therepjsid = 1073 that RECAST
misclassified random edges as social ones in terms of edgsteace. In other
words, we expect that)— = 0.1% of the edges classified as social in terms of
edge persistence to be, in fact, random. The full RECAST m@gism is described
in Algorithm 1, where the criteria used in each classificatwe detailed. In this
algorithm, index is omitted forper andto metrics for clarity purposes.

The complexity of RECAST is upper bounded by the constractibG? us-
ing T- RND, which isO(t x (|V| + |EE])), i.e., the minimum complexity for
the generation of a degree sequence-based random grapdbkevéo date [23].
After the construction of7, the complexity of the classification mechanism is
O(|EE| x |V4]), whereO(]V;]) is the cost of computing the topological overlap of
an edge.

5.3. Classification results

We apply RECAST to the Dartmouth and the USC networks. We auigiog
the results for the San Francisco dataset, since, as petyistated, the random-
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Algorithm 1 RECAST: classify edges @,
Require: pypg >0
return clasg:,j) V(i,7) € U E;
ConstructG and se{ RND(G; ), ..., RND(G; )} usingT- RND
GetFy,(r) andF .. (z) from GE
Getz, | Fto(i'to) = Prnd andi’per | Fper(jper) = DPrnd
for all edgeqi,j) € E, do
if per(i,j) > Zper andto(i, j) > T, then
clasgi, j) <+ Friends
else ifper(i, j) > Zper andto(s, j) < Z, then
clasgi, j) <+ Bridges
else ifper(i, j) < Zper andto(i, j) > T, then
clasgi, j) « Acquaintance
else
clasgi, j) «+ Random
end if
end for

like nature of taxi routes makes the analysis uninterestiitt) all edges classified
asRandom In Figure 5, we show the number of edges per class as a funztio
thep,.q value. An initial and quite surprising observation is that,varyingp, ..
through four orders of magnitude, the number of edges pss al@ys in the same
magnitude. This shows that RECAST is robust with respegtigi.e., it does not
need a fine calibration of the parameter to return a congistige classification.

Secondly, in both datasets, the numbeBuatigesis orders of magnitude lower
than for the other classes, a clear indication that in théyaed social networks
regular connections among different communities are rateo the number of
Friendsedges is similar in the two networks, implying similar dynesnn tight
relationships among individuals in the two campuses. Tlsig agrees with the
biological constraint on a social interaction that limitsniian social networks’
size, i.e., the number dfriendsrelationships [26]. However, the two datasets
differ when looking at the number of edges classifiedheguaintancesndRan-
dom that are one order of magnitude larger in USC than in Dartmotihis is
the result of the actual size of the two campuses, USC acicgufdr a popula-
tion around ten times larger than that of Dartmouth. Thiseass also reflected
by the size of the traces in Table 1 that clearly leads, in tB€ Wetwork, to (i)
many moreRandomcontacts among individuals who do not actually know each
other, but just happen to cross each other while strollingampus, and (ii) an
increased presence of strangers who happen to know the saopkepleading to
moreAcquaintancegdges.
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The observations above are even more evident when obséhamgrcentage
of individual encounters of each type in the Dartmouth andCUfetworks. In
Figure 6, we show the percentage of encounters of a gives thas appear in
the first four weeks of data for a given valuegf,;. The percentage dkandom
encounters in the Dartmouth network is close to zero, varinom 1.7% to 3.6%
asp,.q decreases. On the other hand, in the USC network, this gageraries
from 16% to 29%. In fact, the proportion oRandonmencounters provides a good
estimate of the probability of random decisions mentiome8action 4. Thus, the
USC network has a significantly higher tendency to evolvertanaom topology
than the Dartmouth network.

The analysis is confirmed by Figure 7, portraying the snajssbiothe Dart-
mouth and USC networks after two weeks of interactions, wdwgisidering only
social edges (i.e., those classifiedraignds AcquaintanceandBridgeg or only
edges tagged @&andom Edges of the former networks in Figures 7-a and 7-c
are distinguished by colors, according to the same code indeigures 5 and 6
(Friendsedges are in blueBridgesin red, Acquaintancesn gray, andRandom
in orange). The difference between the social-only netw@ikd the random-
only ones is striking. Social networks are characterized bgmplex structure of
Friendscommunities, linked to each other Byidgesand AcquaintancesMore
precisely, when comparing the Dartmouth and USC social ordsy the former
appears to be dominated Byiendsinteractions, while the sheer numberAx-
guaintancesn the latter drives its graph structure.

Conversely, networks containing orfRandomedges do not show any struc-
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Figure 6: The percentage of encounters of a given class pipaisas in the first four weeks of data
Versusp,nd.

ture and look like random graphs. A rigorous way to verify thedomness of
such networks, and thus validate the efficiency of the RECA&Ssification, is
to perform a clustering coefficient analysis. Figure 8 corepdhe clustering co-
efficients of the Dartmouth and USC netwoidks when only Random edges are
presentagainst the same metric computed in their random countsr@g: The
clustering coefficient, commonly employed to determine dbtial randomness
of a network, has very similar evolutions @ andG?: this proves that the net-
work of contacts tagged @andomby RECAST is actually a random network.
Therefore, RECAST is able to extract from a real-world cohdtataset edges that
correspond to random encounters.

6. RECAST Application

In this section, we use the Dartmouth and USC contact tracssrulate an
epidemic dissemination. We consider that the users contatewith each other
in an opportunistic fashion, i.e., without any infrastret and exchanging mes-
sages only when they are within physical proximity. Thusisér: wants to send
a message to useér he (she) has to deliver it personally t@r has to ask other
users to relay it for him (her), through a multi-hop carngdorward path. Also,
we consider the transfer to be epidemic, i.e., in order talrgauseri sends a
message to all other users he (she) is in contact with at & givee¢. The latter
forward it to all of the users they later meet and so on, urddry is reached.
Such an epidemic approach allows us characterizing ther loawend on the delay
required by the opportunistic transfer. As discussed lienreshe two used traces
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(c) USC, social edges (d) USC, random edges

Figure 7: Snapshots of the Dartmouth and USC networks aftemieeks of interactions, consid-
ering only the social edges and only the random edgésndsedges are painted in bluBridges
in red,Acquaintances gray andRandomin orange. This figure is best viewed in colors.
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present significant differences. In particular, more cotstaxist in the Dartmouth
trace, which explains the high delivery ratio of the evaddabpportunistic trans-
fer. On the other hand, USC trace presents temporal disctans, resulting in
undelivered messages.

For both Dartmouth and USC contact traces, we use RECASTassify the
relationships between users over one month of contact @hieh we refer to as
theclassifying stageThen, we simulate the opportunistic transfer scenario@bo
during the two following weeks, termed theuting stage containing only future
encounters, not known previously by RECAST. For each usere randomly
pick a timet, ; within the first week of theouting stagefor him/her to start the
epidemic transfer process, and a destination yisaie leave one week for the
message to reach its destination: if the message is noededivy then, the trans-
fer is deemed failed and the data lost. In this way, the falgwesults consider all
the routing attempts between every pair of users that halasa of relationship
given by RECAST in theslassifying stageWhen a message is successfully de-
livered, we consider the path that delivered the messageM@reover, to make
the comparison fair, we remove from the traces all the usbosdid not appear in
therouting stagemost of them sharingRandontrelationship with their contacts.
Our goal is to study how the different classes of relatiopstietween the source
1 and the destination affect the epidemic transfer of the message itself. We are
also interested in understanding the nature of the contesetd by successfully
delivered messages.

In Figure 9, we show the overall forwarding efficiency. Figsi©-a and 9-b

21



show the percentage of messages that were successfullgréelito their destina-
tions in the Dartmouth and in the USC scenarios, respegtitch bar represents
one relationship shared by the message source and destinatid within each

bar we depict the fraction of edges of a given class of ralatigp that was used to
deliver the message. First, we observe that all the messaaesed their destina-
tions in the Dartmouth scenario, a consequence of the lihmiééwork size. More-
over, the edges classified BEendswere the most used to deliver the messages
and theRandonones the least used. In fact, considering all the pathstduoldo
Friends less thar2% of the hops in these paths were given by users who share a
Randonrelationship.

Different from the Dartmouth scenario, not all messagedatiwered in the
USC scenario. The lower delivery ratio is partially due te lrger network that
is harder to navigate. Moreover, we removed fromnhging stageall encoun-
ters between users who do not share a RECAST class, or apmai®ly25% of
all encounters. However, those are not the only reasonsthensbcial relation-
ship between the source and destination significantly tfféee probability of
success. Socially connected pairs (taggeferends BridgesandAcquaintances
can actually exchange data0% of the messages were successfully delivered to
Friends 92% to Bridgesand77% Acquaintanceslf one wants to send a message
to aRandoncontact in the USC scenario, there is onlif%, of chances that this
message will arrive successfully. Moreover, although tagonity of the classified
edges in the USC scenario &andonm(see Figure 5), the majority of the hops in
the paths are between users who share a social relatiorSbisidering all the
paths directed t&riends less than 3% of the hops in these paths were given by
users who shareRandontelationship.

In Figure 10, we show how much time it was necessary for the- mes
sages to reach their destinations. We grouped togetherhall routings
from source user to destination userj by the class of relationship €
{Friend, Bridge, AcquaintanceRandon} thati andj share. Then, we cumula-
tively count how many destinations of the clasare reached at each hour, con-
sidering the total number of routings that were performetivben sources and
destinations of class Observe that the expected time to readkaamdoncontact
is significantly higher than the time needed to reach a scoialact. Moreover,
observe that the majority of the messages sefrtiendsarrive in the first hours
for both scenarios. These results may serve to leveragetf@mance of various
routing solutions for opportunistic networks. If we prewsty know the class of
relationship the destination share with the source, welaisw the chances and
the probable time the message will take to arrive.
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It is not only the time it takes for a message to arrive at itstidation that
is relevant to the design of forwarding solutions for oppoistic networks. An-
other fundamental aspect is the number of hops requirechtthréhe destination.
In Figure 11, we show the cumulative distribution functi€®DF) of the path
lengths of messages between useasid ; who share a determined class of re-
lationship. Observe that the expected number of hops forssage to arrive at
a Randomcontact is significantly higher than to arrive at a socialtaoh For
the USC scenaricg9%, 92% and81% of the routes tdrriend, Bridge and Ac-
guaintancedestinations, respectively, have path lengths lower oaktp3. In
the meanwhile, onlg5% of the routes tdcRandondestinations have path lengths
lower or equal t®. This difference is even more striking for the Dartmouth-sce
nario, wheres5%, 57% and28% of the routes td-riend, BridgeandAcquaintance
destinations, respectively, have path lengths lower oakemB, and only6% to
Randondestinations have path lengths lower o equal.to
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Figure 11: The histogram of the path lengths of messageseleatwsers and j who share a
determined class of relationship.

Overall, our results show how the RECAST classificationvedladentifying
those who share social relationships with the sender, wbppertunistic paths
are usually short and reliable. In fact, such paths usuakgphrough a few num-
ber of hops, mostly using social ties among users, and régegrage random
encounters. As an intuitive corollary, reaching users shatre some social rela-
tionship is significantly easier than attaining users onesdwt know, especially
in large systems. These results may serve to leverage tfgrpance of various
routing solutions for opportunistic networks. If we prewsty know the class of
relationship the destination share with the source, welaisw the chances and
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the probable time the message will take to arrive.

7. RECAST vs. Online Friendship

We are living in a time where online social networks (OSN€hsas Facebook
and Google+ are present in the lives and routines of billmingeople. In such
systems people are able to maintain a personal list of odeswhose they share
a social relationship with, such as their friends and cgiles. In the context of
this paper, questions that naturally arise are: what ardifferences between
the relationships labeled a®cial by RECAST and by OSNs? Considering the
same set of people, their self-reported social relatigpsstin OSNs have a signifi-
cant intersection with their social relationships giverREy3CAST? If not, can we
also use the social relationship given by OSNSs to route ngessa opportunistic
scenarios?

In order to answer these questions, we refer to the two rentaneal-world
mobility datasets introduced in Section 3. In these twosktt® we have informa-
tion about the physical encounters among human users, Baittraouth and USC
datasets, and also data about the self-reported sociabrietwf these users. In
both cases, the self-reported social network was colletitedtly from the Face-
book pages of the users. This allows us to construct the Isoetaork of these
users, that tells which pairs of users declared a friendsgiionship between
them on Facebook.

The first dataset, that from now on we refer as 8assydataset, contains
the information about 27 human users associated with Usityesf St Andrews
comprising 22 undergraduate students, 3 postgraduaterggjénd 2 members of
staff. Each user carried a mobile IEEE 802.15.4 sensorsdaf&imnvent devices)
that are able to detect each other within a radius of 10m. Al eletection, an
encounter is characterized and stored in the dataset.cipartis were asked to
carry the devices whenever possible over a period of 79 daxtsg on February,
15, 2008. For more details see [20].

The second dataset, that from now on we refer asRB dataset, was also
collected in an academic environment, at University Pofitea of Bucharest,
from the mobility of 22 participants. The participants wénelve Bachelor stu-
dents (one in the first year, nine in the third and two in thetfol seven Master
students (four in the first year and three in the second) amee tlesearch assis-
tants. The data was collected only inside the grounds ofabeltfy between 8
AM and 8 PM during week-days. Data was collected from Novenihi¢h, 2011
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to December 22nd, 2011, using an Android application thgisters contacts be-
tween mobile devices with Bluetooth. For more details sé¢ [2

In order to verify if RECAST classes are able to indicate tihespnce of
friendship in online social networks, we classified the treteships in both
datasets using RECAST after 3 weeks of encounters. Aftentlegaverified which
of the classified relationships are and are not labelddesdshipon Facebook.
Table 3 shows the number of friends (and non-friends) onlizae (lines) who
were classified in a given RECAST class (column) for the Sassl/the UPB
datasets. Observe that there is not a RECAST class thatyclealds more (or
less) friendships on Facebook. This strongly suggestsRE&AST classes are
notrelated with friendship in online social networks. This & & surprising out-
come: while RECAST aims at spotting social interactionsuset! by physical
mobility, online social networks register social relasbips that do not neces-
sarily map to physical encounters. For instance, it is comtoosee Facebook
friendships between people from different countries, etkeagues who still want
to keep in touch, or even classmates who do not go along vdty we

Table 3: RECAST classes vs. Facebook friendships in theySkataset.

Sassy
- Friends | Bridges | Acquaintances | Random | Total
Friends on Facebook 3 0 19 43 65
Non-friends on Facebook 2 1 15 35 53
Total 5 1 34 78 118
UPB
- Friends | Bridges | Acquaintances | Random | Total
Friends on Facebook 0 0 16 17 33
Non-friends on Facebook 0 0 26 12 38
Total 0 0 42 29 71

Since RECAST classes are not related with Facebook frigpsisbne could
ask which classes are more valuable for opportunisticmgugcenarios, i.e., is it
better to know my RECAST relationships or my Facebook freemthen | need
to deliver a message in a opportunistic network? To addresgjuestion, we
simulate an epidemic dissemination in the same way we destin Section 6.
After classifying the relationships using three weeks dadae simulate the op-
portunistic transfer scenario during the following werluting stagg, containing
only future encounters. Again, for each ugexe randomly pick a timé, ; within
the first day of theouting stagefor him/her to start the epidemic transfer process,
and a destination user If the message is not delivered within one week, the
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transfer is deemed failed and the data is lost. The followesylts consider all

the routing attempts between every pair of users that halesa of relationship

given by RECAST in thelassifying stageMoreover, together with the RECAST
class, we also group the results by the friendship relatipngn Facebook, i.e.,

we verified if Facebook friends are more likely to be reachehtnon Facebook
friends.

In Figures 12 we show how much time it was necessary for thesages to
reach their destinations for the Sassy and UPB datasets. rovped together
all the routings from source uséto destination usef by the class of RECAST
relationshipc; € {Friend, Bridge, AcquaintanceRandom} thati andj share
(Figures 12a and 12c) and also by their Facebook frienddbips, € {FB
friends, non-FB friends(Figures 12b and 12d). Then, as done previously, we cu-
mulatively count how many destinations of the clasare reached per each hour,
considering the total number of routings that were perfatrbetween sources
and destinations of clags. Again, observe that among the RECAST classes the
expected time to reach Randomcontact is significantly higher than the time
needed to reach a social contact. Moreover, contrary torduition, observe
that, for both datasets, non Facebook friends are moreylikebe reached than
Facebook friends. We argue that this is a clear proof of tipeifscant abstraction
of online social relationships from physical encountergedr by social mobility.
Therefore, we conclude that Facebook relationships areafl sise for decision
making in opportunistic data transfers. Conversely, RECAlasses are useful to
opportunistic routing. As a matter of fact, as already obseiin the Dartmouth
and USC datasets, and also in the Sassy and UPB scenariosSRE€DHcial
classes are reached faster and more likely than both Facelasses.

8. Conclusions

The contribution of this paper is threefold. First, we medithree real-world
mobile user encounter datasets as temporal contact graghseproposed the
use of random equivalent graphs to outline their hidderesstiucture. Our orig-
inal approach shows that different mobility traces candymmpletely different
social structures, determined by diverse behaviors of tiiées participating in
the system. These results let us speculate that reseastautl not general-
ize their results based on the analysis of a single datasetond, we proposed
the RECAST strategy to lazily classify random and socialtrehships in tempo-
ral social networks, and demonstrate its simplicity aneéai¥eness. Third, we
employed the RECAST classification to the case of epidenpodpnistic trans-
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fers, and showed its relevance towards the identificaticlaster, reliable paths
leveraging social ties among users. Moreover, RECAST hsrfefi opportunis-
tic forwarding was highlighted when compared to the useiehfiship status in
online social networls.
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