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Wireless networking

Very wide range of applications now

I Telecommunications (3G, 4G...)

I Wireless Internet access (WiFi, Bluetooth, ...)

I Factory automation (WirelessHART, ISA100.11a, ...),

I Sensor networking (802.15.4)

I Wireless social networking,

I Body area networking...

All wireless, but... different performance are expected
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Performance evaluation

Research on performance evaluation of wireless networks
Different metrics may be of interest:

I Capacity, throughput, reliability, ...

I End-to-end communication delays, jitters, ...

I Energy consumption,

During this talk, we will concentrate on the end-to-end communication
delay, primarily, in the following two case studies:

I Part 1: Real-time wireless networking

I Part 2: Large scale dynamic wireless networking
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Part 1: Real-time wireless networks

Wireless is gaining momentum to carry delay-sensitive data

I wireless industrial fieldbuses (WirelessHART, ISA100.11a),

I real-time sensing,

I wireless embedded networks, etc.

For safety-critical applications, real-time guarantees have to be
provided!

“Rien ne sert de courir ; il faut partir à point”
Jean de la Fontaine,
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Is wireless compatible with hard real-time?

The main pitfall of wireless communications: its unreliability
due to interference, pathloss, fading, collisions, hidden nodes, ...

If you embark on a plane
.....you expect all avionics communication flows to arrive on time to the
core processing modules, no?
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Is wireless compatible with hard real-time?

The main pitfall of wireless communications: its unreliability
due to interference, pathloss, fading, collisions, hidden nodes, ...

If you embark on a plane
.....you expect all avionics communication flows to arrive on time to the
core processing modules, no?

Thus, using wireless to send hard real-time avionics data

..... has to be proved to be safe!!!....
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Why wireless for avionics?

Gain in weight
In an A380, total cabling weights around 21 tons, which represents 8.5%
of the typical empty operating weight of the airplane.

Simplified maintenance and installation

There are 3 redundant networks on board (source: http://www.airliners.net)

Upgrading aircraft
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Which type of wireless medium access?

A380 network carries ∼1000 real-time multicast flows emitted by ∼100
core processing modules.
Current 100Mbps switched Ethernet network loaded up to 25%.

Time division multiple access

, Strong real-time guarantees

/ Necessitates a common clock for all end systems

/ May require dedicated hardware

Carrier sense multiple access (CSMA/CA)

, Purely distributed, works well for low loaded networks

, Off the shelf components widely available

/ May not provide real-time guaranties.

KJR
August 2013 10



Calculating a probabilistic bound

Characterize and model the end-to-end delay distribution

Worst-case delay dworst:

P(K > dworst) = 10−8

with real-time guarantee 10−8

Probability Mass Function (PMF): d(k) = P(K = k)
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Bound for a point-to-point communication

For a point-to-point communication using CSMA/CA

I N stationary nodes sharing a common wireless medium

I IEEE802.11 DCF MAC protocol: with or without RTS/CTS
mechanism

I M/M/1 and M/G/1 queue and ideal channel conditions
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Bound for a point-to-point communication

Overall analytical distribution derivation
Previous works have addressed this problem (cf. refs in [1] 1 )

Main assumption: MAC and queueing delays are independent
discrete random variables.
MAC delay is a function of the number of nodes N contending for the medium, not the number of

packets in the queue

I Calculate the Probability Generating Function (PGF) (i.e.
Z-transform of PMF) for MAC and Queueing delays: Dm(Z ) and
Dq(Z )

I Total delay PGF follows Dt(Z ) = Dm(Z )× Dq(Z )

I Invert total delay PGF to retrieve PMF using numerical inversion
techniques.

1[1] “A thorough analysis of the performance of delay distribution models for IEEE
802.11 DCF”, Q. Wang, K Jaffrès-Runser, JL Scharbarg, C Fraboul, Y Sun, J Li, Z Li,
in Press, Ad Hoc Networks
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PGF of total delay

Calculated for M/M/1 and M/G/1 queues, where

I E [Dm] is the mean MAC delay

I Dm(Z ) is the PGF of MAC delay
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PGF of MAC delay

Mean and PGF of MAC delay are extracted from the well-known Markov
chain designed by Bianchi2 for IEEE802.11 DCF.

I MAC delay distribution

Dm(Z ) = (1− p).S(Z ).
∑m

x=0[(p.C (Z ))x
∏x

i=0 Bi (Z )]+
(p.C (Z ))m+1.

∏m
i=0 Bi (Z )

(1)

I Mean MAC delay

E [Dm] = D ′m(Z )|Z=1 (2)

2G. Bianchi. Performance analysis of the ieee 802.11 distributed coordination
function. Selected Areas in Communications, IEEE Journal on, 18(3):535-547, 2000
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Numerical inversion step
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Are all these model accurate?

Errors can be introduced by

I MAC or queuing model inaccuracies

I Numerical inversion step.

Goal of this work
Propose a performance evaluation framework to:

I select the best MAC and queuing models

I limit inversion errors

where we decouple the error introduced by the model and the
numerical inversion.
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Quantifying the modeling error (1)

Total delay model directly produces the PGF

Compare to extensive simulations
But without inverting the analytical total delay PFG !

KJR
August 2013 18



Quantifying the modeling error (2)
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Quantifying the inversion error (1)
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Quantifying the inversion error (2)
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Results: MAC delay PMF

MAC model is good - Inversion accuracy needs to be controlled
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Figure: MAC delay PMF for different accuracies using Vu and Sakurai’s LP
formula with different accuracies.
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Results: Queuing delay PMFs

M/G/1 much better for large networks. For small networks, M/M/1 is
sufficient!
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Figure: Analytical queueing delay PMFs for M/M/1 and M/G/1 queues vs.
simulations.
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Results: Total delay PMFs

Total delay is dominated by queuing.
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Figure: Analytical total delay PMFs for M/M/1 and M/G/1 queues vs.
simulations.
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Results: Extension to 2-hop communications

cf. Paper for details.
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Figure: Results for a 2-hop communication of n = 5 nodes, M/M/1 queues.

/Arrival distribution at the relay node is not Poisson (but log-normal)
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Conclusion Part 1:

Is wireless compatible with real-time?

, For a point-to-point communication, worst-case probabilistic bounds
can be extracted analytically for CSMA/CA.

, There is performance evaluation framework to test various models
and methods that could be used for certification

Main challenges

I Extend to multi-hop communications.
But will we really need multiple hops in a plane?

I Compare to TDMA solutions with synchronization.
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Part 2: Large scale dynamic wireless networks

Creates a dynamic network with high potential for wireless and
pervasive applications

I Wireless social networking, global sensing, content distribution,

I More and more data in transit: 3/4G network offloading...
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Internetworking human beings!

Real-world mobility scenarios create neither purely regular nor purely
random connections among the entities composing the network

Dynamic Complex Wireless Networks (DCWN)

I Have large number of vertices and edges that exhibit a pattern

I Evolves according to semi-rational decisions of its entities

I Semi-rational decisions:
I are mostly regular and repeat themselves
I but may be influenced by random events
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Data sets

Data collection to build contact traces

I Log the contact time and duration of a node to an access point

I Log the GPS coordinates of mobile nodes regularly

Derive a time-varying contact graph

Dataset Local # Duration Type Avg. # encounters/
entities node/day

Dartmouth 3 campus 1156 2 months Individuals 145.6
USC 4 campus 4558 2 months Individuals 23.8

San Francisco 5 City 551 1 month Cabs 834.7

I Dartmouth and USC collect connection dates/durations to WiFi
APs,

I San Francisco collects GPS locations of taxi cabs.
3

T. Henderson et al. “The changing usage of a mature campus-wide wireless network,” in Proc. of ACM MobiCom 2004
4

W. jen Hsu et al. “Impact: Investigation of mobile-user patterns across university campuses using wlan trace analysis,” CoRR, vol.
abs/cs/0508009, 2005

5
A. Rojas et al. “Experimental validation of the random waypoint mobility model through a real world mobility trace for large

geographical areas,” in Proc. of the 8th ACM MSWiM 2005
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Rationale and related initiatives

Characterize interactions, i.e. edges of contact graph

I Regularity of contacts : How often did Arnaud and Paul meet per
day? during the whole trace?

Miklas et al.6 determine whether 2 nodes are friends or strangers using an
empirical threshold (friends encounter 10 times or more within 14 weeks).
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6
A. G. Miklas et al., “Exploiting social interactions in mobile systems,” in Proceedings of the UbiComp ’07
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Rationale and related initiatives

Characterize node’s behavior, i.e. vertices of contact graph
Using localization information, Zyba et al.7 differentiate social from
vagabond nodes. Socials appear regularly in a given area while
vagabonds visit an area rarely and unpredictably.

Social node

Library

Paul

Lucie

Michel Arnaud

Paul

Lucie

Arnaud

Michel

CafeteriaVagabond node

I Monitor the total appearance and regularity of appearance

Paul is social at the cafeteria but vagabond at the library: a per
node/per area approach → geographical dependency

7
G. Zyba, G. Voelker, S. Ioannidis, and C. Diot, “Dissemination in opportunistic mobile ad-hoc networks: The power of the crowd,

in Infocom’11
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Rationale and related initiatives

RECAST8

I Characterizes the interactions of nodes based on their probability to
originate from a random or social behaviour

I Identify different kinds of social interactions (friends, acquaintances,
bridges or random)

I No geographical dependency, i.e., is of general validity

8“RECAST: Telling Apart Social and Random Relationships in Dynamic
Networks”, P. Olmo Vaz de Melo, A. Viana, M. Fiore, K. Jaffrès-Runser, F. Le Moüel
and A. A. F. Loureiro, in MSWiM’13.
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Temporal social graphs from contact traces

Two possible representations

1. δ event graph: Gk(Vk , Ek)
There is an edge in Ek if contact within δ = 1 day for instance.
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Temporal social graphs from contact traces

Two possible representations

1. δ event graph: Gk(Vk , Ek)
There is an edge in Ek if contact within δ = 1 day for instance.

2. Accumulative graph Gt(Vt ,Et): Gt = {G1 ∪ G2 ∪ ... ∪ Gt}
Nino

Michel

Paul

Arnaud

Lucie

G2(V2,E2) Accumulative graph up to Day 2

Accumulates all event graphs up to time step t.
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Temporal graphs generation from contact traces

Example accumulative graph Gt for t =2 weeks
For δ = 1 day and using force-direct layout algorithm for plotting

Seems difficult to extract any knowledge from these social graphs:
→ gathers all social AND random interaction!
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Comparing a social graph to its random counterpart

Random graph equivalent of G
Calculate a random graph GR from a graph G (V ,E ):

I Keep same number of vertices and edges,

I Randomly assign edges to keep the same node degree distribution
using RND algorithm9:

An edge is set between nodes of degree di and dj with probability

pij = (di × dj)/
∑|V |

k=1 dk

Random accumulative graph GR
t

Random accumulative graph derived from event graphs {Gi}i∈[1,..,t]

GR
t = {RND(G1) ∪ RND(G2) ∪ . . . ∪ RND(Gt)}

9F. Chung and L. Lu, “Connected Components in Random Graphs with Given Expected
Degree Sequences,” Annals of Combinatorics. Nov. 2002

KJR
August 2013 36



Comparison social vs. random graphs

Network clustering coefficient can identify a network with an elevated
number of clusters (i.e. communities).

I If c̄c(G ) >> c̄c(GR), parts of the decisions of the nodes of G are
NOT random

0 7 14 21 280

0.2

0.4

0.6

0.8

1

time t (days)

cl
us

te
rin

g 
co

ef
fic

ie
nt

 

 

real Gt

random Gt
R

(a) Dartmouth
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(b) USC
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(c) San Francisco

I Dartmouth / USC traces have an order of magnitude higher c̄c than
GR → social decisions

I San Francisco: each individual taxi in the trace encounters most of
the other taxis → closer to a random behavior
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Social network features: Regularity and Similarity

Social nodes’ behavior tend to

I repeat on a regular basis (because of daily activities for instance)
→ Regularity

I build persistent communities and generate common acquaintances
→ Similarity

Mathematical metrics

I Edge persistence per(i , j) 10 :
Percentage of time steps an edge exists over the past discrete time
steps in the event graphs {Gi}i∈[1,..,t]

I Topological overlap to(i , j) 11:
Ratio of neighbors shared by two nodes calculated for the
accumulative graph Gt .

10N. Eagle et al., “From the Cover: Inferring friendship network structure by using mobile
phone data,” Proceedings of the National Academy of Sciences, Sept. 2009

11J. P. Onnela et al., “Structure and tie strengths in mobile communication networks”, Proc. of
the National Academy of Sciences, May 2007
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CCDF of edge persistence per(i , j) after 4 weeks
Individuals tend to see each other regularly
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random fashion
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CCDF of topological overlap to(i , j) after 4 weeks
Individuals of Gt have common neighbors
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Social vs. random edges

In the random network, we only have a probability of 10−3 to have edges
with a persistence of more than x̄per = 0.17.
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→ Thus, in the social graph Gt :
I edges with per(i , j) > x̄per can be classified as social edges
I edges with per(i , j) < x̄per can be classified as random edges

Note that there is a prnd chance that a social edge is actually random
(mis-classification)
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RECAST classification algorithm

Only parameter of RECAST: prnd , the mis-classification error bound.

Main steps

I Calculate the per(i , j) and to(i , j) for each edge

I Knowing prnd , calculate x̄per and x̄to from CCDF’s

I For each edge,
I if per(i , j) > x̄per → (i , j) is social for edge persistence

else (i , j) is random for edge persistence
I if to(i , j) > x̄to → (i , j) is social for topological overlap

else (i , j) is random for topological overlap

I Classify edges into classes of relationships according to:

Class Edge persistence Topological overlap
Friends social social

Acquaintances random social
Bridges social random
Random random random
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Snapshots after 2 weeks

Dartmouth USC

Social edges Random edges Social edges Random edges

Friends edges are in blue, Bridges edges are in red
Acquaintance edges are in gray, Random edges are in orange
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Cluster coefficient analysis for only random edges

Dartmouth USC
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Validates the efficiency of RECAST to identify random edges for
Dartmouth and USC
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Classification results after 4 weeks

Number of edges of a each class that appear in the first 4 weeks vs. prnd
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Dartmouth USC

RECAST is not sensitive to prnd !
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Epidemic data dissemination results

Is it worth accounting for the social edges?

I Let’s assume we start an epidemic transmission between a source
and a destination that share a edge in the social network.
(Social graph calculated with 4 first weeks of data set)

I Which edges participate in the forwarding in the following 2 weeks?

Dartmouth USC
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Epidemic data dissemination: Path length

Is it worth accounting for the social edges?

I For both data sets, a majority of routes to social edges have a path
length ≤ 3, while only a few percents of routes to random edges do.

I The transfer is much faster between nodes that share a social
relationship.

I Edge persistence has a strong impact on the routing efficiency

I But random edges help as well...
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Conclusions and future works

RECAST

I requires a unique parameter

I combines user encounter frequency with their 2-hop social network
ties

I identifies different kinds of social interactions:
friendship, acquaintanceship and bridges

Different mobility traces may have completely different behaviors (San
Francisco vs. USC)

Future works

I Provide a distributed RECAST classification

I Assess RECAST using data sets with ground truth

I Study spatio-temporal correlations of data sets
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Thank you for your attention

First beta-version of RECAST classifier available on :
http://www.irit.fr/~Katia.Jaffres/RECAST/Recast-code.zip
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