On the delay performance of wireless networks: from hard real-time to delay-tolerant opportunistic networking

Katia Jaffrès-Runser

University of Toulouse, ENSEEIHT / IRIT lab $kjr/\mbox{-}at\mbox{-}/\mbox{ense}ht.fr$

EECS Seminar Colorado School of Mines

August 28, 2014

I am from

Toulouse

the University of Toulouse (1229)

- Maîtresse de conférence at ENSEEIHT since Sept. 2011 -Engineering school
- 5 teaching departments : Electronics and signal processing. Electrical engineering and control, Computer science and applied maths, Telecommunications and Networking
- Member of the IRIT lab: Research Institute for Computer Science. of Toulouse August 2013

Where did I go before Toulouse ?

- 2002-2005 ▷ PhD in Computer Science Inria Rhône-Alpes, CITI Iab, University of Lyon / INSA Lyon "Wireless LAN planning"
- 2006-2007 \triangleright **Post-doc**, Stevens Institute of Technology, NJ, USA (working with Cristina Comaniciu)

"Cross-Layer Cooperation for Energy Efficiency in WSNs"

Paul

2007-2010 Description Researcher, Outgoing International Fellowship, European Union FP7 2007-2009 : Stevens Institute of Technology

Lucie

2010 : Inria Rhône-Alpes, CITI lab, University of Lyon / INSA Lyon "Distributed MultiObjective Optimization for Wireless ad hoc nets"

2011-? De Maîtresse de conférences, University of Toulouse, INPT-ENSEEIHT

イロト 不得下 イヨト イヨト 二日

Wireless networking

Very wide range of applications now

- Telecommunications (3G, 4G...)
- Wireless Internet access (WiFi, Bluetooth, ...)
- ► Factory automation (WirelessHART, ISA100.11a, ...),
- Sensor networking (802.15.4)
- Wireless social networking,
- Body area networking...

All wireless, but... different performance are expected

Research on performance evaluation of wireless networks

Different metrics may be of interest:

- Capacity, throughput, reliability, ...
- End-to-end communication delays, jitters, ...
- Energy consumption,

During this talk, we will concentrate on the **end-to-end communication delay**, primarily, in the following two case studies:

- Part 1: Real-time wireless networking
- Part 2: Large scale dynamic wireless networking

Part 1: Real-time wireless networks

Wireless is gaining momentum to carry delay-sensitive data

- wireless industrial fieldbuses (WirelessHART, ISA100.11a),
- real-time sensing,
- wireless embedded networks, etc.

For safety-critical applications, **real-time guarantees** have to be provided!

"Rien ne sert de courir ; il faut partir à point"

KJR August 2013 lean de la Fontaine,

Is wireless compatible with hard real-time?

The main pitfall of wireless communications: its unreliability due to interference, pathloss, fading, collisions, hidden nodes, ...

If you embark on a plane

.....you expect all avionics communication flows to arrive on time to the core processing modules, no?

イロト 不得 トイラト イラト 二日

Is wireless compatible with hard real-time?

The main pitfall of wireless communications: its unreliability due to interference, pathloss, fading, collisions, hidden nodes, ...

If you embark on a plane

.....you expect all avionics communication flows to arrive on time to the core processing modules, no?

Thus, using wireless to send hard real-time avionics data has to be proved to be safe!!!....

イロト 不得下 イヨト イヨト 二日

Why wireless for avionics?

Gain in weight

In an A380, total cabling weights around 21 tons, which represents 8.5% of the typical empty operating weight of the airplane.

Simplified maintenance and installation

There are 3 redundant networks on board (source: http://www.airliners.net)

Upgrading aircraft

イロト イポト イヨト イヨト

Which type of wireless medium access?

A380 network carries ${\sim}1000$ real-time multicast flows emitted by ${\sim}100$ core processing modules.

Current 100Mbps switched Ethernet network loaded up to 25%.

Time division multiple access

- © Strong real-time guarantees
- © Necessitates a common clock for all end systems
- © May require dedicated hardware

Carrier sense multiple access (CSMA/CA)

- © Purely distributed, works well for low loaded networks
- © Off the shelf components widely available
- S May not provide real-time guaranties.

Calculating a probabilistic bound

Characterize and model the end-to-end delay distribution

イロト イポト イヨト イヨト

Bound for a point-to-point communication

For a point-to-point communication using CSMA/CA

- ► N stationary nodes sharing a common wireless medium
- IEEE802.11 DCF MAC protocol: with or without RTS/CTS mechanism
- ▶ M/M/1 and M/G/1 queue and ideal channel conditions

Bound for a point-to-point communication

Overall analytical distribution derivation

Previous works have addressed this problem (cf. refs in $[1]^{1}$)

Main assumption: **MAC and queueing delays are independent** discrete random variables.

MAC delay is a function of the number of nodes N contending for the medium, not the number of packets in the queue

- Calculate the Probability Generating Function (PGF) (i.e. Z-transform of PMF) for MAC and Queueing delays: $D_m(Z)$ and $D_q(Z)$
- Total delay PGF follows $D_t(Z) = D_m(Z) \times D_q(Z)$
- Invert total delay PGF to retrieve PMF using numerical inversion techniques.

PGF of total delay

Calculated for M/M/1 and M/G/1 queues, where

- ▶ *E*[*D_m*] is the mean MAC delay
- $D_m(Z)$ is the PGF of MAC delay

>with M/M/1 queue, the PGF of total delay $D_t(Z)$

$$D_t(Z) = \frac{\frac{1}{E[D_m]} - \lambda}{-lnZ + \frac{1}{E[D_m]} - \lambda}$$

>with M/G/1 queue, the PGF of total delay $D_t(Z)$ $D_t(Z) = \frac{D_m(Z)(1-Z)(1-\rho)}{1-Z-\lambda(1-D_m(Z))}$

where

$$D_m(Z) = (1-p)S(Z) \sum_{x=0}^m \left[\left(pC(Z) \right)^x \prod_{i=0}^x B_i(Z) \right] + \left(pC(Z) \right)^{m+1} \prod_{i=0}^m B_i(Z)$$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへで

Mean and PGF of MAC delay are extracted from the well-known Markov chain designed by Bianchi² for IEEE802.11 DCF.

MAC delay distribution

$$D_m(Z) = (1-p).S(Z).\sum_{x=0}^m [(p.C(Z))^x \prod_{i=0}^x B_i(Z)] + (p.C(Z))^{m+1}.\prod_{i=0}^m B_i(Z)$$
(1)

Mean MAC delay

$$E[D_m] = D'_m(Z)|_{Z=1}$$
(2)

²G. Bianchi. Performance analysis of the ieee 802.11 distributed coordination function. Selected Areas in Communications, IEEE Journal on, 18(3):535-547,=2000

Numerical inversion step

Probability generating function(PGF)

•
$$D(Z) = \sum_{k=0}^{\infty} d(k) Z^k \xrightarrow{\text{Numerical}} d(k)$$

- Numerical inversion methods:
 - Lattice-Poisson (LP) algorithms[1]
- Two different usage of the LP algorithms
 - The LP inversion formula of Vardakas et all. [9]

$$d(k) \approx \frac{1}{2kr^k} \sum_{j=1}^{2k} (-1)^j Re(D(re^{i\pi j/k}))$$

• The LP inversion formula of Vu et Sakurai [10]

$$d(k) \approx \frac{1}{2klr^k} Re\left(\sum_{j=-kl}^{kl-1} D(re^{-i\pi j/(kl)})e^{i\pi j/l}\right)$$

where $r = 10^{-\frac{\gamma}{2k}}$, which results in an accuracy of $10^{-\gamma}$

KJR August 2013

Are all these model accurate?

Errors can be introduced by

- MAC or queuing model inaccuracies
- Numerical inversion step.

Goal of this work

Propose a performance evaluation framework to:

- select the best MAC and queuing models
- limit inversion errors

where we **decouple the error** introduced by the model and the numerical inversion.

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● のへで

Quantifying the modeling error (1)

Total delay model directly produces the PGF

Compare to extensive simulations

But without inverting the analytical total delay PFG !

Calculated the PMF $d^{s}(k)$ from the statistics of the delay obtained by simulation

(日) (同) (三) (三)

Quantifying the modeling error (2)

Normalized root mean squared error (NRMSE) as

$$f_{model} = \frac{1}{Card(C)} \sum_{Z \in C} \sqrt{\frac{|D^{S}(Z) - D^{a}(Z)|^{2}}{|D^{S}(Z)|^{2}}}$$

KJR August 2013

Quantifying the inversion error (1)

• A perfect PGF inversion is characterized by $Z\{Z^{-1}\{D(Z), Z\in\mathbb{C}\}\} \equiv \{D(Z), Z\in\mathbb{C}\}$

Procedure:

D

$$a_{m}^{a}(Z) = (1-p)S(Z)\sum_{x=0}^{m} \left[\left(pC(Z) \right)^{x} \prod_{i=0}^{x} B_{i}(Z) \right] + \left(pC(Z) \right)^{m+1} \prod_{i=0}^{m} B_{i}(Z)$$

$$LP \text{ algorithm}$$

$$Z^{-1} \{ D_{m(Z)}^{a} \}: \ \widehat{d(k)} \approx \frac{1}{2klr^{k}} Re(\sum_{j=-kl}^{kl-1} D_{m}^{a}(re^{\frac{-i\pi j}{kl}})e^{\frac{i\pi j}{l}})$$

$$Z \text{-transform}$$

$$Z \{ Z^{-1} \{ D_{m(Z)}^{a} \} \}: \sum_{k=0}^{\infty} \widehat{d(k)} Z^{k} \qquad O_{m}^{a}(Z)$$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへで

Quantifying the inversion error (2)

Normalized root mean squared error (NRMSE) as

$$f_{inv} = \frac{1}{Card(C)} \sum_{Z \in C} \sqrt{\frac{|D(Z) - Z\{Z^{-1}\{D(Z)\}\}|^2}{|D(Z)|^2}}$$

Results

Error bound	Inversion method	f_{inv}
$\alpha = 10^{-6}$	Vu and Sakurai	ai 0.0195
$\gamma = 10$	Vardakas et al.	0.0688
$\alpha = 10^{-4}$	Vu and Sakurai	0.0232
$\gamma = 10$	Vardakas et al.	0.1814

21

Results: MAC delay PMF

MAC model is good - Inversion accuracy needs to be controlled

Figure: MAC delay PMF for different accuracies using Vu and Sakurai's LP formula with different accuracies.

< ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Results: Queuing delay PMFs

M/G/1 much better for large networks. For small networks, M/M/1 is sufficient!

Figure: Analytical queueing delay PMFs for M/M/1 and M/G/1 queues vs. simulations.

< ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Results: Total delay PMFs

Total delay is dominated by queuing.

Figure: Analytical total delay PMFs for M/M/1 and M/G/1 queues vs. simulations.

イロト イヨト イヨト イヨト

Results: Extension to 2-hop communications

cf. Paper for details.

Figure: Results for a 2-hop communication of n = 5 nodes, M/M/1 queues.

③Arrival distribution at the relay node is not Poisson (but log-normal)

Conclusion Part 1:

Is wireless compatible with real-time?

- ③ For a point-to-point communication, worst-case probabilistic bounds can be extracted analytically for CSMA/CA.
- © There is performance evaluation framework to test various models and methods that could be used for certification

Main challenges

- Extend to multi-hop communications. But will we really need multiple hops in a plane?
- Compare to TDMA solutions with synchronization.

(日) (四) (王) (王) (王)

Part 2: Large scale dynamic wireless networks

Smartphones have the potential to be:

> visually-aware sonically-aware always-connected directionally-aware location-aware motion-aware

- 4

イロト イポト イヨト イヨト

Creates a dynamic network with high potential for wireless and pervasive applications

- Wireless social networking, global sensing, content distribution,
- ▶ More and more data in transit: 3/4G network offloading...

Internetworking human beings!

Real-world mobility scenarios create neither purely regular nor purely random connections among the entities composing the network

Dynamic Complex Wireless Networks (DCWN)

- Have large number of vertices and edges that exhibit a pattern
- Evolves according to semi-rational decisions of its entities
- Semi-rational decisions:
 - are mostly regular and repeat themselves
 - but may be influenced by random events

(日) (同) (三) (三)

Data sets

Data collection to build contact traces

- Log the contact time and duration of a node to an access point
- Log the GPS coordinates of mobile nodes regularly

Derive a time-varying contact graph

Dataset	Local	#	Duration	Туре	Avg. # encounters/
		entities			node/day
Dartmouth ³	campus	1156	2 months	Individuals	145.6
USC ⁴	campus	4558	2 months	Individuals	23.8
San Francisco ⁵	City	551	1 month	Cabs	834.7

- Dartmouth and USC collect connection dates/durations to WiFi APs,
- San Francisco collects GPS locations of taxi cabs.

³T. Henderson et al. "The changing usage of a mature campus-wide wireless network," in Proc. of ACM MobiCom 2004

⁴ W. jen Hsu et al. "Impact: Investigation of mobile-user patterns across university campuses using wlan trace analysis," CoRR, vol. abs/cs/0508009, 2005

^bA. Rojas et al. "Experimental validation of the random waypoint mobility model through a real world mobility trace for large geographical areas," in Proc. of the 8th ACM MSWiM 2005

Rationale and related initiatives

Characterize interactions, i.e. edges of contact graph

Regularity of contacts : How often did Arnaud and Paul meet per day? during the whole trace?

Miklas et al.⁶ determine whether 2 nodes are *friends* or *strangers* using an empirical threshold (friends encounter 10 times or more within 14 weeks).

⁶A. G. Miklas et al., "Exploiting social interactions in mobile systems," in Proceedings of the UbiComp '07 🗄 🕨 👍 🐑 🔍 🔍

Rationale and related initiatives

Characterize node's behavior, i.e. vertices of contact graph Using localization information, Zyba et al.⁷ differentiate *social* from *vagabond* nodes. Socials appear regularly in a given area while vagabonds visit an area rarely and unpredictably.

Monitor the total appearance and regularity of appearance

Paul is social at the cafeteria but vagabond at the library: a per node/per area approach \rightarrow geographical dependency

⁷G. Zyba, G. Voelker, S. Ioannidis, and C. Diot, "Dissemination in opportunistic mobile ad-hoc networks: The power of the crowd, in *Infocom*'11

RECAST⁸

- Characterizes the interactions of nodes based on their probability to originate from a random or social behaviour
- Identify different kinds of social interactions (friends, acquaintances, bridges or random)
- ► No geographical dependency, i.e., is of general validity

⁸ "RECAST: Telling Apart Social and Random Relationships in Dynamic Networks", P. Olmo Vaz de Melo, A. Viana, M. Fiore, K. Jaffrès-Runser, F. Le Moüel and A. A. F. Loureiro, in MSWiM'13.

Temporal social graphs from contact traces

Two possible representations

1. δ event graph: $\mathcal{G}_k(\mathcal{V}_k, \mathcal{E}_k)$ There is an edge in \mathcal{E}_k if contact within $\delta = 1$ day for instance.

2. Accumulative graph $G_t(V_t, E_t)$

イロト イポト イヨト イヨト

Temporal social graphs from contact traces

Two possible representations

- 1. δ event graph: $\mathcal{G}_k(\mathcal{V}_k, \mathcal{E}_k)$ There is an edge in \mathcal{E}_k if contact within $\delta = 1$ day for instance.
- 2. Accumulative graph $G_t(V_t, E_t)$: $G_t = \{\mathcal{G}_1 \cup \mathcal{G}_2 \cup ... \cup \mathcal{G}_t\}$

 $G_2(V_2, E_2)$ Accumulative graph up to Day 2

Accumulates all event graphs up to time step t.

(日)

Temporal graphs generation from contact traces

Example accumulative graph G_t for t = 2 weeks

For $\delta=1$ day and using force-direct layout algorithm for plotting

Seems difficult to extract any knowledge from these social graphs: \rightarrow gathers all social AND random interaction!

Comparing a social graph to its random counterpart

Random graph equivalent of G

Calculate a random graph G^R from a graph G(V, E):

- Keep same number of vertices and edges,
- Randomly assign edges to keep the same node degree distribution using RND algorithm⁹:

An edge is set between nodes of degree d_i and d_j with probability $p_{ij} = (d_i \times d_j) / \sum_{k=1}^{|V|} d_k$

Random accumulative graph G_t^R

Random accumulative graph derived from event graphs $\{G_i\}_{i \in [1,..,t]}$

$$G_t^R = \{RND(\mathcal{G}_1) \cup RND(\mathcal{G}_2) \cup \ldots \cup RND(\mathcal{G}_t)\}$$

⁹F. Chung and L. Lu, "Connected Components in Random Graphs with Given Expected Degree Sequences," Annals of Combinatorics. Nov. 2002

Comparison social vs. random graphs

Network clustering coefficient can identify a network with an elevated number of clusters (i.e. communities).

If c̄c(G) >> c̄c(G^R), parts of the decisions of the nodes of G are NOT random

- ▶ Dartmouth / USC traces have an order of magnitude higher \bar{cc} than $G^R \rightarrow$ social decisions
- San Francisco: each individual taxi in the trace encounters most of the other taxis → closer to a random behavior

Social network features: Regularity and Similarity

Social nodes' behavior tend to

- ▶ repeat on a regular basis (because of daily activities for instance) → Regularity
- ▶ build persistent communities and generate common acquaintances → Similarity

Mathematical metrics

Edge persistence per(i, j) ¹⁰:

Percentage of time steps an edge exists over the past discrete time steps in the event graphs $\{G_i\}_{i \in [1,..,t]}$

Topological overlap to(i, j) ¹¹: Ratio of neighbors shared by two nodes calculated for the accumulative graph G_t.

 $^{^{10}\}text{N.}$ Eagle et al., "From the Cover: Inferring friendship network structure by using mobile phone data," Proceedings of the National Academy of Sciences, Sept. 2009

¹¹J. P. Onnela et al., "Structure and tie strengths in mobile communication networks", Proc. of the National Academy of Sciences, May 2007 $\langle \Box \rangle + \langle \Box \rangle +$

CCDF of edge persistence per(i, j) after 4 weeks

Individuals tend to see each other regularly

Encounters occur almost in a random fashion

39

CCDF of topological overlap to(i, j) after 4 weeks

K IR

Individuals of G_t have common neighbors

Common neighbors occur in a random fashion

・ロト ・聞ト ・ヨト ・ヨト

Social vs. random edges

In the random network, we only have a probability of 10^{-3} to have edges with a persistence of more than $\bar{x}_{per} = 0.17$.

 \rightarrow Thus, in the social graph G_t :

• edges with $per(i,j) > \bar{x}_{per}$ can be classified as *social edges*

• edges with $per(i,j) < \bar{x}_{per}$ can be classified as *random edges* Note that there is a p_{rnd} chance that a social edge is actually random (mis-classification)

RECAST classification algorithm

Only parameter of RECAST: p_{rnd} , the mis-classification error bound. Main steps

- Calculate the per(i,j) and to(i,j) for each edge
- Knowing p_{rnd} , calculate \bar{x}_{per} and \bar{x}_{to} from CCDF's
- For each edge,
 - If per(i,j) > x̄_{per} → (i,j) is social for edge persistence else (i,j) is random for edge persistence
 - if to(i,j) > x̄_{to} → (i,j) is social for topological overlap else (i,j) is random for topological overlap
- Classify edges into classes of relationships according to:

Class	Edge persistence	Topological overlap
Friends	social	social
Acquaintances	random	social
Bridges	social	random
Random	random	random
	•	

Snapshots after 2 weeks

Friends edges are in blue, Bridges edges are in red Acquaintance edges are in gray, Random edges are in orange

イロト イポト イヨト イヨト

Cluster coefficient analysis for only random edges

Validates the efficiency of RECAST to identify random edges for Dartmouth and USC

< 🗇 🕨 <

∃ >

Classification results after 4 weeks

Number of edges of a each class that appear in the first 4 weeks vs. p_{rnd}

RECAST is not sensitive to p_{rnd} !

∃ ⊳

A 10

≣ ►

Epidemic data dissemination results

Is it worth accounting for the social edges?

- Let's assume we start an epidemic transmission between a source and a destination that share a edge in the social network. (Social graph calculated with 4 first weeks of data set)
- Which edges participate in the forwarding in the following 2 weeks?

KJR August 2013

Epidemic data dissemination: Path length

Is it worth accounting for the social edges?

- For both data sets, a majority of routes to social edges have a path length ≤ 3, while only a few percents of routes to random edges do.
- The transfer is much faster between nodes that share a social relationship.
- Edge persistence has a strong impact on the routing efficiency
- But random edges help as well...

KJR August 2013

Conclusions and future works

RECAST

- requires a unique parameter
- combines user encounter frequency with their 2-hop social network ties
- identifies different kinds of social interactions: friendship, acquaintanceship and bridges

Different mobility traces may have completely different behaviors (San Francisco vs. USC)

Future works

- Provide a distributed RECAST classification
- Assess RECAST using data sets with ground truth
- Study spatio-temporal correlations of data sets

イロト 不得下 イヨト イヨト 二日

Thank you for your attention

First beta-version of RECAST classifier available on :
http://www.irit.fr/~Katia.Jaffres/RECAST/Recast-code.zip

<ロ> (日) (日) (日) (日) (日)