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Qualitative Reasoning Based on
Fuzzy Relative Orders of Magnitude

Allel Hadj Ali, Didier Dubois, andHenri Prade

Abstract—This paper proposesa fuzzy set-basedapproach
for handling relative orders of magnitude stated in terms of
closenessand negligibility relations. At the semantic level,
these relations are represented by means of fuzzy relations
controlled by tolerance parameters. A set of sound inference
rules, involving the tolerance parameters, is provided, in full
accordance with the combination/projection  principle
underlying the approximate reasoning method of Zadeh. These
rules ensure a local propagation of fuzzy closenessand
negligibility relations. A numerical semanticsis then attached
to the symbolic computation process.Required properti es of the
tolerance parameter are investigated,in order to preserve the
validity of the produced conclusions.The effect of the chaining
of rules in the inference processcan be controlled through the
gradual deterioration of closenessand negligibility relations
involved in the produced conclusions. Lastly, qualitative
reasoningbased on fuzzy closenessind negligibility relations
is used for simplifying equations and solving them in an
approximate way, as often doneby engineerswho reason about
a mathematical model. The problem of handling qualitative
probabilities in  reasoning under uncertainty is also
investigatedin this perspective.

Index Terms—Closeness,fuzzy numbers, fuzzy relations,
negligibility, qualitative probabilities, relative orders of
magnitude.

I. INTRODUCTION

ualitative Reasoningaboutphysical systemshas beena
Overy activesubfield of researchin Atrtificial Intelligence
[21][33][26][32]. Its main aim is both to addresghe needto
deal with physical systemswhere some magnitudesare not
easy to quantify precisely (i.e., numerical data is not
available) andto be ableto reasorat a qualitativeor symbolic
level (for example,reasoningdirectly in terms of orders of
magnitude).Significant progresstowardsthe developmentof
formal mettodsfor qualitativereasoningaboutthe behaviorof
physicalsystemshasbeenmade.The simplestformalism used
in qualitativereasonings basecdn the sign algebra(—, 0, +);
see for instance[26][32]. Such models are sufficient to
representhe sign of quantities,and how the increaseor the
decreasef quantitiescanaffect other quantities.Information
aboutmagnitudespr evenrelative ordersof magnitudeis not
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representedAs a consequencethe sign-basedapproachhas
too limited an expressivgpowerin somepracticalcasego be
widely applicable.

A majorlimitation oftenlies in the fact that the sign of the
resultof an operationcanbe determinednly if the ordersof
magnitudeof the involved parameterareknown. This is why
some authors (Shen and Leitch [31]; Kim and Fishwick
[19,20]) have developed fuzzy set-basedapproaches to
qualitative reasoning.Shen and Leitch [31] use a fuzzy
guantity spacesuch as {zero, small, medium, large} (for
positive values).This allows for amoredetaileddesciption of
the valuesof the variables.Such an approachrelies on an
approximation principle in order to expressthe results of
calculationsin termsof the fuzzy sets of the fuzzy quantity
space.Kim and Fishwick [19,20] ratheruse a qualitative
description of the systemin terms of fuzzy if-then rules
involving arithmetic operations. Both works are oriented
towardsqualitativesimulationand extendideasfirst proposed
in qualitativereasoningystemssuchas Qsim [21], wherethe
constraintsareusedfor checkingthe consistencyof a set of
valuesfor a set of variables,ratherthan propagatinghem for
finding unknownvalues.Most of theseworks are concerned
with the analysisof dynamicsystems.

Thereexistsanotheline of researchin qualitative reasming
[30] which focuseson reasoningwith relative orders of
magnitude.The ultimate aim of the proposedapproachis to
build automatedeasoningsystemsthat mimic the processof
simplifying and approximatelysolving equationsfrom the
knowledge of relatve orders of magnitude of involved
parametersThis type of activity correspondgo a particular
form of commonsenseeasoningvherethe ideasof closeness,
comparabilityandnegligibility areinvolved. The first attempt
to formalize and automate order of magnitude reasoning
appearedvith the formal systemFOG, proposedby Raiman
[29,30]. FOG is basedon three basic relations: "negligible
with respecto” (Ne), "closeto" (Cl), and"hasthe samesign
and order of magnitudeas", i.e., "is comparableto” (Co).
FOG includesone axiom and 31 inferencerules, which allow
for deductionfrom piecesof knowledgeexpressedh terms of
relativeordersof magnitude.This setof ruleswas provedto
be consistenby giving an interpretatiorto the threerelations
in the framework of Non-StandardAnalysis. FOG handles
relative orders of magnitude through a purely symbolic
computationprocess However,no numericalinterpretationis
providedfor the symbolic computationof ordersof magnitude
in the FOG's approachNeitherdoesit allow for the use of
numericalvalues,asfurtherdiscussedn section2.
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This drawbackis remediedn the systemO(M) proposecby
Mavrovouniotis and Stephanopoulos[23,24], where the
primitive relations("much smallerthan”, "moderatelysmaller
than", "slightly smallerthan”, "exactly equal”, "slightly larger
than", "moderately larger than", "much larger than") are
interpretedas locating the quotient of the two compared
guantitieswithin someprescribedntervals.All theseintervals
are disjoint, and defined via a unique parameterwhich is
determinedy the applicationcontext. The fact that the value
of this parameteris fixed createssome problems since the
result of the (repeatedcompositionof the primitive relations
cannotalwaysbe expresedby one of the primitive relations,
in the senseof theintervalsemanticsindeedfor instance,if x
/yO]Ja, bl andy/ z0O [a, b], with a > 0, thenx / z O [a7,
b’], and [a°, b’], or more generally [a", b"], are not
necessarilyincluded into one of the prescribed intervals
correspondingto the semanticsof one of the primitive
relations.Dague[5] also providesa similar attemptto give a
numericalinterpretationto FOG-like relationsmanipulatedn
aformalway.

NeitherFOG nor O(M) takeinto account the fact that the
satisfactionof relations such as Ne, Cl, or "much larger
than', by two numericalvaluesis often a matter of degree.
Moreover=OG doesnot acknowledgeeitherthat a relation of
closenesgresp.negligibility) is usually transitive in a weak
(resp. strong) sense(to be made precisein the following),
ratherthan just transitive[11]. The sametype of limitations
appliesto O(M) aswell. Modeling relationsNe, Cl andCo by
meanf fuzzyrelationsprovidesanappropriatdrameworkfor
addressingheseissues.In this study, "x is closeto y' is
interpretedas"x/yis closeto 1", and"x is negligible w.r.t. y"
canbeeitherinterpretedas"y + x is closeto y', or by "y —x
is closeto y'. An extendedpproactio reasoningwith relative
ordersof magnitudeexpressedn terms of negligibility and
closenesgelations is proposed, based on fuzzy relations.
Fuzzy numbers play the role of tolerance parameters
controlling the semanticof Ne and Cl. They aremanipulated
at the symbolic level but can be interpretedin numerical
terms.This approachmaintainsa numericalsemanticdor the
symbolic calculus performed by the FOG’s rules. The
obtainedconclusionsaresound approximabns of the actual
resultsand do not resortto linguistic approximationas in
[31]. The validity of the inference processis checked by
guantifyingthe errorsmadeat eachstep

The paperunifies, discussesand substantiallydevelopsthe
contentsof prevous papers[6,7,8]. More particularly, it
providesa thoroughanalysisof the propertiesrequiredfor the
fuzzy relationsmodeling closenessand negligibility, a more
systematic and structured study of the inference rules
involving theserelationsand an extensive illustration of the
approachon various examples.The paperis organizedas
follows. The next Sectiongives the necessarypackgrouncdn
the formal system FOG. This Section also servesas a
motivationfor the useof fuzzy setsin qualitative reasomg

we show that the composition of the fuzzy relations
representinghe order of magnitude relations Ne and ClI,
reducesto simple arithmetic computations on the fuzzy
numberswhich expressthe semanticsof the relations. A
minimal set of inferencerules, basedon relationsNe and Cl,
is establishedn Section4. Simplified rules using symmetric
fuzzy numbers as tolerance parametersfor the relations
appearingn conclusion parts, are discussedin Section 5.
Theserules are still valid ones, but may provide (slightly)
moreimpreciseconclusions.Section6 showshow qualitative
reasoningbasedon fuzzy relations expressingclosenessand
negligibility canbe usedfor simplifying equations,with a
view to solving them approximately.Section 7 deals with
incoherencaletectionin the set of equationsandrelations, if
any. Lastly, an application to qualitative probabilistic
reasoningis outlined; namely, a probabilistic-like default
logic with an infinitesimal semanticsdue to Adams [1] is
reconsidered using fuzzy closeness relations modeling
probability values“closeto 1" in the usual sense.Due to
spacdimitations, not all the proofsof the resultsareincluded.
They areavailablein a report[17]. Some examplesf proofs
aregiven to show the underlying ideas. Missing proofs are
similar to them.

Il. THE FORMAL SYSTEM FOG

The FOG system [29] is basedon threerelations, which
captureclosenessnegligibility and comparabilityand which
are respectivelydenotedby CI, Ne and Co. These three
operatorsre:

x Ney, which standsfor "x is negligiblewith
respecto y",
which standsfor "x is closeto y', and
understoodis”(x— Yy)is negligiblewith
respecto y",
which standsfor "x hasthe samesign
and order of magnitudeasy'. The
underlyingideais thatif x Nez and
x Coytheny Nez

xCly,

xCoy,

FOG hasoneaxiom (Al: x Cl x) and 31 inferencerules.
Hereafter,we give someof theserules ([x] denotesthe sign
(+, =, 0) of the quantityx):

1)xClyO yCIx
3)xCly,yClzO xClz
5)xCoy,yCofl xCoz
7)xCoy,¥ClzO xCoz
9) (x+y) Cl z, yNe xOI xCl z
11)xNey, Ne t

2)xClyO xCoy

4) xCly, yNe z[O xNe z

6) xNe y, We zO xNe z

8) xNe y (x+y)Cly

10) Ney, LIt 0 x[ZNe yt]
12) Xy Cl z[EXCl z, [x]# 0

aboutrelative ordersof magnitude.In Section 3, we address [x]#0

the problemof modelingthe basicrelationsin FOG by means
of fuzzyrelationsexpresseth termsof ratios of values.Then,

0 x[zNe yf] O yClt
13) xIyCl z[f, X Ne z, [z] 20 14) Xy Ne AT, zNe x,
U tNey 0 yNet
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Note that both CI and Co are equivalencerdations (i.e.,
reflexive,symmetricandtransitive),Co beingcoarserthan Cl.
The FOG rulescanbejustified from the point of view of Non-
StandardAnalysis. Theydescribéhow the threerelationswork
togetherand allow for the propagationof initial qualtative
informationstatedin termsof relationsNe, Cl and Co. Most
of the rules havea clearintuitive interpretationand needno
explanation.Note that they arenot independente.g.,rules 2
and5 O rule 7). FOG has been used successfullyin the
DEDALE systemof analogcircuit diagnosis[4] for reasoning
aboutcurrentintensitieswhich arenot directly observableand
in macroeconomics[3]. Nevertheless,FOG has several
limitations,asdiscussedn theintroduction:

* No standarchumericalinterpretatn of the threerelations
Ne, Cl andCo is provided.It may createinterface problems
with genuine numerical values. Namely, quantitative
information cannot be exploited by the method. However,
suchinformationis often availableand useful when solving
engineeringroblems.FOG cannotuseit becauseat doesnot
relate orders of magnitude relations to actual orders of
magnitude.

* FOG doesnot takeinto accounthe fact that the extentto
which two numericalvaluessatisfy the relationsNe, Cl and
Co is often a matterof degreeand is also context-dependent
(for exampletherelation"negligible” doesnot meanthe same
thing in a preliminary-designcontext and a detailed-design
context). FOG is not capableof expressinga gradualchange
from one order of magnitude to anotherin the computation
process,due to the absenceof gradualtransitions between
ordersof magnitud€g5].

* FOG cannotexpresghat somerelationsare"weakly", or
"strongly", transitive ratherthan just transitive in the usual
senseFor instancejf "xis closeto y* and"y is closeto Z', it
is not sotruethat"x is closeto y' in any case(at leastwith a
too restrictive meaning of "close"). This exemplifies the
weakeningof transitivity. In order to avoid undesirable
transitivity effects and obtain results at least approximately
valid with respecto a numericalsemantics,Raiman[29] is
obliged to introducearbitrary limitations on the chaining of
rules(by meansof controltechniques).

The useof fuzzy relationsfor modeling relations Ne, Cl and
Co canaddresgshe aboveproblems.Especially,the symbolic
calculusof ordersof magnituden FOG canbe equippedwith
flexible, but standardhumericalsemantics.
Ill.  HANDLING RELATIVE ORDERS OFMAGNITUDE BY
MEANS OFFUzzYy RELATIONS

Two points of view can be consideredwhen comparing
numbershenceordersof magnitudea andb on the realline.
We canevaluatdo whatextentthe differencea — b is largeor
small (in absolutevalue); this is the absolute comparative
approachOr, we may usereldive ordersof magnitude, as
often done in engineering calculations (see for example
[23,24]),i.e.,weevaluatdo whatextenttheratio a/b is close
to 1 or not. In theformerview, approximatesquality relations
as well as more or less strong inequality relations, can be

modeledby fuzzy relationsR of the form pgr(X, y) = Hp(X —

y), which only dependsn the value of the differencex — v,

andwhereP is anappropriatduzzy interval restrictingx — v.

This kind of fuzzy relations can offer a useful sdting for

representingand processingtemporalknowledge [12], since
temporallandmarksare absolute notions. This paperrather
focuseson the modeling of closenessnd negligibility based
on ratios. Thenapproximatesquality E is modeledby fuzzy

relations pe(X, y)=pm(xy) where M is a fuzzy number
representingcloseto 1".

A. Modeling Closeness and Negligibility

The idea of relative closeness (Cl) expresses the
approximatesquality betweertwo real numbersx andy and
canbe capturedy thefollowing [11]:

Definition 3.1 (Closeness)The closenesselation (Cl) is a
reflexiveandsymmetricfuzzyrelationsuchthat
Hai(X, Y) = um(xfy), 1)
whereuy is the characteristidunction of a fuzzy numberclose

to 1, suchthatpm(1) = 1 (sincexis closeto x), anduw(t) = 0
if t < 0. M is calledatoleranceparameter

The closenesgelation (Cl) parameterizedoy M is denoted
CI[M] . Thelast condition assumeghat two numbersthat are
closeshould havethe samesign. This is naural in a ratio-
basedsiew sincedivision by 0 is undefined.lt doesnot lead
to seriouslimitations in the expressivenessf qualitative
relative orders of magnitude. Indeed, the statementthat a
variableis closeto 0 (with an undefinedsign) is an absolute
statement;moreover,difference-basedelationswould enable
us to expresghat x andy areclosewithout having the same
sign necessarilybut would haveotherlimitations. Closeness
is naturallysymmetrici.e., ua(X, ¥) = Hal(y, X). It implies that
M shouldsatisfy:
Hm(t) = um(1/t). 2)
So,thesupportM = {t, um(t) > 0} of the fuzzy numberM is
of the form [1-¢, 1/(1-¢€)], with ¢ O [0, 1[. Closeness
becomesstrict equalityfor M = 1, i.e.,u(xly)= 1if x = y
and pu(x/y) = 0 otherwise.Symmetry is preservedunderthe
idempotentfuzzysetintersection:

Proposition3.1: If two fuzzy numbersM andN verify the
symmetryproperty(2) thenM n N is symmetric.

Proof: Let us usea-cuts (i.e., M,= {t, um(t) = a}). The
symmetryof M andN is equivalento M, = [m, , 1/m,] and
Ny = [n,, 1/n,] forall a > 0. Wehave

(M N)y =My n Ny = [mg, I/my] n [ng, 1/ng]
= [max(ny , ny), min(1/my , 1/n))]
= [max(m , n,), /max(m, ny].
This meanghatM n N is symmetric.
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Notethatif the membershigunctionspy andpn obey (2) and
arelinear-shapedn [0, 1] or on [1, +), theneitherM O N
orNOM. ThennM n N=MorN.

Let A be a fuzzy numberwith modal valuel (ua(1) = 1),
and[1-A, 1/(1-p)] its support,A andp lying in [0, 1[. The
imprecisionof afuzzynumbercanberoughly evaluatedy the
width of the support, i.e., (A+p-Ap)/(1-p). However this
absoluteevaluationis not appropriatewhenthe fuzzy number
is usedto model relative closenessHere,we areinterestedn
the relative imprecision (with respectto 1), ratherthan in
absoluteimprecision. Then, the level of imprecisionof the
fuzzy numberA below 1 should be the sameas the level of
imprecisionof the fuzzy number1/A abovel. The relative
imprecisionof A is evaluatedas follows. First, the relative
imprecisionof the left-handside [1-A, 1] of the supportis
equalto A. Moreover,the relative imprecisionof the right
hand side [1, 1/(1-p)] of the supportis the sameas the
relativeimprecisionof [1-p, 1] andis p. The evaluationsof
[1-A, 1] and[1, 1/(1-p)] thusbelongto the samesale [0, 1].
Now, the relativeimprecisionof A canbe definedas maxi,

P

Now, we definenegligibility from closenessConsistently
with FOG[29], they canberelatedn the following way: "x is
negligiblewith respecto y* if andonly if "x + y is closeto
y' (seeRule 8 in section 2). It leads to define a fuzzy
negligibility relationasfollows,

Definition 3.2 (Negligibility): Negligibility is a fuzzy
relationdefinedfrom a closenesselation Cl basedon a fuzzy
numberM via thefollowing:

Hne(X, ¥) = Hai(X+y, ) = pm(X+y)/ y) 3)
The useof aratio seemsto be more naturalthan a difference
for modeling the idea of negligibility. An approximate
equalityof the form pe(x, y) = pte(x-y) for modeling closeness
would leadto a definition of "negligible’ which would not
dependny (since(x+ y)— y= X). In view of definition 3.2,
0 is alwaysnegligiblewith respecto anyy # 0O; indeedpine(X,
y)= pm(l + xfy)= 1if x= 0, Oy.

In the following, (x, y) O CI[M] expresseshat the pairs of
values(x, y) areflexibly restrictecby the fuzzy set CI[M], and
likewisefor (x,y) O Ne[M].

Proposition 3.2: Let NgM] be the negligibility relation
parameterizedy M and definedin (3). Then, the following
equivalencénolds

(a, b) O NgM] = (-a, b) O Ne[2AM].

Proof: Wehave
He (X, Y) = Hm(1 + X7y)
= Wm(2 = (1= x/y))= Hean(L + (=X)1y),
sincepqw(t) = pm(f(t)) usingthe extensionprinciple [34] for

4

a one-to-onamappingf. The symbol A denotesthe extended
subtraction of fuzzy numbers [10]. Hence pnegwi(X, Yy) =
Hnezav (=X, ¥). This meanghat (-a, b) O Ng2AM]. .

Closenesaindnegligibility couldthus aswell be relatedin
thefollowing manner!'x is negligible w.r.t. y* if andonly if
"y — xis closeto y'. This leadsto thefollowing representation
of negligibility:

HNe(X, Y) = Haly = X, ¥) = Hu((y = X)1y). (4)
Denoteby NE (resp. Ne) the negligibility relation defined

accordingto (4) (resp. (3)). Obviously, from definitions (3)
and(4), we obtain:

Proposition 3.3:
0 NE[2AM].

(a, b) ONdM] if and only if (a, b)

Let us comparethe fuzzy numbersM and 2AM from the
point of view of their imprecision. The supportof M (resp.
2AM) is [1-¢, 1/(1-¢€)] (resp.[(1-2¢€)/(1-€), 1+€]). It is easy
to checkthat 2AM is relatively more imprecise than M,
although they havethe samelevel of absoluteimprecision.
Evenif M is globally lessimprecisethan2AM, observethat if
we only focuson valuesin [1, +), M n [1, +) O (2AM) n
[1, + ), while the otherinclusionM n [0, 1] O (2AM) n [0,
1] holdson [0, 1]. Then,M is moreprecisethan 2AM on one
side of 1, while the converseholds on the other side. But
althoughM = 1/M (i.e., M is symmetric), 2AM does not
preserveshis symmetry.So, the equalitybetweerM and 2AM
canneverhold (exceptfor M = 1, which correspondgo the
strict equality). Thus, it is impossible to semantically
interpretNe and NE by the samefuzzy number.HoweverNe
andNE arenot conceptuallyery different,and, in practice,it
is not alwaysclearif the userrefersto Ne or to NE when
expressingiegligibility statementsOur approachwill try to
copewith this situation,especiallyin section5 with the use
of inferencerules having symmetric fuzzy parametersfor
whichthereis no longerany significant differencebetveenNe
andNE.

Besidesthefollowing monotonicityproperty,usefulin the
following, holds as a direct consequencef the definition of
fuzzysetsinclusionandintersection:

Proposition3.4: Let M andN betwo fuzzynumbers,and R
berelationCl or Ne Then

i) If M ON and(a, b) 0 R[M] then(a, b) 00 R[N].
ii) If (a, b) 0 R[M] and(a, b) O R[N]
then(a, b) O R[Mn N].

Finally, the fuzzy counterparif the comparability relation
Co canbedefinedby

Heo(X, Y) = 1 = max(pne(X, ¥), Hne(Y, X)),

since(a, b) 0 Co = —((a,b) 0 Neor (b, a) J Ne)) see[29].
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Howeverwe shall not explicitly use Co in this papersinceit
is not a basicrelation like closenesgCl) and negligibility
(Ne.

B. Additional Requirements on the Tolerance Parameter

The fuzzy number M which parameterizesclosenessand
negligibility should satisfy more constraints,not only those
in (2) anddefinition 3.1:

* Une(X, y) = O for x = y, sincex is not negligible w.r.t.
itself. This is equivalento enforcingum(2) = 0, accordingto
(3). SinceM is symmetric,uw(1/2) = 0 also holds. Thus, the
supportof M should be includedin [1/2, 2]. In otherterms,
any a-cut of M is of the form [1-¢, 1/(1-€)] with € O [O,
1/2].

* It is also naturalto requirethat if x is closeto y, then
neitheris x negligible w.r.t. y, nor is y negligible w.r.t. x.
This canbe expressedy the following inequality

Hai(X, ¥) < 1 = max (Hne(X, ¥), Une(Y, X)), (5)
which correspondto the fuzzy setinclusion CI 0 Co (where
Co is the fuzzy comparabilityrelation defined above). The
requiremenin (5) leadsto

Proposition3.5: Condition (5) forcesthe supportof M to
lie in theinterval[(V5-1)/2, (V5+1)/2].

Seethe proof in the appendix.lt meansthat eacha-level cut
of M is of the form [1-¢, 1/(1-¢€)] with € O [0, (3-V5)/2]
(00, 0.38]). The interval [(V5-1)/2, (vV5+1)/2] ((JO.61,
1.61]) will becalledthevalidity interval and denotedV. Later
in section3.4,we shall seeanothereasornto havethe support
of thetoleranceparametein thisinterval.

C. Composition of the Basic Relations and Transitivity

Issues

Firstrecallthatif Ris a fuzzyrelationdefinedon XxY and
Safuzzyrelation on YxZ, thenthe compositionof R and S is
afuzzyrelationon XxZ denotedoy R-S anddefinedby [35]:

Hro (X, 2) = Supey Mins(X, y), Us(Y, 2))

It hasbeenpointedout in [7] that performingthe composition
of fuzzy relations whose membershipfunctions dependonly
on x/y, usuallyreducego fuzzyarithmeticoperationson fuzzy
numbers.For instance the compositionof fuzzy relationsCI
reads

Hcimio cin (X! Z) = SUR, min (uc|[|v|](x1 y)a chN](y, Z))

= sup, min (K, (X/ y), k(Y / 2))

My / 2), observingthat (x/ y)Yly/ z) = x/ z
Heimong (x, 2),

where 0 denotesthe product extendedto fuzzy numbers,
accordingo extensiorprinciple [34][10]:

sup - min(pv (S), K (1))
st u=sil

Humon (U) =

ThusCI[M] . CI[N] = CIIMON]. In the following, we shall
omit '0" whenwriting products.

This type of computationis similar to what is done in
approximateeasoning36]. Notethat the 'sup-min methodis
also called "combination/projectioh since, the pieces of
information arecombinedwith 'min' operationand the result
of the combinationis projectedvia the'supg in agreementvith
possibility theory [10]. It yields the most restrictive fuzzy
relation (in the senseof fuzzy set inclusion) betweenthe
variableson which the projectiontakesplace,as deducedrom
the availableinformation.

Proposition 3.6: Using the principle of fuzzy relation
composition,the following entailmentscan be semantically
justified

(@, b)OCI[M] and(b,c)O CIN O (a, c)OCIIMN]  (6)
(a, b) O NgM] and (b, ¢) O Ne[N]

O (a, c) O Nd(MAL)(NAL)T1] @)
(a, b) O CI[M] and (b, c) O Ne[N]

O (a, c) O NM(NAL)O1]. (8)

Proof: Seeabovethe proof of (6). Proofsof (7) and(8) are
similar. Let us only consider the proof of (8). The
compositionof fuzzyrelationsCl andNe reads

SUR, MiNn (K (X, Y), Mg (Y1 2))
sup, min (K (x/ ), k(1 + y/ 2))

supy  min(u,(u), 1 (V)),
o s SR, MG, 1)
= HM(NAl)Dl(l +x/2)= uNe[M(NAl)Dl](X’ 2),

whereu = x/yandv= 1+ y/z and O denoteghe addition
of fuzzynumberg10]. So,(a, c) O NgM(NA1)11].

The entailments(6) to (8) arethe fuzzy counterpas of the
following inferencerulesproposedy Raimanin FOG [29]:

(@a,b)dCland(b,c)dClO (a,c)dCl (9)
(@, b)d0Neand(b,c)dNelO (a,c)dNe (20)
(a,b)dCland(b,c)dNel (a,c)dNe (12)

However, the rules (9) to (11) are only syntactic
approximation®f (6) to (8). Indeedwe have:

Proposition 3.7: Assumethat M O N without loss of
generality

CI[M] O CI[N] O CI[MN],

(12)
NeN] O Ne[M] O Ne[(MA1)(NA1)T 1],
NeN] O Ne[M(NA1)D1].

(13)
(14)

Proof: Seethe appendix.
Due to (12), (6) expresseghat the relation Cl is "weakly

transitive' ratherthanjust transitivein the usualsensej.e., a
may belesscloseto c thana is closeto b and thanb is close
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to c. By contrastasshownby (7) and (13), the relation Ne is
"strongly transitivé' ratherthan just transitive in the usual
sensej.e.,ais morenegligiblew.r.t. cthana w.r.t. b, andb
w.r.t.c.

Thesymbolicrulesestablishedn proposition3.6 leadto a
formal manipulationof relationsCl andNe, in agreementvith
the fuzzy semanticsThe toleranceparameter®f the deduced
relationsaresyntacticallycomputedrom thoseunderlyingthe
relationsappearingn condition parts. However,the computed
tolerance parameterscan be numerically interpretedin a
convenientvay. Unfortunately,the producedelationsarenot
always parameterizedby symmetric fuzzy numbers(e.g., in
rules (7) and (8), the fuzzy numbers (MA1)(NA1)J1 and
M(NA1)J1 are not symmetric in the senseof (2)). The
problemof the approximatingsuchrelationsusing symmetric
fuzzynumberswill beaddresseth section5.

D. Controlling the Iteration of the Inference Process

It is worth noticing that some of inference rules (in
proposition 3.6) lead to relations in which the tolerance
parameterarelesstight than the original ones.For instance,
rulein (6) enablego deducehat(a, ¢) 0 CI[MN] whereM O
MN andN O MN. Then, wheniterating the inferenceprocess,
it may happen that someof the providedresults becometoo
impreciseand then the semanticsin terms of closenessand
negligibility of the symbolically computedrelationsare lost.
Indeed, the semantic requirementsof section 3.2 for the
supportsof the parametergi.e., they should lie in a validity
interval suchas[(V5-1)/2, (V5+1)/2]), are not automatically
preservedn practice,in orderto copewith this problem,we
muststart with sufficiently tight closenesgelationsso that
the supportof the parameteremainsin the validity interval
acrossinference steps. The index of relative imprecision,
introducedn section3.1,canbeusedto measurghe possible
degradatiorof the ideaof closenesgandnegligibility) in the
inference process. When the semantic requirements are
violated, the inferenceprocesamust stop. More generally,we
cancomputethe a-level cuts (of the toleranceparametef a
result) that remainincludedin the validity interval; then this
may be the basisfor estimatingthe level of validity of this
result: Thehigherthelevel of the largestvalid a-level cut, the
less valid the result (the result being fully valid when the
supportis valid).

IV. A Fuzzy ORDER OFMAGNITUDE INFERENCESYSTEM

As shownby exampleg6) to (8), it is possibleto develop
inferencerules wherethe closenessnd negligihility relations
are manipulatedat a symbolic level and the fuzzy numbers
which parameterizéahem arenumericallycomputed.A set of
symbolic inferencerules, basedon the order of magnitude
relationsCl and Ne hasbeenproposedand justified in [7].
This rule sethasbeensimplified by deletingredundantrules
[16][6,8]. Thefollowing basicsetof rulescanbe obtained:

* Remarkabl@ropertieof Cl

R:: a<bandc<danda/b< c/dand(a, b) O CI[M]

0 (c,d) O CIM]

R.: (a,b)OCIM] - (b, a)OCIM]

Rs: (a, b) O CI[M] and(c,d) O CI[N]
0 (ag, bid) O CI[MN]

(Cl-Weakening)
(Symmetry)

(Cl-ProductStability)
¢ RelationshipbetweerNe andCl
Rs: (a,b)dNe[M] < (at+b, b) O CI[M]
Rs: (a, b) O CI[M]

= (max(a, by min(a, b), min(a, b))J Ne[M]

(Interdefinition)

(Interdefinition)

* Remarkablgropertieof Ne

Rs :
R;:

(a,b) 0 Ne[M] = (-a, b) O Ne[2AM]
if 0<a/b< 1and(b, c) O Ne[M]
O (a,c) ONe[M] (Ne-LeftReinforcement)
if (a, b) O Ne[M] and0 <b/c< 1
O (a, c)d Ne[M] (Ne-RightReinforcemen)
(a, a+b) O Ne[M] O (a, b) O Ne[M]
(RightNe-Simplification)
: (a, b) O Ne[M] and (c, d) O Ne[N]
0 (alg, bid) O Ne[(MAL)(NAL)D1]
(Ne-Product Stability)

(SignChange)

Rs:

Ry :

* Compositionof relationsCl andNe

Ri1: (a,b) O CI[M] and(b, c) 0 Ne[N]

0 (a, c) O Ne[M(NA1)D1] (Cl-NeCut)
Ri2: (a,b) O CI[M] and(c, a) O Ne[N]
O (c, b) O Ne[M(NA1)D1] (Ne-CICut)

* Propertieof Cl andNe with respecto addition

Ri3: (a,c) 0 CI[M] and(b, c) O Ne[N]
0 (a+b, ¢) 0 CI[MONA1] (Stabilityw.r.t. Summation)

R : (a+b, c)O CIM] and (b, c) O CI[N]
0 (a, c) 0 Ne[MANO1]

Ris: (a,c)d Ne[M] and (b, a) 0 Ne[N]
O (at+b, c) O Ne[(MA1)NO1]

(SummatiorCut)
(Ne-SumStability)
* Propertieof Cl andNe with respecto product

Ris: (a,b) 0 CI[M] and(c, d) O Ne[N]
O (a@, bd) O Ne[M(NAL)D1] .
(CIl-NeProductStability)

In the appendix the proof of rule Ry is given as an
illustration. Proofs of all other rules can be found in [17].
Except for rule Re, all rules enableto provide the most
restrictive relations since they can be justified by a direct
applicationof the combination/projectiormethod[36]. Some
of these rules lead to relatims parameterizedby non-
symmetricfuzzynumbersge.g.,rulesRs and Ry,. By contrast,
rulesR; andRs preservehe symmetrypropertyof the original
toleranceparameterBesides.a partial "converse'for rule Rq,
namelyrule (a, b) O NgM] O (a, atb) O Ne[M], canbe
establisheanly if a andb areof the samesign, sincewe have
0 < b/(a+b) < 1. Then, by rule Rs we deducethat (a, a+b)



2000-148R2

O NgM] . Otherwisdf a andb havedifferentsigns,we havel
> 1+a/b > 1+al/(a+b) andthenpw(l+a/b) > uw(l+a/(a+hb));
therule doesnot hold in the conversedirection.

It should be emphasizedhat theserules are the fuzzy
counterpartsof the FOG's rules. Moreover, they provide
precisenumerical semanticsfor the symbolic calculus of
orders of magrntude performed by FOG system, since
enablingthe local propagatiorof fuzzy numericalconstraints
expresseth termsof Cl andNe The latter point enableghe
conclusionf the symbolic inferencesystemto be validated.
Reasoningcarried out by theserules is characterizedby the
separatiorof the symbolic processingof the labels of the
inferredrelationsfrom expression®f their semanticdn terms
of membershigunctions

Some semantic counterpartsof rules of FOG are not
availablein our rule base. For instance,rule 9 of FOG (see
section2), doesnot correspondo any rule in this base.This
is becauséhis FOG rule is redundan{sinceFOG rulesarenot
independentasalreadymentioned),while our rulesR; to Rie
are independent.But it is possble to obtain the fuzzy
counterparbf rule 9, namely(a+b, c) O CI[M] and (b, a) O
Ne[N] O (a, c)O CI[MN], by chainingrulesR4, R, and R,
asshownhereafterNow, severatules(i.e.,rulesR;, R7 to R
and R;; to Ris) haveno syntactic counterpartan FOG. It
meansthat our rule baseis more completethan the one of
FOG. In practice, when building an efficient symbolic
reasoningsystem,it may be interestingto exploit derived
rules evenif they are redundant.Useful rules canindeedbe
syntacticallyderivedby theinferencesystem.

Exampleof DerivedRules:

* Ry7: If 20, (alg, blé) O Ne[M] < (a, b) O Ne[M]
(multiplicativecancellationfor Ne).
It is adirectconsequencef Ry andR3; noticingthat ¢ = d can
bewritten (c, d) O CI[1] wherep(X)= 0if x# 1 and (1) =
1
* Ryg: If 20, (&g, bl@) JCI[M] < (a, b)Od CI[M]
(multiplicativecancellationfor ClI).
It is a direct consequenc®f R; noticing al® that (c, c) O
CI[1].
» Theweaktransitivity of Cl
Ris: (a,b)d CI[M] and (b, d) O CI[N]
O (a, d) O CI[MN]
is derivedfrom Rs;. Namely, apply R; for ¢ = b. Then, apply
the cancellatiorrule Rys.
» Thestrongtransitivity of Ne
Rx: (a, b) 0 Ne[M] and (b, d) O Ne[N]
O (a, d) O Ng(MA1)(NA1)D1]
is derivedfrom R1o. Namelyapply R for ¢ = b. Then, apply
cancellatiorusing R;7.
» Thesummatiorrule for the negligibility relation
Rz : (a,c)d Ne[M] and (b, ¢) 00 Ne[N]
0 (a+b, c) O NgMONA1]
is a consequencef Ry3, substitutinga + c to a in the first
condition,andthenR..
« The simplification rule for closenesswith respectto
addition

Rz, :(a+b, c) O CI[M] and (b, a) O Ne[N]
O (a, c) O CI[MN]
is aconsequereof Ry, R; andRs.

Remark: It is worth noticing that the behavior of the
negligibility relation NE (definedin (4)) essentiallyparallels
the one of Ne Inferencerules basedon NE and Cl canbe
syntacticallyderivedfrom rules R; to Ris using propositon
3.3. A detailed study of NE and the complete inference
machinerywhich underliesthe symbolic reasoningbasedon
NE andCl canbefoundin [17].

Starting with a knowledge base made of pieces of
information expressedh termsof Cl and/or Ne relations, as
follows

F' (a1 an). o' (0, L e JHOR [ M) j=2m

wheref andg arefunctionsinvolving arithmetic operations,
R representsrelation Cl or Ne and M; is the tolerance
parameterunderlying R. Assume that we are interestedin

finding theresultingrelationbetweentwo parametersy and a

with k£l. Answeringthis questioncan be envisagedoy two

typesof computationlocal andglobal methods.

« Local method:it correspondd$o separatelyapplying the
inferencerules on the availablepiecesof informationin orde
to deducethe relation pertainingto the question (as donein
rule-basedexpert systems). The procedurein this caseis
computationallyefficientbut no guaranteexistsusually about
the optimality in terms of precisionof the providedresult (as
shownin the examplebelow). Generally,differentresultscan
be obtainedfor the samequestionfrom differentchainingsof
the inferencerules. The conjunctive combination of partial
results restricting the possible values of ratios of interest
enablesus to refine the conclusion. One merit of the local
methodis its explanationcapabilitiessincerulestriggeredin
thereasoningstepscanberetrieved.

e Global method: It consists in applying the
combination/projectiontechnique[36] to the set of fuzzy
constraintsdefining the problem. As already explained in
section 3.3, this techniqueconsists first in performing the
combinationof all piecesof information and then projecting
the resulton the domainsof the parametersve are interested
in. Thus, consideringhe aboveproblem, the relation between
ac anda canbe obtainedby projectingthe relation nj= 1,.«R
on the cartesianproduct of the domainsof ac and a. The
resultprovidedby this methodis optimally tight (in terms of
precision)sinceall the exising constraintsaareexploitedin the
computation. Nevertheless, this approach is often
computationallyintractablein practice,and the explanation
capabilitiesof the local methodarelost.

Example:Let us considetthe following constraints

@) (a+b, c) O CIM], (ii) (b, a) O Ne[M].
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Thequestionis to comparehe ordersof magnitudeof b and
c. Thetwo typesof computationeadto thefollowing results:
- Localcomputation:Only two rules needto be chainedto
gettheresults,but therearetwo pats.
Chaining1:

{@, (i)} OR, @c)O CI[M?] ) (15)

{(15), (i)} U g, (b,c)0INegM 2(MAL)D1]. (16)
Chaining2:

{@, (i} OR, @c)0 CI[MZ]' , a7

{(, A7)}0 R, (b, c)0 NMAMTI1]. (18)

Now by combining (16) and (18), we obtain the following
relation(dueto proposition3.4):

(b, c) O NeK], (19)
with K = MA(MA1)J1 n  MAM*O1.
= Global computation: For this example, the

combination/projectiomethodwrites

sup min(eipm (X+Y, ), Pnemr (Y, X))

sup min(pm((x+y)/z), pu(X/+y))), (dueto (2))
sup min(pm((x+y)/z), um(1 = y/(x+y)))

sup min(pm((x+y)/2), Baav (Y/K&+Y)))
Hnemaamon(y s Z),

observingthat ((x+y)/zJ{y/x+y)) + 1 = y/z+ 1. Then, we
obtain
(b, c) O NgM(1AM)O 1]. (20)

The result providedby (19) is lessrestrictivethan the one
obtainedby (20) since K 0 M(1AM)O1. The proof of this
fuzzy setinclusion canbe easily checkedon the a-cuts. See
[17] for more details. This example shows that local
computationsdo not guaranteethe optimal precision of
results. However,it may happerthat the resultsprovided by
thetwo typesof computationarethe same(asit is the casefor
examples.1 in section6, seealso[17]).

V. SYMMETRIC APPROXIMATIONS OFINFERENCERULES

In the inference rules of section 4, some tolerance
parameterainderlying the relations appearingin conclusion
parts are expressedn complex, henceunwieldy, symbolic
forms. Moreover,as stressedn sections3.3 and 4, obtained
parameter@arenot symmetricfuzzy numbers(in the senseof
(2)). For instance,evenif M and N are both symmetricin
rulesRs, Rio, Ri1, Riz and Ry, the symmetrypropertyis no
longer verified for the paameters2AM, (MA1)(NA1)D1,
M(NA1)J1, MONA1 and MANC1 respectively.Then, some
difficulties arise when reasoningsymbolically with these
rules.For instance we cannotuserule R; if the parameteiof
relationCl is not symmetric.Moreover inference ruleswhich
exploit the symmetry of Cl, may lead to undesirableand
unexpectedesultswhenchainingthem.

In practiceto makethe chainingof the inferencerules more

valid, symmetricapproximationsof rules Rs, andRio t0 Ry
aredefined. Thesenew rules ate less precisebut the tolerance
parameterainderlying the relations appearingin conclusion
partsremainsymmetric. The results provided by theserules
are sound,but not locally complete In the following, the
symmetricapproximationof a rule R, is dended (R.). For
this purposewe needthe following lemma:

Lemmab.1: Thefollowing fuzzysetsinclusionshold:
2AM O M?,
(MA1)(NA1)DO1 O MnN,
M(NA1)DO1 O MN,
(MA1)NO1 O MN.
Proof: seg[17].

Now by proposition 3.4 andthe abovelemma, the following
fuzzyinclusionshold:

Ng2AM] O Ne[M7], (21)
Ne(MA1)(NA1)J1] O Ne[MnN], (22)

NeM(NA1)J1] O Ne[MN], (23)
Ne[(MA1)NO1] O Ne[MN]. (24)

Clearly,if M andN aresymmetricthen, the parametetMN is
symmetric too (since the product operation preservesthis

property).

Theoremb5.1: TherulesRs, Rio t0 Ri; and Ris t0 Ry are
soundly approximatedby the following symmetric variants
respectively:

(Re): (&, b)ONe[M] O (-a, b) O Ne[M],

(Ri) : (a, b) 0 Ne[M] and(c, d) 00 Ne[N]
O (alg, bld) O Ne[MnN],

(R : (a,b)OCI[M] and (b, c) O Ne[N]
O (a, ¢) 0 Ne[MN],

(Rip) : (a, b) O CI[M] and(c, a) 00 Ne[N]
O (c, b) O Ne[MN],

(Ris) :  (a,c)d Ne[M] and (b, a) O Ne[N]
O (a+b, c) 0 Ne[MN],

(Riw) : (a,b) O CI[M] and(c,d)d Ne[N]

O (alg, bd) O Ne[MN].
Proof: Obviousfrom (21-24).

Now whenlooking for approximation®f rulesRi; and Ry,
it is easyto check(using a-cuts) that none the fuzzy set
inclusions MONAL O MN and MANO1 0O MN holds.
However,approximationof Ri3 and Ri4 can be obtainedas
follows (se€17]):

* Symmetricapproximatiorof Rys: In conditionpart of Ri3
where(b, ¢) O Ne[N] appearsh andc caneitherhavethe same
or differentsigns.By consideringhesetwo casesye have:

If b/c= 0 thenR;3 canbeapproximatedy
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(Riza) : (a,c)0CI[M] and (b, c) 0 Ne[N]
O (at+b, ¢) O CI[MN].
If b/c < 0 thenR.; canbeapproximatedy
(Rusp) : (a,c) 0 CI[M] and (b, c) O Ne[N]
0 (at+b, c) O CI[M°N].

« Lastly, the symmetric approximation of Ris can be
establishedaking also into acount the signsof a and ¢, in
(at+b, c) O CI[M] whichappearsn the conditionpart. Then

If alc = 0 (resp.a/c < 0 and b/c £ 1) then Ry, can be
approximatedby
(Rug) : (atb,c)0 CIM] and (b, c) O CI[N]
O (a, ¢) 0 Ne[MN].
If a/c< 0 andb/c> 1 thenRi4 canbeapproximatedy
(Rua) : (atb,c)0 CI[M] and (b, c) O CI[N]
O (a, c) O Ne[(MNY].

Remark:The precisionof the results using locally complete
rules may slightly differ accordingto whetherNe or NE is

used. However, once we consder the symmetric
approximationsof the rules, almost the same results are
obtained.Indeed,rules expressedh termsof NE and Cl can
be approximatedising the samesymmetricfuzzy numbersas
rulesexpresseth termsof Ne and Cl, exceptfor rule R, and
its counterparf17]. Evenin this case the differenceis slight
since, in approximationof R;; we obtain the symmetric
toleranceparameteM’N whenb/c < 0 (see(RizJ); while for
its counterpartin terms of NE we obtain (MN)’. Now,

substituting(MN)? for M°N in rule (Ryzs) (since(MNY 0 M*N)

then,we getthe sameapproximaterules basedon Ne and Cl,

asthosebasedn NE andCl.

Theuseof symmetricvariantsof Rs and Ry to Ry enables
theinferencerulesto be chainedwithout restrictionor caution
since their conclusion parts are negligibility or closeness
expressions involving only symmetric fuzzy numbers.
Neverthelesgheimprecisionof the resultsprovidedby these
variants,mayincreasealittle fasterthanwhenusing the rules
in their locally completeforms, sincethe toleranceparameters
computedwith the formerarelesstight thanthosecomputed
with the latter. So the use of the symmetric approximate
inferencerulesmanyleadto shortervalid deductionchains(in
the senseof section 3.4), hencea somewhatless powerful
orderof magnitudereasoningool.

VI. APPROXIMATE SOLVING OF A SET OFEQUATIONS

In this section,we demonstratethrougha seriesof simple
exampleshow the proposednferencesystemcanbe usedfor
simplifying complex equatims involving only arithmetic
operations,with a view to solving them approximately, as
donein physics,or in chemistry. Such equations,involving
arithmeticexpressionareoften supplementedy assumptions
expressedn terms of negligibility and closenes relations.
The validity of a deduction can be measuredn the fuzzy
setting. Namely supposea statement(x, y) O CI[f(M)] is
obtainedwith some tolerance parameterf(M) derived using

symbolic computations.Then, the statementis no longer
completelyvalid if the supportof f(M) no longer lies in the
validity intervalV. Thevalidity degree of the conclusioncan
bemeasureds1 — pw((V5-1)/2). Indeedonly the a—cuts of
f(M) for a = psm((vV5-1)/2) can be used as valid tolerance
parametersfor the statement(x, y) O CI[f(M)]. Note that
Mavrovouniotis[22] makesuseof an externalbelief function
for assessinghe validity degreeof a conclusion;heresuch
degreds adirectby-productof the fuzzysemantics.

Example5.1: It consistsof threeconstraints:

@) (a- b)(c-d)= 1, (i) (d,b) O CI[M],
(b, a) O Ne[N].

(iii)

The problem is to comparethe orders of magnitude of
guantitiesa and c. The applying of inferencerules on the
available pieces of information, leads to the following
derivations:

(i) 0 R, (d=b, b) O Ne[M]
O (c—a, b)0NdM], (dueto (i)) (25)
{(25), (i)} U (ry) (c-a, @) UNeMnN]
OR, (c,a)0CIMnN]. (26)

Then,cis closeto a in thesenseof fuzzyset Mn N. Note that
for M = N, the relation (26) reads(c, a) O CI[M]. Now, if a
= 100, thenwe cancomeup with an estimateof the quantity
¢ underthe form of afuzzynumberF, namely:

He(2) = Hoim(z, 100)= Unm(z/100)= Hoom(Z),

i.e.,F = 100M which canbe easily computed.lt pointsout
that fuzzy relations can provide a natural framework for
interfacing symbolic information and numerical data. It is
worth noticing that this examplecanbe solved using another
chainingof rules. For instance chaining(R11), (Re), (R21) and
R infers(c, a) 0 CI[MN?] (resp.(c, a) O CI[M°N¥) if b/a <
0 (resp.b/a> 0). In both casesthe obtainedresultsareclearly
less precisethan (26). Due to the possibility of various
reasoningathsleadingto the result, one of the main issues,
that the forthcoming implementedsystem [18] must cope
with, is to find the best chaining of rules that enablesthe
mostpreciseesultto beinferred.

Example 6.2: This is a more elaborate example in
biochemicakngineeringlomain,takenfrom [25]. It discusses
the so-called Michaelis-Menten kinetics and the different
modesof inhibition of an enzymaticreaction.Note that all
parameteramanipulatedin this exampleare positive In the
caseof competitiveinhibition, the kinetic analysisof isolated
enzymatiaeactionis describedy the following equation(see
[25] for moredetails):

r= (Vmax Ki [A]) 7 (Ki[A] + K (Ki + [A]), (27)
whereA, Kn, B, Ki, r and Vmax denotethe substrate,the
Michaelis constant,the inhibitor, the inhibition constant,the
rate of biochemical reaction and the maximum enzyne
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turnoverrespectively.[x] meansthe concentrationof x. In
orderto analyzethe orderof magnitudeof the rateof reaction,
severalassumption®n ordersof magnituderelationswould
be madeby the chemist. Let us assumethat the following
gualitativeassumption@resupposedo behold:

() ([B], K) O NefM], (i) ([Al, Kw) O Ne[M].
Our objectiveis to comparehe ordersof magnitudeof the rate

r and Vmax First let us rewrite the equation(27) underthe
form

r/ Vmx= (Ki[A]) / (Ki[A] + Kn (Ki + [A]). (28)
Now, thefollowing derivationscanbe obtained

() Or, (Ki+[B], Ki) OCI[M] (29)

(29)0 R, (Ki, Ki+[B]) O CI[M] (30)

{(30), (i)} O (R (Ki[Al, Kn(Ki+[B])) O NeM?] o
(31) 0 R, (KAl KAJ+K wK: +[B])) O Ne[M], (32)

since0 < Kn (Ki +[B]) / (K[A]*+K «K; +[B])) < 1. Now by
(28), the pair (r,Vmay should satisfy the samefuzzy relation,
i.e., (r, Vma) O Ne[M]. This meansthat the rate of the
biochemicalreactionr is negligible w.r.t. the maximum
enzymeturnoverVia, in the senseof the fuzzy set M*. Note
thatfor this examplethe solutionfound in [25] is alsor <<

Vmax I.€., T is much smaler than Vna The benefit of our
approachis to provide a fuzzy numerical estimatefor the
extentof the negligibility of r w.r.t. Vina Letting M = [1-¢,
1/(1~¢)], the supportof M’ is [(1-¢)?, 1/(1-€)’]. Now, if € =

0.1 then[(1-¢)’, 1/(1-¢)’] O [0.81, 1.23] O V. Then, the
validity of the obtainednegligibility relationis preservedin
contrastjf € = 0.25then[(1-¢), 1/(1-€)?] 0[0.56, 1.77] O
V. Then, the result no longer expressesegligibility (see
section3.4).

Example6.3: Considerthe exampleof a countercurrent
heat exchangerdescribedn [23,24]. A heatexchangeris a
devicethat transfersheatfrom a hot streamto a cold stream.
Theimportantparameterén the analysisof the devicearethe
molarheatKH, the molarflowrate FH of the hot stream,the
molarheatKC andthe molarflowrate FC of the cold stream.
Four temperature differences are defined: DTH is the
temperaturedrop of the hot stream,DTC is the temperature
rise of the cold stream DT; is thedriving force at the left end
of thedevice,andDT is the driving force at the right end of
the device. The two following equationshold (see[23] for
moredetails):

DTH-DT,-DTC+DT, = 0,
DTHIKHFH = DTCIKCIFC.

(33)
(34)

The first one is a consequenceof the definition of the
temperaturedifferences,and the secondone is the energy
balanceof the device. The following assumptionsare made

10

andexpressedsorderof magnituderelations:

(i) (DT, DTy O CI[M],

(iii) (KC,KH) O CI[M].
The problemis to find a relation betweernthe parameterd=C
and FH. From the availablepiecesof information, we can
derivethe following results:

(i) (DT, DTH) O Ne[N],

() O (DT+DTC-DTH, DTy) O CI[M], (dueto (33))

(35)
(35)0 g, (DTC-DTH, DT,) O NeM] (36)
{(36), (i} 0 (R, (DTC-DTH, DTH) O N{MnN]

(37)
(37)0 R, (DTC,DTH) O CIMnN] (38)

{(38), (i)} O,
(DTCIKC, DTHKH) O CI[M(MnN)],
(39)

andfinally sinceDTCIKC/DTHIKH = FH/FC, seeequation
(34),the pair (FH, FC) shouldsatisfythe samefuzzy relation,
i.e.,

(FH, FC) O CIIM(Mn N)]. (40)
It meanghatthe molarflowrateFH of the hot streamis close
to themolarflowrateFC of the cold streamin the senseof the
fuzzy set M(Mn N). Note that with approximatelythe same
assumptionsthe relation betweenFH and FC provided in
[23,24] is FC ~<[®~ FH which means that FC is
approximatelyequalto FH. Again, the benefitof our approach
is to give a fuzzy numerical estimate for the closeness
obtainedn (40).

ForM = N, we haveM(MnN) = M> Then, the supportof
M(MnN) is of the form [(1-€)’, 1/(1-€)] if M= [l-g,
1/(1-¢€)]. We cancheckthat for € = 0.05 the validity of the
closenesselationobtainedn (40), is preservedsince[(1-¢)?,
1/(1-€)’] O [0.90, 1.10] O V). However,for € = 0.24 we
have[(1-¢€)?, 1/(1-¢)’] 0 [0.57,1,73] O V andthe resultis
no longervalid.

VIl. INCOHERENCEDETECTION IN ASET OFEQUATIONS

In this section, we show how to detect a possible
incoherencein a set of equations and closeness and
negligibility statementdy meansof the order of magnitude
reasoningystemand reductionab absurdo.The ideais that,
if the statementgx, y) O CI[M] and(x, y) O Ne[M] canbe
inferredfrom the set of equationsand the orderof magnitude
assumptionsthen an inconsistencyhasbeendetected It can
useful for invalidating qualitative assumptionsmade by
expertsif theseassumptionscan be proved contradictory.In
section3.2, it has beenproposedas a natural property of a
well-behavedsystemthat statement$x, y) O CI[M] and(x, y)
O Ne[M] shoud be contradictory Howeversincethey depend
on the choice of the tolerance parameter,it enforces a
constraint expressed by inequality (5). However, this
conditiononly ensureshat poimv (X, Y)+ Hnegv (X, ¥) < 1.

An apparentlymore stringent condition can actually be
enforced,namely that (a, b) O NgM] and (a, b) O CI[M]
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should be absolutely contradictory. In other words
mineip (X, ), Unavy (X, ¥))= 0, Ox, y. The following result
iS obtained:

Proposition7.1: (a, b) O NgM] and (a, b) O CI[M] are
absolutelycontradictoryif andonly if the supportM liesin V
= [(V5-1)/2, (V5+1)/2].

Proof: Let M= [1-¢, 1/(1€)]. (x, y)d CI[M] = 1€ < xly
< 11€). x,y)ONdM] = 1€ <1 + xly < 1/(1€). So,
mineip (X, ), Unavy (X, ¥))= 0 if andonly if (1 —¢€) > 1/(1-
€) — 1=¢/(1€). This is equivalentto €*-3s+1 > 0. This
inequality is preciselythe one obtainedfrom condition (5).
.

So,condition (5) maintainsa strict contradictionbetween (a,

b) O NgM] and (a, b) O CI[M] . As a consequencdf (a, b)

ONgM] and (a, b) OCIN] hold for two tolerance
parametersn the validity interval, they arealso inconsistent.
So the inference system can detect inconsistenciesfrom

negligibility and closenessstatements involving different
toleranceparameterslhevalidity of the incoherencedetection
canbemeasureds1 — max(u((V5-1)/2), un((V5-1)/2))

Remark:Proposition7.1 is also valid with the relation NE
[17].

Exampler.1: Considerthe constraints

(i) (b/lc—a/b,1) O CI[M],
(iii) (b, ¢) O Ne[M].

(i) (a, b) O Ne[M],

Is the systemincoherent?For the sakeof simplicity, let us
assumethat all the parametersare positive. Then, the
following newrelationscanbe deduced:

() O g, (07c—a, b) O CIM] (41)
{(41), (i} O (Rsy) (©77c, b) 0 CIM? (42)
(42)0 g, (b, c) LI CIM?. (43)

Now, relations(iii) and(43) canleadto anincoherencen the
system.Indeedthe level cuts of M and M* are of the form
[1-¢, 1/(1-¢)] and[(1-€)’, 1/(1-€)’] respectivelyin orderto
semantically establish the contradictionwe need (1-€)° >
(V5-1)/2 It meanghat0 < € < 0.22 Thus, the initial system
is incoherenif the toleranceparameterobeysthis condition.
The degree of validity of the conclusion stating this
incoherencés 1 — pm2 (V5-1)/2)= 1 — um(0.78)

Exampler.2 (Inspiredfrom [2] and[27]):

This is a practicalproblem from the domain of acid-base
chemistry.An important task in this domainis to find the
concentratiorof H" ions in a solution. The concentratiorof
ions in solutiondepend®n the dynamicequilibrium resulting
from competingchemicalreactions.Consider dissolving an
acid, AH, in water. The two reversiblereactionsthat occur,
correspondingo the ionization of AH and H,O, aregiven by
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(se€g27] for moredetails):
+— + _
AH —» H + A

S H + OH.

H.0 >

Theequilibrium concentrationsf the threeions (H", OH", A)
and the acid (AH) are determinedby the following set of
equations:

Chargebalance: [H'] = [A] + [OH]
(44)

Massbalance:C, = [AT] + [AH] (45)

Acid ionization equilibrium: K, [AH] = [A] [H]
(46)

Waterionizationequilibrium:K,, = [OH7] [H]. 47

SquarebracketsienoteconcentrationsC, = 107 is the initial
concentratiorof the acid; K,= 10™ is the ion product of
water;andK, = 107 is theionizationconstanof the acid.

Let S be the set of equations(44) to (47). It has been
pointedout in [2][27][30] that solving S analytically for [H"]
resultsin a cubic equationwhich is difficult to solve. An
alternativeto this approachis to use the order of magnitude
reasoningFor example a chemistmight guesshattheacid is
strong, so that [OH] and [AH] are negligible w.r.t. [A7]
(thesequalitativeassumptionsanbe usedin simplifying and
solving S). Assumeotherassumptionaremadesuchas:

() (IOHT], [AT]) O CIM], (i) ([AH], [A]) O CI[M].
Now, the systemto solveis formedof Sandrelations(i), (ii).
The rules applied on the available pieces of information,
enableusto obtain:

(i) O ([H'], Ko OCIM]  (by (46)) (48)
(i) O R, (A1, [AH]) O CI[M] (49)
{(), (49)}D Ris ([OH], [AH]) O CI[M?] (50)
(50)D ([OH THA T, [AH]+[A D OCiMm ] (51)
(51)0 ([H ], C,) O CI[M ] (by (44) and (45)) (52)
(48)0 ([H'], Ka) O CI[M ] (dueto proposition3.4)
(53)

Thus, the systemprovesthat concentratiofiH *] is atthe same
time closeto 10° and 107 (in the senseof the fuzzy set M?),
accordingo (52)and(53). This is impossiblein the chemical
context.Thereforethe systemformedof S andrelations(i) to
(i), is incoherent. This situation occurs because the
assumptiong) and(ii) that the chemisthasmadearewrong,
andshouldnot beusedfor simplifying S in orderto compare
the relative ordersof magnitude of ionic concentrationsor
exogenousgjuantitieslike C,, Ky and K.
Otherassumptionan be madein orderto solve S For
instancetheassumptiong[OH7], [AT]) O NgM] and ([AH],
[AT]) O Ne[M] do not leadto a contradiction andthe solution
to S canbe obtainedasfollows: since[H"] / K, = [AH] / [A7]
then([H'], K,) and([AH], [A]) shouldsatisfythe samefuzzy
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relation. Then, we obtain ((H'], K) O NgM] which means
thatthe concentratiomf H" ions is negligible w.r.t. K, in the
sensef thefuzzysetM.

The above examplesshow that qualitative reasoningon
fuzzy orderof magnituderelationsCl and Ne can mimic the
lines of reasoningof an individual who tries to simplify
complex equations and approximatively solve them. The
proposednferencesystemcanprovidea useful validation tool
in suchtasks.

VIIl. APPLICATION TO REASONING WITHQUALITATIVE

PROBABILITIES

After consideringa seriesof examplesfor illustrating the
applicability of the approachwe considera genericapplication
which dealswith the handling of small probability valuesin
an exception-toleranteasoning.Adams [1] has proposeda
probabilistic inferencesystembasedon the following three
inferencerules:

Bayesrue A - B,(AnB)-CO A-C
Triangularity: A - B,A -~ CO (AnB) - C
Disjunction: A - C,B - C0O (AIB) - C.

They aresoundand completewhenA — B is understoodas
"the conditional probability P(BCA) is infinitely closeto 1".

Theseruleshavebeenusedin [28] to build a probabilistic

inference-like default logic. In this section, we study the
counterpartof theserules with a fuzzy, non-infinitesima)

semanticgin orderto copewith the gradualityof the ideaof

closeness)In this respectA - B will be interpretedas
"almostall As areBs"; in otherwords P(BCA) is closeto 1 in

thesensef closenesselation Cl. Note that an interval-based
semantichasbeenalreadyproposedn [13]. "P(BCA) close to

1" canthen be written (P(BCA),1) O CI[M]. As P(B[A) =

P(ANB)/ P(A), we have(by Rusg):

(P(BCA),1) 0 CI[M] = (P(AnB),P(A))TCIM]. (54)
A. Analysis oBayes Rule
Therulereads
A- B, (AnB)-C0O A- C.
It hasbeenshownin [9] that:
P(CA) = P(BCA) OP(CCANB) = P(CnAnB)/ P(A)  (55)

By hypothesisA - B and(AnB) - C respectivelyead:

(P(AnB), P(A))T CI[M],
(P(CnAnB), P(An B)) T CI[N] .

(56)
(57)

Now applying the inferencemachineryof secion 4 to the
aboveassumptionsye obtainthe following derivations:

{(57), (56)} 0 g,y (P(CnANBY), P(A))T CI[MN]
(58)0 g, (P(CNANB)/ P(A),1) O CI[MN]

(58)
(59)
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(59)0 g, (P(CA), 1) O CIMN]. (using(55))  (60)

In the last derivation, we have applied a simplified form of
ruleRy, i.e.,

lzy=x>0and(x,1)0CIM] O (y,1)OCIM]. (61)

In termsof intervals[13], obtainedas a—cuts of M (resp.
N), (60) expressethat P(CCA) O [(1 —&)(1 —n), 1] = [1
— (¢ + n —en), 1]. Thelatterresultcoincideswith the one
obtained by Gilio in [15] for probabilities restricted by
intervals.

B. Analysis of th@riangularity Rule
Therulereads

A-B,A-CO (AnB) - C.

The best lower bound of P(CCANB) knowing P(BCA) and
P(CCA), is givenin [9]:

P(CCANB) = max[0, 1- ((1-P(CA))/ P(BA))]. (62)
Notethat:
1 - ((1-P(CA))/ P(BA))
= (P(AnB) + P(CnA)-P(A))/ P(AnB).  (63)
By hypothesisye have:
(P(AnB), P(A))DO CI[M], (64)
(P(CnA), P(A))O CI[N] . (65)

From the abovehypothesiswe can also apply the inference
rulesasfollows:

(64)0 g, (P(A),P(AnB)) O CI[M]

(65)0 g, (P(CnA)—P(A), P(A))0 Ne[N]

{(66), 67} R, )
(P(CnA) - P(A), P(An B)) O NM(NAL)D1]

(66)
(67)

(68)

(68) 0 g,

(P(Cn A) — P(A)+ P(An B), P(An B)) O CI[M(NAL)11]

(69)

(69)0 gy,

((P(Cn A)+P(AnB)-P(A))/ P(AnB) , 1) 0 CI[M(NAL)J1]

(70)

(70)0 (P(CCANB), 1) O CI[M(NAL)I1]. (71)

(using(61), (62) and (63))
Usingana—cutof M = [1-¢ , 1/(1-€)] (resp.N = [1-n,
1/(A-n)D), (71) expressethat P(CCANB) O [1-¢ , 1/(1-¢)] O
[-n, n/(1-n)] + 1, from whichwe deducehat
P(CCANB) O [1 - n/(1-¢), 1],

which correspond$o aresultin [13]. Also, the latter result
coincideswith the oneof Gilio in [15].
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C. Analysis of the Disjunction Rule
Therulereads

A- C,B- CO (AOB) - C.

The bestlower bound of P(CCAB) in termsof P(CCA) and
P(CB)is givenby [14]:
P(COAOB) = P(CLA) OP(CB) / (P(CCA) +
P(CB) — P(CCA) OP(CIB))
=1/ (1/P(CB)+ 1/P(C[A)-1). (72)

This boundimprovesthe oneusedin [9]:
P(CCACB) = max(0,P(CCA) + P(CB)-1).

Indeedon [0, 1], ab/ (a+b-ab)= max(0,a+b-1) holds.The
following relationsareassumed:

(P(CA), 1) O CI[M],
(P(CCB), 1) O CI[N] .

(73)
(74)

Now, from (73) and (74), we can derive the following
relations:

(73)0 R,k (1/P(CCA), 1) O CI[M] (75)
(74)0 R, R (1/P(CB), 1) 0CIN] (76)
(76)0 g, (1/P(CB)- 1, 1) O N¢N] (77)
{(75), ("N}0 R, )
(1/P(CA) + 1/ P(CB) - 1, 1) O CI[MONA1]
(78)
(78)0 Ry, ]
(1,1/(1/P(CA)+ 1/ P(CIB)-1)) O CI[MONA1]
(79)
(79)0 (1, P(CCAOB)) O CIIMONA1]. (80)
(using(61) and (72))

Sincethe fuzzy numberMONAL is not symmetri¢ then (80)
impliesthat
(P(CCAOB), 1) O CI[1/(MONAZL)]. (81)
Now, in terms of a-cuts, (81) writes P(CCAOB) O
[(A-€)(2—n)/(1-€n), 1/(1-e-n)], from which we deducehat

P(CCAOB) O [(1-€)(1-n)/(1-¢€n), 1]
= [1 - (e+n-2en)/ (1-¢en), 1],

which exactly coincideswith the optimal result obtainedby
Gilio in [15].

Thus, using our inference system we can derive the
following threerules:

A_'M B, (AﬁB)—»N co A_'MNC
A_'M B, A_’N cQO (AnB)- M(NAl)Dl C
A_’M B, B_’N co (ADB)_'l/(MDNAl) C,

whereA -\ B reads(P(BCA),1)0 CI[M] . Theserulesenable
to give a fuzzy semanticso Adams' qualitative probabilistic
logic, andto numericallyassesghe validity of conclusions.
Chainingdeteriorateshe validity of his axioms,since CI[M]
0 CI[M? andCI[M] O CI[M(MA1)I1].
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Remark: The use of the negligibility variantNE leadsto the
samefuzzyinterpretatiorof Adams'axioms,asabove[17].

Notethat if we usesymmetricapproximationsof rules R,
andR;3, namelyrules (Ri2) and(Riss) respectivelywe obtain
suboptimalsimilar derivations,with toleranceparameterMN
for thethreeconclusions.

IX. CONCLUSION

In this paper,we have shown that fuzzy relations can
provide an appropriate semantics for inference rules for
reasoning about relative orders of magnitude. Modeling
closenessand negligibility relationsin this fuzzy semantics
capturesn arigorousway someattenuationof transitivity for
the closenesgelation, as well as its reinforcementfor the
negligibility relation. It also provides a natural interface
betweennumbers and qualitative terms. The consistency
betweerthe symbolic and the numericallevel is maintained
by a fuzzy arithmetical semanticsof inference with fuzzy
relative comparators, in full accordance with the
combination/projectiomprinciple.

Besides, the semantic requirementson the tolerance
parameteensurethe semanticmeaningfulnessf the produced
conclusions(e.g., we can checkif the obtainedrelation of
closenesss not too permissive).Indeedevenif we startfrom
semanticallyvalid relations,it may happenthat after several
reasoningsteps, the resut is no longer semanticallyvalid
(i.e., the toleranceparameteris not includedin the validity
interval),in spite of its being syntacticallyinferred.One way
to addresghis problemis to pursuethe inference process,
restrictedto the valid a-cutsof the toleranceparameterThe
useof fuzzy numbersalso makeit possibleto evaluatethe
degreevalidity of conclusions.Anotherway to use the rules
consists in delaying the computation of the numerical
semantics of the tolerance parameter assocted to a
conclusion,to the end of the reasoningstep. Then, we can
figure out for which initial interval(s)tolerancethe provided
relationis still semanticallyneaningful.

Relative ordersof magnitude using fuzzy relations, is a
promising approachfor solving someambiguity problemsin
gualitative reasoning.This approachcan also mechanizethe
commonsensaeasoningof engineerssimplifying complex
equationsand computing approximatesolutions. Moreover,
this approachcan be applied to provide a fuzzy finistic
semanticgo plausiblereasoningvith qualitative probabilities.
An implementationof the developednferencemachineryhas
beenundertakerj18]. The softwarerealized so far can solve
linear equations under closeness and negligibility
assumptionsThecurrentwork concernghe reasoningstrategy
of the inferencemachineryfor the handling of largerand more
complexexamples.

Lastly, our approachto orderof magnitudereasoningmay
be viewedas a simple illustration of the idea of computing
with words ("negligiblé' and"closeto") recentlyemphasized
by ZadeHh37]. It is donein full agreementvith the numerical
semanticaunderlyingthesewords [7]. The symbolic side of
the computationemphasizeshe granularnatureof closeness
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and negligibility [8]. Indeed, sets of close, or negligible
values(w.r.t. anothewalue)aremanipulatedasawhole. It is a
form of fuzzygranulationwhich playsa centralrole in human
cognition and reasoning,as recently emphasizedoy Zadeh
[38].
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APPENDIX

Proof of proposition 3.5 (Section3.2): The condition Cl O
Cois equivalento
pm(t) £ 1 — max(um(l + t), pm(1 + 1/t)
= max(Umax(t), Humay(t)) < 1 = pm(t),
(sincepiw (t) = pu(F®))
-~ MA1O M and1/(MA1) O M,

wherethe overbardenoteghe fuzzy set complementationLet
us usea-cuts,andthe factthat F 00 G is equivalentto F, O
G, for all a > 0. Any a-cut of M is of the form [1-¢,
1/(1-¢)] wheree 0O [0, 1]. Hence for a-cuts the two
inclusionswrite:

[—€, €/(1-€)] O]-o, 1-¢g[ O]1/(1-€), +oo] and

1-0, -1/e] O[(1-¢g)le, +O[ O J-o0, 1-¢[ OJ1/(1-€), +oo].
Notethat-1/e < 1-¢ is alwaystrue for € 0 [0, 1[. Thetwo
inclusionshold if andonly if €/(1-€) < 1-¢ and (1-¢)/e =
1/(1-¢). They areboth equivalentto €*-3¢+1 > 0, which is
trueif andonly if € O [0, (3—-V5)/2]
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Proof of proposition3.7 (Section3.3):

Thefuzzysetsinclusions(12)to (14) hold if andonly if

i) MON O MN,

i) N O M O (MAL)(NA1)O1,

i) N O M(NAL)O1,
areverified respectivelyAgain, we usea-cuts of M (resp.N)
of the form [1-¢, 1/(1-€)] (resp.[1-n, 1/(1-n)] wheree
(resp.n) lies in [0, (3-V5)/2]. The correspondingx-cuts of
thefuzzy setsMN, (MA1)(NA1)J1 and M(NA1)J1 areof the
form  [(1-e)(I-n),  U((~e)(-n))l.  [1—(en/(1-n)),
1+(en/((1-€)(I-n))I, and[1—-(n/(1-¢)), 1+(n/((1-€)(1-n)))]
respectively.

i) SinceM O N, we just show that N O MN. This is
equivalento [1-n, 1/(1-n)] O [(1-€)(1-n), 1/((1-€)(1-n))].
The inequalities (1-€)(1-n) < 1-n and 1/(1I-n) <
1/((1-€)(1-n)) areobvious.

i) We mustprovethat M O (MA1)(NAL)OL. This is
equivalent to [1-¢, 1/(1-¢)] O [1-(en/(1N)),
1+(en/((1-€)(1N)))]- Theinequalitiesl-€ < 1-En/(11)) and
1+(en/((1-€)(1N))) < 1/(1-€) areboth equivalentto n/(1n)
<1 < n <1/2whichis truesince0 < n < (3—+/5)/2<1/2

i) N O M(NA1)J1 holds if andonly if [1-n, 1/(1)]
O [1-(n/(1-€)), 1+(n/((1-€)(1)))]- The inequalities 1—
(n/(1-€)) £ 1 and 1/(10) < 1+(n/((1-€)(1n))) are
equivalentto 1/(1-€) = 1 and n/(1n) < n/(1-€)(1N)
respectivelywhich areboth equivalentto 1-€ < 1 which is
true.

Proof of rule Ry (Section4): Notethat

Hnem (X, X + ) = pm(L + X/(x+ y)) = pm(2 = y/(x+ )
= Haam(y/&+y)), sincepm(f(t) = prow(t)

7 Haam((xty)ly),

dueto thefactthat 2AM is not symmetric(in the senseof (2)).
Hencewe canno getthat pnegwi(X, X + Y) = HUnepam(X, ¥). The
equality approximatelyhold whene is small. Indeedany a-
cut of a symmetricM is of the form [1-¢, 1/(1-€)] and the
correspondinglevel cut of 2AM is [(1-2¢)/(1-€), 1+g];
observehat (1-2¢)/(1-€) O 1/(1+€) neglectinge®.

To geta soundrule, 2AM is changednto a less restrictive
symmetrictoleranceparametetM’, a symmetricfuzzy number
which contains2AM if andonly if € O [0, (3-V5)/2]. Indeed,
the correspondindevel cut of M is [(1-€)’, 1/(1-€)], it is
easyto seethat the inequality (1-€)° < (1-2¢)/(1-€) is
equivalento e*-3s+1 > 0 the characteristiovalidity equation
of proposition3.5.Now, we showthat 1/(1-€)* = 1+¢. Since
1/(1-€)’ = 1/(1-¢), it sufficesto show that 1/(1-€) > 1+¢.
This is equivalent to 1-g° < 1 which is true. So,
[(1-2¢)/(1-€), 1+g] O [(1-e)’, 1/(1-e)] holds, which
implies that 2AM O M? provided that when M lies in the
validity intervalV. Then,we caninfer, sinceM’ is symmetric
e (X, X+ Y) = Haam(Y/&K+Y)) < pm2(y/(+Y)) = Hnem2 (X, ).
This meansghat (a, b) 0 NgM?].
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