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Abstract—This paper proposes a fuzzy set-based approach

for handling relative orders of magnitude stated in terms of
closeness and negligibility relations. At the semantic level,
these relations are represented by means of fuzzy relations
controlled by tolerance parameters. A set of sound inference
rules, involving the tolerance parameters, is provided, in full
accordance with the combination/projection principle
underlying the approximate reasoning method of Zadeh. These
rules ensure a local propagation of fuzzy closeness and
negligibility relations. A numerical semantics is then attached
to the symbolic computation process. Required properti es of the
tolerance parameter are investigated, in order to preserve the
validity of the produced conclusions. The effect of the chaining
of rules in the inference process can be controlled through the
gradual deterioration of closeness and negligibility relations
involved in the produced conclusions. Lastly, qualitative
reasoning based on fuzzy closeness and negligibility relations
is used for simplifying equations and solving them in an
approximate way, as often done by engineers who reason about
a mathematical model. The problem of handling qualitative
probabilities in reasoning under uncertainty is also
investigated in this perspective.

Index Terms—Closeness, fuzzy numbers, fuzzy relations,
negligibility, qualitative probabilities, relative orders of
magnitude.

I. INTRODUCTION

ualitative Reasoning about physical systems has been a
very active subfield of research in Artificial Intelligence

[21][33][26][32]. Its main aim is both to address the need to
deal with physical systems where some magnitudes are not
easy to quantify precisely (i.e., numerical data is not
available), and to be able to reason at a qualitative or symbolic
level (for example, reasoning directly in terms of orders of
magnitude). Significant progress towards the development of
formal methods for qualitative reasoning about the behavior of
physical systems has been made. The simplest formalism used
in qualitative reasoning is based on the sign algebra (−, 0, +);
see for instance [26][32]. Such models are sufficient to
represent the sign of quantities, and how the increase or the
decrease of quantities can affect other quantities. Information
about magnitudes, or even relative orders of magnitude is not
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represented. As a consequence, the sign−based approach has
too limited an expressive power in some practical cases to be
widely applicable.

A major limitation often lies in the fact that the sign of the
result of an operation can be determined only if the orders of
magnitude of the involved parameters are known. This is why
some authors (Shen and Leitch [31]; Kim and Fishwick
[19,20]) have developed fuzzy set-based approaches to
qualitative reasoning. Shen and Leitch [31] use a fuzzy
quantity space such as {zero, small, medium, large} (for
positive values). This allows for a more detailed description of
the values of the variables. Such an approach relies on an
approximation principle in order to express the results of
calculations in terms of the fuzzy sets of the fuzzy quantity
space. Kim and Fishwick [19,20] rather use a qualitative
description of the system in terms of fuzzy if-then rules
involving arithmetic operations. Both works are oriented
towards qualitative simulation and extend ideas first proposed
in qualitative reasoning systems such as Qsim [21], where the
constraints are used for checking the consistency of a set of
values for a set of variables, rather than propagating them for
finding unknown values. Most of these works are concerned
with the analysis of dynamic systems.

There exists another line of research in qualitative reasoning
[30] which focuses on reasoning with relative orders of
magnitude. The ultimate aim of the proposed approach is to
build automated reasoning systems that mimic the process of
simplifying and approximately solving equations from the
knowledge of relative orders of magnitude of involved
parameters. This type of activity corresponds to a particular
form of commonsense reasoning where the ideas of closeness,
comparability and negligibility are involved. The first attempt
to formalize and automate order of magnitude reasoning
appeared with the formal system FOG, proposed by Raiman
[29,30]. FOG is based on three basic relations: "negligible
with respect to" (Ne), "close to" (Cl), and "has the same sign
and order of magnitude as", i.e., "is comparable to" (Co).
FOG includes one axiom and 31 inference rules, which allow
for deduction from pieces of knowledge expressed in terms of
relative orders of magnitude. This set of rules was proved to
be consistent by giving an interpretation to the three relations
in the framework of Non-Standard Analysis. FOG handles
relative orders of magnitude through a purely symbolic
computation process. However, no numerical interpretation is
provided for the symbolic computation of orders of magnitude
in the FOG’s approach. Neither does it allow for the use of
numerical values, as further discussed in section 2.  
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This drawback is remedied in the system O(M) proposed by
Mavrovouniotis and Stephanopoulos [23,24], where the
primitive relations ("much smaller than", "moderately smaller
than", "slightly smaller than", "exactly equal", "slightly larger
than", "moderately larger than", "much larger than") are
interpreted as locating the quotient of the two compared
quantities within some prescribed intervals. All these intervals
are disjoint, and defined via a unique parameter which is
determined by the application context. The fact that the value
of this parameter is fixed creates some problems since the
result of the (repeated) composition of the primitive relations
cannot always be expressed by one of the primitive relations,
in the sense of the interval semantics. Indeed for instance, if x
/ y ∈ [a, b] and y / z ∈ [a, b], with a > 0, then x / z ∈ [a2,
b2] , and [a2, b2] , or more generally [an, bn] , are not
necessarily included into one of the prescribed intervals
corresponding to the semantics of one of the primitive
relations. Dague [5] also provides a similar attempt to give a
numerical interpretation to FOG-like relations manipulated in
a formal way.

Neither FOG nor O(M) take into account the fact that the
satisfaction of relations such as Ne, Cl, or "much larger
than", by two numerical values is often a matter of degree.
Moreover FOG does not acknowledge either that a relation of
closeness (resp. negligibility) is usually transitive in a weak
(resp. strong) sense (to be made precise in the following),
rather than just transitive [11]. The same type of limitations
applies to O(M) as well. Modeling relations Ne, Cl and Co by
means of fuzzy relations provides an appropriate framework for
addressing these issues. In this study, "x is close to y" is
interpreted as "x/y is close to 1", and "x is negligible w.r.t. y"
can be either interpreted as "y + x is close to y", or by "y − x
is close to y". An extended approach to reasoning with relative
orders of magnitude expressed in terms of negligibility and
closeness relations is proposed, based on fuzzy relations.
Fuzzy numbers play the role of tolerance parameters
controlling the semantics of Ne and Cl. They are manipulated
at the symbolic level but can be interpreted in numerical
terms. This approach maintains a numerical semantics for the
symbolic calculus performed by the FOG’s rules. The
obtained conclusions are sound approximations of the actual
results and do not resort to linguistic approximation as in
[31]. The validity of the inference process is checked by
quantifying the errors made at each step.

The paper unifies, discusses and substantially develops the
contents of previous papers [6,7,8]. More particularly, it
provides a thorough analysis of the properties required for the
fuzzy relations modeling closeness and negligibility, a more
systematic and structured study of the inference rules
involving these relations and an extensive illustration of the
approach on various examples. The paper is organized as
follows. The next Section gives the necessary background on
the formal system FOG. This Section also serves as a
motivation for the use of fuzzy sets in qualitative reasoning
about relative orders of magnitude. In Section 3, we address
the problem of modeling the basic relations in FOG by means
of fuzzy relations expressed in terms of ratios of values. Then,

we show that the composition of the fuzzy relations
representing the order of magnitude relations Ne and Cl,
reduces to simple arithmetic computations on the fuzzy
numbers which express the semantics of the relations. A
minimal set of inference rules, based on relations Ne and Cl,
is established in Section 4. Simplified rules using symmetric
fuzzy numbers as tolerance parameters for the relations
appearing in conclusion parts, are discussed in Section 5.
These rules are still valid ones, but may provide (slightly)
more imprecise conclusions. Section 6 shows how qualitative
reasoning based on fuzzy relations expressing closeness and
negligibility can be used for simplifying equations, with a
view to solving them approximately. Section 7 deals with
incoherence detection in the set of equations and relations, if
any. Lastly, an application to qualitative probabilistic
reasoning is outlined; namely, a probabilistic-like default
logic with an infinitesimal semantics due to Adams [1] is
reconsidered using fuzzy closeness relations modeling
probability values "close to 1" in the usual sense. Due to
space limitations, not all the proofs of the results are included.
They are available in a report [17]. Some examples of proofs
are given to show the underlying ideas. Missing proofs are
similar to them.

II. THE FORMAL SYSTEM FOG

The FOG system [29] is based on three relations, which
capture closeness, negligibility and comparability and which
are respectively denoted by Cl, Ne and Co. These three
operators are:

x Ne y,  which stands for "x is negligible with
            respect to y";
x Cl y,   which stands for "x is close to y", and
            understood as "(x−  y) is negligible with
            respect to y";
x Co y,   which stands for "x has the same sign
             and order of magnitude as y". The
             underlying idea is that if x Ne z and
             x Co y then y Ne z.

FOG has one axiom (A1: x Cl x) and 31 inference rules.
Hereafter, we give some of these rules ([x]  denotes the sign
(+, −, 0) of the quantity x):

1) x Cl y ⇒  y Cl x       2) x Cl y ⇒ x Co y

3) x Cl y, y Cl z ⇒ x Cl z                    4) x Cl y, y Ne z ⇒ x Ne z

5) x Co y, y Co z ⇒ x Co z                 6) x Ne y, y Ne z ⇒ x Ne z

7) x Co y, y Cl z ⇒ x Co z 8) x Ne y ⇒ (x+y) Cl y

9) (x+y) Cl z, y Ne x ⇒ x Cl z     10) x Ne y, z Cl t ⇒ x⋅z Ne y⋅t

11) x Ne y, z Ne t                    12) x⋅y Cl z⋅t, x Cl z, [x]≠ 0

  ⇒ x⋅z Ne y⋅t                           ⇒ y Cl t

13) x⋅y Cl z⋅t, x Ne z, [z] ≠0           14) x⋅y Ne z⋅t, z Ne x,

[x] ≠0

        ⇒ t Ne y                                               ⇒ y Ne t.
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Note that both Cl and Co are equivalence relations (i.e.,
reflexive, symmetric and transitive), Co being coarser than Cl.
The FOG rules can be justified from the point of view of Non-
Standard Analysis. They describe how the three relations work
together and allow for the propagation of initial qualitative
information stated in terms of relations Ne, Cl and Co. Most
of the rules have a clear intuitive interpretation and need no
explanation. Note that they are not independent (e.g., rules 2
and 5 ⇒ rule 7). FOG has been used successfully in the
DEDALE system of analog circuit diagnosis [4] for reasoning
about current intensities which are not directly observable, and
in macroeconomics [3]. Nevertheless, FOG has several
limitations, as discussed in the introduction:

• No standard numerical interpretation of the three relations
Ne, Cl and Co is provided. It may create interface problems
with genuine numerical values. Namely, quantitative
information cannot be exploited by the method. However,
such information is often available and useful when solving
engineering problems. FOG cannot use it because it does not
relate orders of magnitude relations to actual orders of
magnitude.

• FOG does not take into account the fact that the extent to
which two numerical values satisfy the relations Ne, Cl and
Co is often a matter of degree and is also context-dependent
(for example, the relation "negligible" does not mean the same
thing in a preliminary-design context and a detailed-design
context). FOG is not capable of expressing a gradual change
from one order of magnitude to another in the computation
process, due to the absence of gradual transitions between
orders of magnitude [5].

• FOG cannot express that some relations are "weakly", or
"strongly", transitive rather than just transitive in the usual
sense. For instance, if "x is close to y" and "y is close to z", it
is not so true that "x is close to y" in any case (at least with a
too restrictive meaning of "close"). This exemplifies the
weakening of transitivity. In order to avoid undesirable
transitivity effects and obtain results at least approximately
valid with respect to a numerical semantics, Raiman [29] is
obliged to introduce arbitrary limitations on the chaining of
rules (by means of control techniques).

The use of fuzzy relations for modeling relations Ne, Cl and
Co can address the above problems. Especially, the symbolic
calculus of orders of magnitude in FOG can be equipped with
flexible, but standard numerical semantics.

III.   HANDLING RELATIVE ORDERS OF MAGNITUDE BY
MEANS OF FUZZY RELATIONS

Two points of view can be considered when comparing
numbers, hence orders of magnitude a and b on the real line.
We can evaluate to what extent the difference a − b is large or
small (in absolute value); this is the absolute comparative
approach. Or, we may use relative orders of magnitude, as
often done in engineering calculations (see for example
[23,24]), i.e., we evaluate to what extent the ratio a/b is close
to 1 or not. In the former view, approximate equality relations
as well as more or less strong inequality relations, can be

modeled by fuzzy relations R of the form µR(x, y) = µP(x −
y), which only depends on the value of the difference x −  y,
and where P is an appropriate fuzzy interval restricting x −  y.
This kind of fuzzy relations can offer a useful setting for
representing and processing temporal knowledge [12], since
temporal landmarks are absolute notions. This paper rather
focuses on the modeling of closeness and negligibility based
on ratios. Then approximate equality E is modeled by fuzzy
relations µE(x, y)=µM(x/y) where M is a fuzzy number
representing "close to 1".

A. Modeling Closeness and Negligibility

The idea of relative closeness (Cl) expresses the
approximate equality between two real numbers x and y and
can be captured by the following [11]:

Definition 3.1 (Closeness): The closeness relation (Cl) is a
reflexive and symmetric fuzzy relation such that

µCl(x, y) = µM(x/y),                           (1)

where µM is the characteristic function of a fuzzy number close
to 1, such that µM(1) = 1 (since x is close to x), and µM(t) = 0
if t ≤ 0. M is called a tolerance parameter.

The closeness relation (Cl) parameterized by M is denoted
Cl[M] . The last condition assumes that two numbers that are
close should have the same sign. This is natural in a ratio-
based view since division by 0 is undefined. It does not lead
to serious limitations in the expressiveness of qualitative
relative orders of magnitude. Indeed, the statement that a
variable is close to 0 (with an undefined sign) is an absolute
statement; moreover, difference-based relations would enable
us to express that x and y are close without having the same
sign necessarily, but would have other limitations. Closeness
is naturally symmetric i.e., µCl(x, y) = µCl(y, x). It implies that
M should satisfy:

µM(t) = µM(1/t).                            (2)

So, the support   M  = {t, µM(t) > 0} of the fuzzy number M is

of the form [1−ε, 1/(1−ε)] , with ε ∈ [0, 1[. Closeness
becomes strict equality for M = 1, i.e., µ1(x/y) = 1 if x = y
and µ1(x/y) = 0 otherwise. Symmetry is preserved under the
idempotent fuzzy set intersection:

Proposition 3.1: If two fuzzy numbers M and N verify the
symmetry property (2) then M ∩ N is symmetric.

Proof: Let us use α-cuts (i.e., Mα= {t, µM(t) ≥ α}). The
symmetry of M and N is equivalent to Mα  = [mα , 1/mα]  and
Nα  = [nα , 1/nα]  for all α > 0. We have

(M ∩ N)α = Mα ∩ Nα = [mα , 1/mα] ∩ [nα , 1/nα]
                   = [max(mα , nα),  min(1/mα , 1/nα)]

= [max(mα , nα),  1/max(mα , nα)] .
This means that M ∩ N is symmetric.                   ♦
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Note that if the membership functions µM and µN obey (2) and
are linear-shaped on [0, 1] or on [1, +∞), then either M ⊆ N
or N ⊆ M. Then, M ∩ N = M or N.

Let A be a fuzzy number with modal value 1 (µA(1) = 1),
and [1−λ, 1/(1−ρ)] its support, λ and ρ lying in [0, 1[. The
imprecision of a fuzzy number can be roughly evaluated by the
width of the support, i.e., (λ+ρ−λρ)/(1−ρ). However this
absolute evaluation is not appropriate when the fuzzy number
is used to model relative closeness. Here, we are interested in
the relative imprecision (with respect to 1), rather than in
absolute imprecision. Then, the level of imprecision of the
fuzzy number A below 1 should be the same as the level of
imprecision of the fuzzy number 1/A above 1. The relative
imprecision of A is evaluated as follows. First, the relative
imprecision of the left-hand side [1−λ, 1] of the support is
equal to λ. Moreover, the relative imprecision of the right
hand side [1, 1/(1−ρ)] of the support is the same as the
relative imprecision of [1−ρ, 1] and is ρ. The evaluations of
[1−λ, 1] and [1, 1/(1−ρ)] thus belong to the same scale [0, 1].
Now, the relative imprecision of A can be defined as max(λ,
ρ).

Now, we define negligibility from closeness. Consistently
with FOG [29], they can be related in the following way: "x is
negligible with respect to y" if and only if "x + y is close to
y" (see Rule 8 in section 2). It leads to define a fuzzy
negligibility relation as follows,

Definition 3.2 (Negligibility): Negligibility is a fuzzy
relation defined from a closeness relation Cl based on a fuzzy
number M via the following:

µNe(x, y) = µCl(x+y, y) = µM((x+y) / y).              (3)

The use of a ratio seems to be more natural than a difference
for modeling the idea of negligibility. An approximate
equality of the form µE(x, y) = µP(x−y) for modeling closeness
would lead to a definition of "negligible" which would not
depend on y (since (x + y) − y = x). In view of definition 3.2,
0 is always negligible with respect to any y ≠ 0; indeed µNe(x,
y) = µM(1 + x/y) = 1 if  x = 0, ∀y.

In the following, (x, y) ∈ Cl[M]  expresses that the pairs of
values (x, y) are flexibly restricted by the fuzzy set Cl[M] , and
likewise for (x, y) ∈ Ne[M].

Proposition 3.2: Let Ne[M]  be the negligibility relation
parameterized by M and defined in (3). Then, the following
equivalence holds

(a, b) ∈ Ne[M] ⇔ (−a, b) ∈ Ne[2ÁM] .

Proof: We have
µNe[M](x, y) = µM(1 + x/y)

                    = µM(2 − (1 − x/y)) = µ2ÁM(1 + (−x)/y),
since µf(M)(t) = µM(f−1(t)) using the extension principle [34] for

a one-to-one mapping f. The symbol Á denotes the extended
subtraction of fuzzy numbers [10]. Hence µNe[M](x, y) =
µNe[2ÁM](−x, y). This means that (−a, b) ∈ Ne[2ÁM] .     ♦

Closeness and negligibility could thus as well be related in
the following manner: "x is negligible w.r.t. y" if and only if
"y − x is close to y". This leads to the following representation
of negligibility:

µNE(x, y) = µCl(y − x, y) = µM((y − x)/y).               (4)

Denote by NE (resp. Ne) the negligibility relation defined
according to (4) (resp. (3)). Obviously, from definitions (3)
and (4), we obtain:

Proposition 3.3:  (a, b) ∈ Ne[M] if and only if (a, b)
∈ NE[2ÁM] .

Let us compare the fuzzy numbers M and 2ÁM from the
point of view of their imprecision. The support of M (resp.
2ÁM) is [1−ε, 1/(1−ε)] (resp. [(1−2ε)/(1−ε), 1+ε]). It is easy
to check that 2ÁM is relatively more imprecise than M,
although they have the same level of absolute imprecision.
Even if M is globally less imprecise than 2ÁM, observe that if
we only focus on values in [1, +∞), M ∩ [1, +∞) ⊇ (2ÁM) ∩
[1, +∞), while the other inclusion M ∩ [0, 1] ⊆ (2ÁM) ∩ [0,
1] holds on [0, 1]. Then, M is more precise than 2ÁM on one
side of 1, while the converse holds on the other side. But
although M = 1/M (i.e., M is symmetric), 2ÁM does not
preserves this symmetry. So, the equality between M and 2ÁM
can never hold (except for M = 1, which corresponds to the
strict equality). Thus, it is impossible to semantically
interpret Ne and NE by the same fuzzy number. However Ne
and NE are not conceptually very different, and, in practice, it
is not always clear if the user refers to Ne or to NE when
expressing negligibility statements. Our approach will try to
cope with this situation, especially in section 5 with the use
of inference rules having symmetric fuzzy parameters, for
which there is no longer any significant difference between Ne
and NE.

Besides, the following monotonicity property, useful in the
following, holds as a direct consequence of the definition of
fuzzy sets inclusion and intersection: 

Proposition 3.4: Let M and N be two fuzzy numbers, and R
be relation Cl or Ne. Then

i) If M ⊆ N and (a, b) ∈ R[M] then (a, b) ∈ R[N] .
ii) If (a, b) ∈ R[M]  and (a, b) ∈ R[N]

                               then (a, b) ∈ R[M∩N] .       

Finally, the fuzzy counterpart of the comparability relation
Co can be defined by

µCo(x, y) = 1 − max (µNe(x, y), µNe(y, x)),

since (a, b) ∈ Co ⇔ ¬((a, b) ∈ Ne or (b, a) ∈ Ne)), see [29].
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However, we shall not explicitly use Co in this paper since it
is not a basic relation like closeness (Cl) and negligibility
(Ne).

B. Additional Requirements on the Tolerance Parameter

The fuzzy number M which parameterizes closeness and
negligibility should satisfy more constraints, not only those
in (2) and definition 3.1:

• µNe(x, y) = 0 for x = y, since x is not negligible w.r.t.
itself. This is equivalent to enforcing µM(2) = 0, according to
(3). Since M is symmetric, µM(1/2) = 0 also holds. Thus, the
support of M should be included in [1/2, 2]. In other terms,
any α-cut of M is of the form [1−ε, 1/(1−ε)]  with ε ∈ [0,
1/2].

• It is also natural to require that if x is close to y, then
neither is x negligible w.r.t. y, nor is y negligible w.r.t. x.
This can be expressed by the following inequality

µCl(x, y) ≤ 1 − max (µNe(x, y), µNe(y, x)),              (5)

which corresponds to the fuzzy set inclusion Cl ⊆ Co (where
Co is the fuzzy comparability relation defined above). The
requirement in (5) leads to

Proposition 3.5: Condition (5) forces the support of M to
lie in the interval [(√5−1)/2, (√5+1)/2].

See the proof in the appendix. It means that each α-level cut
of M is of the form [1−ε, 1/(1−ε)]  with ε ∈ [0, (3−√5)/2]
(≅[0, 0.38]). The interval [(√5−1)/2, (√5+1)/2] (≅[0.61,
1.61]) will be called the validity interval and denoted V. Later
in section 3.4, we shall see another reason to have the support
of the tolerance parameter in this interval.

C. Composition of the Basic Relations and Transitivity
Issues

First recall that if R is a fuzzy relation defined on X×Y and
S a fuzzy relation on Y×Z, then the composition of R and S is
a fuzzy relation on X×Z denoted by R°S and defined by [35]:

µR° S(x, z) = supy∈Y min(µR(x, y), µS(y, z)).

It has been pointed out in [7] that performing the composition
of fuzzy relations whose membership functions depend only
on x/y, usually reduces to fuzzy arithmetic operations on fuzzy
numbers. For instance, the composition of fuzzy relations Cl
reads

µCl[M]° Cl[N] (x, z) =  supy min (µCl[M](x, y), µCl[N](y, z)) 
  = supy min (µM(x / y), µN(y / z))

     =  µM⊗N(x / z), observing that (x / y)⋅(y / z) = x / z
     =  µCl[M⊗N] (x, z),

where ⊗ denotes the product extended to fuzzy numbers,
according to extension principle [34][10]:  

µM⊗N (u) =    sup    min(µM (s), µN (t)).
                             s,t: u=s⋅t

Thus Cl[M] ° Cl[N] = Cl[M ⊗N].  In the following, we shall
omit '⊗' when writing products.

This type of computation is similar to what is done in
approximate reasoning [36]. Note that the 'sup-min' method is
also called "combination/projection" since, the pieces of
information are combined with 'min' operation and the result
of the combination is projected via the 'sup' in agreement with
possibility theory [10]. It yields the most restrictive fuzzy
relation (in the sense of fuzzy set inclusion) between the
variables on which the projection takes place, as deduced from
the available information.      

Proposition 3.6: Using the principle of fuzzy relation
composition, the following entailments can be semantically
justified

(a, b) ∈ Cl[M] and (b, c) ∈ Cl[N ⇒ (a, c) ∈Cl[MN]    (6)
(a, b) ∈ Ne[M] and (b, c) ∈ Ne[N]

⇒ (a, c) ∈ Ne[(MÁ1)(NÁ1)⊕1]                  (7)
(a, b) ∈ Cl[M] and (b, c) ∈ Ne[N]

⇒ (a, c) ∈ Ne[M(NÁ1)⊕1].                     (8)

Proof: See above the proof of (6). Proofs of (7) and (8) are
similar. Let us only consider the proof of (8). The
composition of fuzzy relations Cl and Ne reads

supy min(µCl[M](x, y), µNe[N](y, z))
= supy min (µM(x / y), µN(1 + y / z))
=         supu,v     min(µM(u), µN(v)),
       u(v–1)+1=1+x/z

= µM(NÁ1)⊕1(1 + x / z) = µNe[M(NÁ1)⊕1](x, z),                                    

where u = x / y and v = 1 + y / z, and  ⊕ denotes the addition
of fuzzy numbers [10]. So, (a, c) ∈ Ne[M(NÁ1)⊕1].

The entailments (6) to (8) are the fuzzy counterparts of the
following inference rules proposed by Raiman in FOG [29]:

(a, b) ∈ Cl and (b, c) ∈ Cl ⇒ (a, c) ∈ Cl          (9)
(a, b) ∈ Ne and (b, c) ∈ Ne ⇒ (a, c) ∈ Ne            (10)
(a, b) ∈ Cl and (b, c) ∈ Ne ⇒ (a, c) ∈ Ne.            (11)

However, the rules (9) to (11) are only syntactic
approximations of (6) to (8). Indeed we have:

Proposition 3.7: Assume that M ⊆ N without loss of
generality

Cl[M] ⊆ Cl[N] ⊆ Cl[MN] ,                     
(12)

Ne[N] ⊇ Ne[M] ⊇ Ne[(MÁ1)(NÁ1)⊕1],            (13)
Ne[N] ⊆ Ne[M(NÁ1)⊕1].                   (14)

Proof: See the appendix.

Due to (12), (6) expresses that the relation Cl is "weakly
transitive" rather than just transitive in the usual sense, i.e., a
may be less close to c than a is close to b and than b is close
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to c. By contrast, as shown by (7) and (13), the relation Ne is
"strongly transitive" rather than just transitive in the usual
sense, i.e., a is more negligible w.r.t. c than a w.r.t. b, and b
w.r.t. c.

The symbolic rules established in proposition 3.6 lead to a
formal manipulation of relations Cl and Ne, in agreement with
the fuzzy semantics. The tolerance parameters of the deduced
relations are syntactically computed from those underlying the
relations appearing in condition parts. However, the computed
tolerance parameters can be numerically interpreted in a
convenient way. Unfortunately, the produced relations are not
always parameterized by symmetric fuzzy numbers (e.g., in
rules (7) and (8), the fuzzy numbers (MÁ1)(NÁ1)⊕1 and
M(NÁ1)⊕1 are not symmetric in the sense of (2)). The
problem of the approximating such relations using symmetric
fuzzy numbers, will be addressed in section 5.

D. Controlling the Iteration of the Inference Process

It is worth noticing that some of inference rules (in
proposition 3.6) lead to relations in which the tolerance
parameters are less tight than the original ones. For instance,
rule in (6) enables to deduce that (a, c) ∈ Cl[MN]  where M ⊆
MN and N ⊆ MN. Then, when iterating the inference process,
it may happen that some of the provided results become too
imprecise and then the semantics in terms of closeness and
negligibility of the symbolically computed relations are lost.
Indeed, the semantic requirements of section 3.2 for the
supports of the parameters (i.e., they should lie in a validity
interval such as [(√5−1)/2, (√5+1)/2]), are not automatically
preserved. In practice, in order to cope with this problem, we
must start with sufficiently tight closeness relations so that
the support of the parameter remains in the validity interval
across inference steps. The index of relative imprecision,
introduced in section 3.1, can be used to measure the possible
degradation of the idea of closeness (and negligibility) in the
inference process. When the semantic requirements are
violated, the inference process must stop. More generally, we
can compute the α-level cuts (of the tolerance parameter of a
result) that remain included in the validity interval; then this
may be the basis for estimating the level of validity of this
result: The higher the level of the largest valid α-level cut, the
less valid the result (the result being fully valid when the
support is valid).

IV. A FUZZY ORDER OF MAGNITUDE INFERENCE SYSTEM

As shown by examples (6) to (8), it is possible to develop
inference rules where the closeness and negligibility relations
are manipulated at a symbolic level and the fuzzy numbers
which parameterize them are numerically computed. A set of
symbolic inference rules, based on the order of magnitude
relations Cl and Ne, has been proposed and justified in [7].
This rule set has been simplified by deleting redundant rules
[16][6,8]. The following basic set of rules can be obtained:

• Remarkable properties of Cl

R1 :  a ≤ b and c ≤ d and a/b ≤ c/d and (a, b) ∈ Cl[M]

⇒ (c, d) ∈ Cl[M]   (Cl-Weakening)

R2 :  (a, b) ∈ Cl[M] ⇔ (b, a) ∈ Cl[M]              (Symmetry)

R3 :  (a, b) ∈ Cl[M] and (c, d) ∈ Cl[N]
⇒ (a⋅c, b⋅d) ∈ Cl[MN]                     (Cl-Product Stability)

• Relationships between Ne and Cl

R4 :  (a, b) ∈ Ne[M] ⇔ (a+b, b) ∈ Cl[M]     (Interdefinition)

R5 :  (a, b) ∈ Cl[M]  
⇔ (max(a, b) − min(a, b), min(a, b)) ∈ Ne[M]

                             (Interdefinition)

• Remarkable properties of Ne

R6 :  (a, b) ∈ Ne[M] ⇔ (−a, b) ∈ Ne[2ÁM]     (Sign Change)

R7 :  if 0 ≤ a/b ≤ 1 and (b, c) ∈ Ne[M]
⇒ (a, c)  ∈ Ne[M]           (Ne-Left Reinforcement)

R8 :  if (a, b) ∈ Ne[M]  and 0 ≤ b/c ≤ 1
⇒ (a, c) ∈ Ne[M]          (Ne-Right Reinforcemen)

R9 :  (a, a+b) ∈ Ne[M] ⇒ (a, b) ∈ Ne[M2]
                                                  (Right Ne-Simplification)

R10 : (a, b) ∈ Ne[M] and (c, d) ∈ Ne[N]
⇒ (a⋅c, b⋅d) ∈ Ne[(MÁ1)(NÁ1)⊕1]

                                                        (Ne-Product Stability)

• Composition of relations Cl and Ne

R11 :  (a, b) ∈ Cl[M] and (b, c) ∈ Ne[N]
⇒ (a, c) ∈ Ne[M(NÁ1)⊕1]                  (Cl-Ne Cut)

R12 :  (a, b) ∈ Cl[M] and (c, a) ∈ Ne[N]
⇒ (c, b) ∈ Ne[M(NÁ1)⊕1]             (Ne-Cl Cut)

• Properties of Cl and Ne with respect to addition

R13 :  (a, c) ∈ Cl[M] and (b, c) ∈ Ne[N]
⇒ (a+b, c) ∈ Cl[M ⊕NÁ1]   (Stability w.r.t. Summation)

R14 :  (a+b, c) ∈ Cl[M] and (b, c) ∈ Cl[N]
⇒ (a, c) ∈ Ne[MÁN⊕1]                (Summation Cut)

R15 :  (a, c) ∈ Ne[M] and (b, a) ∈ Ne[N]
⇒ (a+b, c) ∈ Ne[(MÁ1)N⊕1]       (Ne-Sum Stability)

• Properties of Cl and Ne with respect to product

R16 :  (a, b) ∈ Cl[M] and (c, d) ∈ Ne[N]
⇒ (a⋅c, b⋅d) ∈ Ne[M(NÁ1)⊕1] .

                                                      (Cl-Ne Product Stability)

In the appendix the proof of rule R9 is given as an
illustration. Proofs of all other rules can be found in [17].
Except for rule R9, all rules enable to provide the most
restrictive relations since they can be justified by a direct
application of the combination/projection method [36]. Some
of these rules lead to relations parameterized by non-
symmetric fuzzy numbers, e.g., rules R6 and R10. By contrast,
rules R3 and R9 preserve the symmetry property of the original
tolerance parameters. Besides, a partial "converse" for rule R9,
namely rule (a, b) ∈ Ne[M] ⇒ (a, a+b) ∈ Ne[M], can be
established only if a and b are of the same sign, since we have
0 ≤ b/(a+b) ≤ 1. Then, by rule R8 we deduce that (a, a+b)
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∈ Ne[M] . Otherwise if a and b have different signs, we have 1
> 1+a/b > 1+a/(a+b) and then µM(1+a/b) > µM(1+a/(a+b)) ;
the rule does not hold in the converse direction.   

It should be emphasized that these rules are the fuzzy
counterparts of the FOG's rules. Moreover, they provide
precise numerical semantics for the symbolic calculus of
orders of magnitude performed by FOG system, since
enabling the local propagation of fuzzy numerical constraints
expressed in terms of Cl and Ne. The latter point enables the
conclusions of the symbolic inference system to be validated.
Reasoning carried out by these rules is characterized by the
separation of the symbolic processing of the labels of the
inferred relations from expressions of their semantics in terms
of membership functions.     

Some semantic counterparts of rules of FOG are not
available in our rule base. For instance, rule 9 of FOG (see
section 2), does not correspond to any rule in this base. This
is because this FOG rule is redundant (since FOG rules are not
independent, as already mentioned), while our rules R1 to R16

are independent. But it is possible to obtain the fuzzy
counterpart of rule 9, namely (a+b, c) ∈ Cl[M] and (b, a) ∈
Ne[N] ⇒ (a, c) ∈ Cl[MN] , by chaining rules R4, R2 and R3,
as shown hereafter. Now, several rules (i.e., rules R1, R7 to R9

and R12 to R15) have no syntactic counterparts in FOG. It
means that our rule base is more complete than the one of
FOG. In practice, when building an efficient symbolic
reasoning system, it may be interesting to exploit derived
rules even if they are redundant. Useful rules can indeed be
syntactically derived by the inference system.

Examples of Derived Rules:

• R17 :  If c≠0,  (a⋅c, b⋅c) ∈ Ne[M] ⇔ (a, b) ∈ Ne[M]
                                            (multiplicative cancellation for Ne).
It is a direct consequence of R4 and R3 noticing that c = d can
be written (c, d) ∈ Cl[1]  where µ1(x) = 0 if x ≠ 1 and µ1(1) =
1.

• R18 :  If c≠0,  (a⋅c, b⋅c) ∈ Cl[M] ⇔ (a, b) ∈ Cl[M]
                                          (multiplicative cancellation for Cl).

It is a direct consequence of R3 noticing also that (c, c) ∈
Cl[1] .

• The weak transitivity of Cl  
  R19 :  (a, b) ∈ Cl[M] and (b, d) ∈ Cl[N]

⇒ (a, d) ∈ Cl[MN]
is derived from R3. Namely, apply R3 for c = b. Then, apply
the cancellation rule R18.

• The strong transitivity of Ne
  R20 :  (a, b) ∈ Ne[M] and (b, d) ∈ Ne[N]

⇒ (a, d) ∈ Ne[(MÁ1)(NÁ1)⊕1] 
is derived from R10. Namely apply R10 for c = b. Then, apply
cancellation using R17.

 • The summation rule for the negligibility relation
  R21 :  (a, c) ∈ Ne[M] and (b, c) ∈ Ne[N]

⇒ (a+b, c) ∈ Ne[M⊕NÁ1]  
is a consequence of R13, substituting a + c to a in the first
condition, and then R4.

• The simplification rule for closeness with respect to
addition

R22 : (a+b, c) ∈ Cl[M] and (b, a) ∈ Ne[N]
⇒ (a, c) ∈ Cl[MN]   

is a consequence of R4, R2 and R19.

Remark: It is worth noticing that the behavior of the
negligibility relation NE (defined in (4)) essentially parallels
the one of Ne. Inference rules based on NE and Cl can be
syntactically derived from rules R1 to R16 using proposition
3.3. A detailed study of NE and the complete inference
machinery which underlies the symbolic reasoning based on
NE and Cl can be found in [17].

Starting with a knowledge base made of pieces of
information expressed in terms of Cl and/or Ne relations, as
follows

    
f j a1,L, an( ), g j a1,L, an( ) 

 
  

 
 ∈R j M j[ ],   j = 1, m

where fj and gj are functions involving arithmetic operations,
Rj represents relation Cl or Ne, and Mj is the tolerance
parameter underlying Rj. Assume that we are interested in
finding the resulting relation between two parameters ak and al

with k≠l. Answering this question can be envisaged by two
types of computation: local and global methods.

• Local method: it corresponds to separately applying the
inference rules on the available pieces of information in order
to deduce the relation pertaining to the question (as done in
rule-based expert systems). The procedure in this case is
computationally efficient but no guarantee exists usually about
the optimality in terms of precision of the provided result (as
shown in the example below). Generally, different results can
be obtained for the same question from different chainings of
the inference rules. The conjunctive combination of partial
results restricting the possible values of ratios of interest
enables us to refine the conclusion. One merit of the local
method is its explanation capabilities since rules triggered in
the reasoning steps can be retrieved.

• Global method: It consists in applying the
combination/projection technique [36] to the set of fuzzy
constraints defining the problem. As already explained in
section 3.3, this technique consists first in performing the
combination of all pieces of information and then projecting
the result on the domains of the parameters we are interested
in. Thus, considering the above problem, the relation between
ak and al can be obtained by projecting the relation ∩j= 1,…mRj

on the cartesian product of the domains of ak and al. The
result provided by this method is optimally tight (in terms of
precision) since all the existing constraints are exploited in the
computation. Nevertheless, this approach is often
computationally intractable in practice, and the explanation
capabilities of the local method are lost.  

Example: Let us consider the following constraints

(i) (a+b, c) ∈ Cl[M] ,  (ii)  (b, a) ∈ Ne[M].
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The question is to compare the orders of magnitude of b and
c. The two types of computation lead to the following results:

- Local computation: Only two rules need to be chained to
get the results, but there are two paths.

Chaining 1:
{(i), (ii)}  ⇒R22

   (a, c) ∈ Cl[M2]                      (15)
{(15), (ii)} ⇒R12

  (b, c) ∈ Ne[M2(MÁ1)⊕1].       (16)

Chaining 2:  
{(i), (ii)}  ⇒R22

  (a, c) ∈ Cl[M2]                   (17)
{(i), (17)} ⇒R14

  (b, c) ∈ Ne[MÁM2⊕1].            (18)

Now by combining (16) and (18), we obtain the following
relation (due to proposition 3.4):

 (b, c) ∈ Ne[K] ,                                                  (19)
with K = M2(MÁ1)⊕1 ∩  MÁM2⊕1.        

⇔ Global computation: For this example, the
combination/projection method writes

supx min(µCl[M](x+y, z), µNe[M](y, x))
= supx min(µM((x+y)/z), µM(x/(x+y))),  (due to (2))
= supx min(µM((x+y)/z), µM(1 −  y/(x+y)))
=  supx min(µM((x+y)/z), µ(1ÁM) (y/(x+y)))
= µNe[M(1ÁM)⊕1](y , z),  

observing that ((x+y)/z)⋅(y/(x+y)) + 1 = y/z + 1. Then, we
obtain

(b, c) ∈ Ne[M(1ÁM)⊕1].                             (20)

The result provided by (19) is less restrictive than the one
obtained by (20) since K ⊇ M(1ÁM)⊕1. The proof of this
fuzzy set inclusion can be easily checked on the α-cuts. See
[17] for more details. This example shows that local
computations do not guarantee the optimal precision of
results. However, it may happen that the results provided by
the two types of computation are the same (as it is the case for
example 6.1 in section 6, see also [17]).

V. SYMMETRIC APPROXIMATIONS OF INFERENCE RULES

In the inference rules of section 4, some tolerance
parameters underlying the relations appearing in conclusion
parts are expressed in complex, hence unwieldy, symbolic
forms. Moreover, as stressed in sections 3.3 and 4, obtained
parameters are not symmetric fuzzy numbers (in the sense of
(2)). For instance, even if M and N are both symmetric in
rules R6, R10, R11, R13 and R14, the symmetry property is no
longer verified for the parameters 2ÁM, (MÁ1)(NÁ1)⊕1,
M(NÁ1)⊕1, M⊕NÁ1 and MÁN⊕1 respectively. Then, some
difficulties arise when reasoning symbolically with these
rules. For instance, we cannot use rule R2 if the parameter of
relation Cl is not symmetric. Moreover, inference  rules which
exploit the symmetry of Cl, may lead to undesirable and
unexpected results when chaining them.

In practice, to make the chaining of the inference rules more

valid, symmetric approximations of rules R6, and R10 to R16

are defined. These new rules are less precise but the tolerance
parameters underlying the relations appearing in conclusion
parts remain symmetric. The results provided by these rules
are sound, but not locally complete. In the following, the
symmetric approximation of a rule Rn is denoted (Rn).  For
this purpose, we need the following lemma:

Lemma 5.1: The following fuzzy sets inclusions hold:

2ÁM ⊆ M2,
(MÁ1)(NÁ1)⊕1 ⊆ M∩N,

    M(NÁ1)⊕1 ⊆ MN,
(MÁ1)N⊕1 ⊆ MN.

Proof: see [17].  

Now by proposition 3.4 and the above lemma, the following
fuzzy inclusions hold:

Ne[2ÁM]⊆ Ne[M2] ,                                             (21)
Ne[(MÁ1)(NÁ1)⊕1] ⊆ Ne[M∩N] ,                   (22)
Ne[M(NÁ1)⊕1] ⊆ Ne[MN],               (23)
Ne[(MÁ1)N⊕1] ⊆ Ne[MN].                      (24)

Clearly, if M and N are symmetric then, the parameter MN is
symmetric too (since the product operation preserves this
property).

Theorem 5.1: The rules R6, R10 to R12 and R15 to R16 are
soundly approximated by the following symmetric variants
respectively:

(R6) :    (a, b) ∈ Ne[M] ⇒ (−a, b) ∈ Ne[M2] ,
(R10) :  (a, b) ∈ Ne[M] and (c, d) ∈ Ne[N]
           ⇒ (a⋅c, b⋅d) ∈ Ne[M∩N] ,
(R11) :   (a, b) ∈ Cl[M] and (b, c) ∈ Ne[N]
           ⇒ (a, c) ∈ Ne[MN],
(R12) :   (a, b) ∈ Cl[M] and (c, a) ∈ Ne[N]
           ⇒ (c, b) ∈ Ne[MN],
(R15) :   (a, c) ∈ Ne[M] and (b, a) ∈ Ne[N]
           ⇒ (a+b, c) ∈ Ne[MN],
(R16) :   (a, b) ∈ Cl[M] and (c, d) ∈ Ne[N]
           ⇒(a⋅c, b⋅d) ∈ Ne[MN].

Proof: Obvious from (21-24).

Now when looking for approximations of rules R13 and R14,
it is easy to check (using α-cuts) that none the fuzzy set
inclusions M⊕NÁ1 ⊆ MN and MÁΝ⊕1 ⊆ MN holds.
However, approximations of R13 and R14 can be obtained as
follows (see [17]):

• Symmetric approximation of R13 : In condition part of R13

where (b, c) ∈ Ne[N] appears, b and c can either have the same
or different signs. By considering these two cases, we have:

If b/c ≥ 0 then R13 can be approximated by      
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(R13a) :  (a, c) ∈ Cl[M] and (b, c) ∈ Ne[N]
⇒ (a+b, c) ∈ Cl[MN] .

If b/c < 0 then R13 can be approximated by      
(R13b) :  (a, c) ∈ Cl[M] and (b, c) ∈ Ne[N]

⇒ (a+b, c) ∈ Cl[M 2N] .

• Lastly, the symmetric approximation of R14 can be
established taking also into account the signs of a and c, in
(a+b, c) ∈ Cl[M]  which appears in the condition part. Then

If a/c ≥ 0 (resp. a/c < 0 and b/c ≤ 1) then R14 can be
approximated by

(R14a) :  (a+b, c) ∈ Cl[M] and (b, c) ∈ Cl[N]
⇒ (a, c) ∈ Ne[MN]. 

If a/c < 0 and b/c >  1 then R14 can be approximated by
(R14b) :  (a+b, c) ∈ Cl[M] and (b, c) ∈ Cl[N]

⇒ (a, c) ∈ Ne[(MN)2] . 

Remark: The precision of the results using locally complete
rules may slightly differ according to whether Ne or NE is
used. However, once we consider the symmetric
approximations of the rules, almost the same results are
obtained. Indeed, rules expressed in terms of NE and Cl can
be approximated using the same symmetric fuzzy numbers as
rules expressed in terms of Ne and Cl, except for rule R13 and
its counterpart [17]. Even in this case, the difference is slight
since, in approximation of R13 we obtain the symmetric
tolerance parameter M2N when b/c < 0 (see (R13a)); while for
its counterpart in terms of NE we obtain (MN)2. Now,
substituting (MN)2 for M2N in rule (R13a) (since (MN)2 ⊇ M2N)
then, we get the same approximate rules based on Ne and Cl,
as those based on NE and Cl.

The use of symmetric variants of R6 and R10 to R16 enables
the inference rules to be chained without restriction or caution
since their conclusion parts are negligibility or closeness
expressions involving only symmetric fuzzy numbers.
Nevertheless, the imprecision of the results provided by these
variants, may increase a little faster than when using the rules
in their locally complete forms, since the tolerance parameters
computed with the former are less tight than those computed
with the latter. So the use of the symmetric approximate
inference rules many lead to shorter valid deduction chains (in
the sense of section 3.4), hence a somewhat less powerful
order of magnitude reasoning tool.

VI. APPROXIMATE  SOLVING OF A SET OF EQUATIONS

In this section, we demonstrate, through a series of simple
examples, how the proposed inference system can be used for
simplifying complex equations involving only arithmetic
operations, with a view to solving them approximately, as
done in physics, or in chemistry. Such equations, involving
arithmetic expressions are often supplemented by assumptions
expressed in terms of negligibility and closeness relations.
The validity of a deduction can be measured in the fuzzy
setting. Namely suppose a statement (x, y) ∈ Cl[f(M)]  is
obtained with some tolerance parameter f(M) derived using

symbolic computations. Then, the statement is no longer
completely valid if the support of f(M) no longer lies in the
validity interval V. The validity degree  of the conclusion can
be measured as 1 – µf(M)((√5−1)/2). Indeed only the α−cuts of
f(M) for α ≥ µf(M)((√5−1)/2) can be used as valid tolerance
parameters for the statement (x, y) ∈ Cl[f(M)] . Note that
Mavrovouniotis [22] makes use of an external belief function
for assessing the validity degree of a conclusion; here such
degree is a direct by-product of the fuzzy semantics.

Example 6.1: It consists of three constraints:

(i) (a −  b)/(c − d) = 1,  (ii) (d, b) ∈ Cl[M] ,      (iii)
(b, a) ∈ Ne[Ν] .

The problem is to compare the orders of magnitude of
quantities a and c. The applying of inference rules on the
available pieces of information, leads to the following
derivations:

(ii) ⇒R4
  (d−b, b) ∈ Ne[M]

         ⇒  (c – a, b) ∈ Ne[M],  (due to (i))                    (25)
{(25), (iii)} ⇒(R20)  (c−a, a) ∈ Ne[M∩N]

          ⇒R4
  (c, a) ∈ Cl[M∩N] .                   (26)

Then, c is close to a in the sense of fuzzy set M∩N. Note that
for M = N, the relation (26) reads (c, a) ∈ Cl[M] . Now, if a
= 100, then we can come up with an estimate of the quantity
c under the form of a fuzzy number F, namely:

µF(z) = µCl[M](z, 100) = µM(z/100) = µ(100M)(z),  

i.e., F = 100M, which can be easily computed. It points out
that fuzzy relations can provide a natural framework for
interfacing symbolic information and numerical data. It is
worth noticing that this example can be solved using another
chaining of rules. For instance, chaining (R11), (R6), (R21) and
R4 infers (c, a) ∈ Cl[MN3]  (resp. (c, a) ∈ Cl[ M2N4]) if b/a ≤
0 (resp. b/a > 0). In both cases, the obtained results are clearly
less precise than (26). Due to the possibility of various
reasoning paths leading to the result, one of the main issues,
that the forthcoming implemented system [18] must cope
with, is to find the best chaining of rules that enables the
most precise result to be inferred.

Example 6.2: This is a more elaborate example in
biochemical engineering domain, taken from [25]. It discusses
the so-called Michaelis-Menten kinetics and the different
modes of inhibition of an enzymatic reaction. Note that all
parameters manipulated in this example are positive. In the
case of competitive inhibition, the kinetic analysis of isolated
enzymatic reaction is described by the following equation (see
[25] for more details):

r = (Vmax Ki  [A]) / (Ki  [A] + Km ( Ki   + [A])) ,          (27)

where A, Km, B, Ki, r and Vmax denote the substrate, the
Michaelis constant, the inhibitor, the inhibition constant, the
rate of biochemical reaction and the maximum enzyme
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turnover respectively. [x]  means the concentration of x. In
order to analyze the order of magnitude of the rate of reaction,
several assumptions on orders of magnitude relations would
be made by the chemist. Let us assume that the following
qualitative assumptions are supposed to be hold:

 (i) ([B], Ki) ∈ Ne[M] , (ii)  ([A], Km) ∈ Ne[M].

Our objective is to compare the orders of magnitude of the rate
r and Vmax. First let us rewrite the equation (27) under the
form

r / Vmax =   (Ki  [A]) / (Ki  [A] + Km ( Ki   + [A])) .       (28)

Now, the following derivations can be obtained 

(i) ⇒R4
   (Ki +[B], Ki) ∈ Cl[M]                       (29)

(29) ⇒R2
   (Ki  , Ki  +[B]) ∈ Cl[M]                   (30)

{(30), (ii)} ⇒(R16)   (Ki[A], Km (Ki  +[B])) ∈ Ne[M2]
                                                             (31)

(31) ⇒R8
   (Ki[A], Ki[A]+K m(Ki +[B])) ∈ Ne[M2] ,  (32)

since 0 ≤ Km (Ki  +[B]) / (Ki[A]+K m(Ki +[B])) ≤ 1. Now by
(28), the pair (r,Vmax) should satisfy the same fuzzy relation,
i.e.,  (r, Vmax) ∈ Ne[M2].  This means that the rate of the
biochemical reaction r is negligible w.r.t. the maximum
enzyme turnover Vmax , in the sense of the fuzzy set M2. Note
that for this example the solution found in [25] is also r <<
Vmax i.e., r is much smaller than Vmax. The benefit of our
approach is to provide a fuzzy numerical estimate for the
extent of the negligibility of r w.r.t. Vmax. Letting   M  = [1−ε,

1/(1−ε)] , the support of M2 is [(1−ε)2, 1/(1−ε)2] . Now, if ε =
0.1 then [(1−ε)2, 1/(1−ε)2] ≅ [0.81, 1.23] ⊂ V. Then, the
validity of the obtained negligibility relation is preserved. In
contrast, if ε = 0.25 then [(1−ε)2, 1/(1−ε)2] ≅ [0.56, 1.77] ⊄
V. Then, the result no longer expresses negligibility (see
section 3.4).

Example 6.3: Consider the example of a counter−current
heat exchanger described in [23,24]. A heat−exchanger is a
device that transfers heat from a hot stream to a cold stream.
The important parameters in the analysis of the device are the
molar heat KH, the molar flowrate FH of the hot stream, the
molar heat KC and the molar flowrate FC of the cold stream.
Four temperature differences are defined: DTH is the
temperature drop of the hot stream, DTC is the temperature
rise of the cold stream, DT1 is the driving force at the left end
of the device, and DT2 is the driving force at the right end of
the device. The two following equations hold (see [23] for
more details):

DTH−DT1−DTC+DT2 =  0,                    (33)
DTH⋅KH⋅FH = DTC⋅KC⋅FC.                   (34)

The first one is a consequence of the definition of the
temperature differences, and the second one is the energy
balance of the device. The following assumptions are made

and expressed as order of magnitude relations:

(i) (DT2, DT1) ∈ Cl[M] ,   (ii)  (DT1, DTH) ∈ Ne[N],
(iii)  (KC, KH) ∈ Cl[M] .

The problem is to find a relation between the parameters FC
and FH. From the available pieces of information, we can
derive the following results:

(i) ⇒ (DT1+DTC−DTH, DT1) ∈ Cl[M] , (due to (33))
                                                                           (35)

(35) ⇒R4
  (DTC−DTH, DT1) ∈ Ne[M]               (36)

{(36), (ii)} ⇒(R20)  (DTC−DTH, DTH) ∈ Ne[M∩N]
                                                                           (37)

(37) ⇒R4
  (DTC, DTH) ∈ Cl[M∩N]                   (38)

{(38), (iii)} ⇒R3
                          (DTC⋅KC, DTH⋅KH) ∈ Cl[M(M∩N)],
                                                                           (39)

and finally since DTC⋅KC/DTH⋅KH = FH/FC, see equation
(34), the pair (FH, FC) should satisfy the same fuzzy relation,
i.e., 

(FH, FC) ∈ Cl[M(M∩N)].                       (40)

It means that the molar flowrate FH of the hot stream is close
to the molar flowrate FC of the cold stream in the sense of the
fuzzy set M(M∩N). Note that with approximately the same
assumptions, the relation between FH and FC provided in
[23,24] is FC ~<⋅⋅>~ FH which means that FC is
approximately equal to FH. Again, the benefit of our approach
is to give a fuzzy numerical estimate for the closeness
obtained in (40).

For M = N, we have M(M∩N) = M2. Then, the support of
M(M∩N) is of the form [(1−ε)2, 1/(1−ε)2]  if   M = [1−ε,

1/(1−ε)] . We can check that for ε = 0.05 the validity of the
closeness relation obtained in (40), is preserved (since [(1−ε)2,
1/(1−ε)2] ≅ [0.90, 1.10] ⊂ V). However, for ε = 0.24 we
have [(1−ε)2, 1/(1−ε)2] ≅ [0.57, 1,73] ⊄ V  and the result is
no longer valid.

VII.  INCOHERENCE DETECTION IN A SET OF EQUATIONS    

In this section, we show how to detect a possible
incoherence in a set of equations and closeness and
negligibility statements by means of the order of magnitude
reasoning system, and reduction ab absurdo. The idea is that,
if the statements (x, y) ∈ Cl[M]  and (x, y) ∈ Ne[M] can be
inferred from the set of equations and the order of magnitude
assumptions, then an inconsistency has been detected. It can
useful for invalidating qualitative assumptions made by
experts if these assumptions can be proved contradictory. In
section 3.2, it has been proposed as a natural property of a
well-behaved system that statements (x, y) ∈ Cl[M]  and (x, y)
∈ Ne[M] should be contradictory. However since they depend
on the choice of the tolerance parameter, it enforces a
constraint expressed by inequality (5). However, this
condition only ensures that µCl[M](x, y)+ µNe[M](x, y) ≤ 1.

An apparently more stringent condition can actually be
enforced, namely that (a, b) ∈ Ne[M]  and (a, b) ∈ Cl[M]
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should be absolutely contradictory. In other words
min(µCl[M](x, y), µNe[M](x, y)) = 0, ∀x, y.  The following result
is obtained:

Proposition 7.1: (a, b) ∈ Ne[M]  and (a, b) ∈ Cl[M]  are
absolutely contradictory if and only if the support   M  lies in V

= [(√5−1)/2, (√5+1)/2].

Proof: Let   M = [1-ε, 1/(1-ε)] . (x, y)∈ Cl[M]  ⇔ 1-ε ≤ x/y

≤ 1/(1-ε). (x, y) ∈ Ne[M] ⇔ 1-ε ≤ 1 +  x/y ≤ 1/(1-ε). So,
min(µCl[M](x, y), µNe[M](x, y)) = 0 if and only if  (1 – ε) > 1/(1-
ε) − 1=ε/(1-ε). This is equivalent to ε2-3ε+1 > 0. This
inequality is precisely the one obtained from condition (5).  
♦

So, condition (5) maintains a strict contradiction between  (a,
b) ∈ Ne[M] and (a, b) ∈ Cl[M] . As a consequence, if (a, b)
∈ Ne[M] and (a, b) ∈ Cl[N]  hold for two tolerance
parameters in the validity interval, they are also inconsistent.
So the inference system can detect inconsistencies from
negligibility and closeness statements involving different
tolerance parameters. The validity of the incoherence detection
can be measured as 1 – max(µM((√5−1)/2), µN((√5−1)/2)).

Remark: Proposition 7.1 is also valid with the relation NE
[17].

Example 7.1: Consider the constraints

(i) (b/c − a/b, 1) ∈ Cl[M] ,  (ii)  (a, b) ∈ Ne[M],    
(iii)  (b, c) ∈ Ne[M].     

Is the system incoherent? For the sake of simplicity, let us
assume that all the parameters are positive. Then, the
following new relations can be deduced:

(i) ⇒R18
  (b2/c – a, b) ∈ Cl[M]                   (41)

{(41), (ii)}  ⇒(R13a)  (b
2/c, b) ∈ Cl[M2]                (42)

(42) ⇒R18
  (b, c) ∈ Cl[M 2] .                      (43)

Now, relations (iii) and (43) can lead to an incoherence in the
system. Indeed the level cuts of M and M2 are of the form
[1−ε, 1/(1−ε)]  and [(1−ε)2, 1/(1−ε)2]  respectively. In order to
semantically establish the contradiction we need (1−ε)2 >
(√5–1)/2. It means that 0 < ε < 0.22. Thus, the initial system
is incoherent if the tolerance parameter obeys this condition.
The degree of validity of the conclusion stating this
incoherence is 1 – µM2 ((√5−1)/2) = 1 – µM(0.78).

 Example 7.2 (Inspired from [2] and [27]):    
This is a practical problem from the domain of acid-base

chemistry. An important task in this domain is to find the
concentration of H+ ions in a solution. The concentration of
ions in solution depends on the dynamic equilibrium resulting
from competing chemical reactions. Consider dissolving an
acid, AH, in water. The two reversible reactions that occur,
corresponding to the ionization of AH and H2O, are given by

(see [27] for more details):

AH            H+ + A−

H2O            H+ + OH−.    

The equilibrium concentrations of the three ions (H+, OH−, A−)
and the acid (AH) are determined by the following set of
equations:

Charge balance: [H+] = [A−] + [OH−]                
(44)

Mass balance: Ca = [A−] + [AH]                        (45)
Acid ionization equilibrium: Ka [AH] = [A−] [H+]       

(46)
Water ionization equilibrium: Kw = [OH−] [H+] .         (47)

Square brackets denote concentrations; Ca = 10−5 is the initial
concentration of the acid; Kw= 10−14 is the ion product of
water; and Ka = 10−2 is the ionization constant of the acid.

Let S be the set of equations (44) to (47). It has been
pointed out in [2][27][30] that solving S analytically for [H+]
results in a cubic equation which is difficult to solve. An
alternative to this approach is to use the order of magnitude
reasoning. For example, a chemist might guess that the acid is
strong, so that [OH−]  and [AH]  are negligible w.r.t. [A−]
(these qualitative assumptions can be used in simplifying and
solving S). Assume other assumptions are made such as:

(i) ([OH−], [A−]) ∈ Cl[M] , (ii)  ([AH], [A−]) ∈ Cl[M] .

Now, the system to solve is formed of S and relations (i), (ii).
The rules applied on the available pieces of information,
enable us to obtain:

  
(ii)  ⇒ ([H+], Ka) ∈ Cl[M]   (by (46))                   (48)
(ii)  ⇒R2

  ([A–], [AΗ]) ∈ Cl[M]                         (49)
{(i), (49)} ⇒R19

  ([OH−], [AH]) ∈ Cl[M2]               (50)
(50) ⇒R1

  ([OH−]+[A −], [AH]+[A −]) ∈ Cl[M2]          (51)
(51) ⇒ ([H+], Ca) ∈ Cl[M2]   (by (44) and (45))            (52)
(48) ⇒ ([H+], Ka) ∈ Cl[M2] .  (due to proposition 3.4)    

                                                                           (53)

Thus, the system proves that concentration [H+]  is at the same
time close to 10−5 and 10−2 (in the sense of the fuzzy set M2),
according to (52) and (53). This is impossible in the chemical
context. Therefore, the system formed of S and relations (i) to
(ii ), is incoherent. This situation occurs because the
assumptions (i) and (ii) that the chemist has made are wrong,
and should not be used for simplifying S in order to compare
the relative orders of magnitude of ionic concentrations or
exogenous quantities like Ca, Kw and Ka.

Other assumptions can be made in order to solve S. For
instance, the assumptions ([OH−], [A−]) ∈ Ne[M] and ([AH],
[A−]) ∈ Ne[M] do not lead to a contradiction, and the solution
to S can be obtained as follows: since [H+] / Ka = [AH] / [A−]
then ([H+], Ka) and ([AH], [A−])  should satisfy the same fuzzy



2000-148R2 12

relation. Then, we obtain ([H+], Ka) ∈ Ne[M]  which means
that the concentration of H+ ions is negligible w.r.t. Ka in the
sense of the fuzzy set M.   

The above examples show that qualitative reasoning on
fuzzy order of magnitude relations Cl and Ne can mimic the
lines of reasoning of an individual who tries to simplify
complex equations and approximatively solve them. The
proposed inference system can provide a useful validation tool
in such tasks.

VIII.  APPLICATION TO REASONING WITH QUALITATIVE
PROBABILITIES

After considering a series of examples for illustrating the
applicability of the approach, we consider a generic application
which deals with the handling of small probability values in
an exception-tolerant reasoning. Adams [1] has proposed a
probabilistic inference system based on the following three
inference rules:

Bayes rule:     A → B , (A∩B) → C ⇒ A → C
Triangularity:  A → B , A → C ⇒ (A∩B) → C
Disjunction:    A → C , B → C ⇒ (A∪B) → C.

They are sound and complete when A → B is understood as
"the conditional probability P(BA) is infinitely close to 1".
These rules have been used in [28] to build a probabilistic-
inference-like default logic. In this section, we study the
counterparts of these rules with a fuzzy, non-infinitesimal,
semantics (in order to cope with the graduality of the idea of
closeness). In this respect A → B will be interpreted as
"almost all As are Bs"; in other words P(BA) is close to 1 in
the sense of closeness relation Cl. Note that an interval-based
semantics has been already proposed in [13]. "P(BA) close to
1" can then be written (P(BA),1) ∈ Cl[M] . As P(BA) =
P(A∩B) / P(A), we have (by R18):

(P(BA),1) ∈ Cl[M] ⇔ (P(A∩B), P(A)) ∈ Cl[M] .   (54)

A. Analysis of Bayes Rule

The rule reads

A → B, (A∩B) → C ⇒ A → C.

It has been shown in [9] that:

P(CA) ≥ P(BA) ⋅ P(CA∩B) = P(C∩A∩B) / P(A).     (55)

By hypothesis, A → B and (A∩B) → C respectively read:

(P(A∩B), P(A)) ∈ Cl[M] ,                   (56)
(P(C∩A∩B), P(A∩B)) ∈ Cl[N] .               (57)

Now applying the inference machinery of section 4 to the
above assumptions, we obtain the following derivations:

{(57), (56)} ⇒R19
  (P(C∩A∩B), P(A)) ∈ Cl[MN]     (58)

(58) ⇒R18
  (P(C∩A∩B) / P(A), 1) ∈ Cl[MN]        (59)

(59) ⇒R1
  (P(CA), 1) ∈ Cl[MN] .    (using (55))       (60)

In the last derivation, we have applied a simplified form of
rule R1, i.e.,
 

1 ≥ y ≥ x > 0 and (x, 1) ∈ Cl[M] ⇒ (y, 1) ∈ Cl[M] . (61)

In terms of intervals [13], obtained as α−cuts of M (resp.
N), (60) expresses that P(CA) ∈ [(1 − ε)(1 − η), 1] = [1
− (ε + η − εη), 1]. The latter result coincides with the one
obtained by Gilio in [15] for probabilities restricted by
intervals.

B. Analysis of the Triangularity Rule

The rule reads

A → B, A → C ⇒ (A∩B) → C.

The best lower bound of P(CA∩B) knowing P(BA) and
P(CA), is given in [9]:

P(CA∩B) ≥ max [0, 1− ((1−P(CA)) / P(BA))].  (62)

Note that:

1 − ((1−P(CA)) / P(BA))
            = (P(A∩B) + P(C∩A) – P(A)) / P(A∩B).     (63)

By hypothesis, we have:

(P(A∩B), P(A)) ∈ Cl[M] ,                   (64)
(P(C∩A), P(A)) ∈ Cl[N] .                   (65)

From the above hypothesis, we can also apply the inference
rules as follows:

(64) ⇒R2
  (P(A), P(A∩B)) ∈ Cl[M]                         (66)

(65) ⇒R4
  (P(C∩A) – P(A), P(A)) ∈ Ne[N]                   (67)

{(66), (67)} ⇒R12
 

                 (P(C∩A) – P(A), P(A∩B)) ∈ Ne[M(NÁ1)⊕1]
                                                                    (68)

(68) ⇒R4
          (P(C∩A) – P(A)+ P(A∩B), P(A∩B)) ∈ Cl[M(NÁ1)⊕1]

                                                                 (69)
(69) ⇒R18

 
  ((P(C∩A)+P(A∩B)–P(A)) / P(A∩B) , 1) ∈ Cl[M(NÁ1)⊕1] 

                                      (70)
(70) ⇒ (P(CA∩B), 1) ∈ Cl[M(NÁ1)⊕1].                   (71)

                                           (using (61), (62) and (63))

Using an α−cut of M = [1−ε , 1/(1−ε)]  (resp. N = [1−η,
1/(1−η)]), (71) expresses that P(CA∩B) ∈ [1−ε , 1/(1−ε)] ⋅
[−η, η/(1−η)] + 1, from which we deduce that

P(CA∩B) ∈ [1 − η/(1−ε), 1],
 

which corresponds to a result in [13]. Also, the latter result
coincides with the one of Gilio in [15].
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C. Analysis of the Disjunction Rule

The rule reads

A → C, B → C ⇒ (A∪B) → C.

The best lower bound of P(CA∪B) in terms of P(CA) and
P(CB) is given by [14]:
P(CA∪B) ≥ P(CA) ⋅ P(CB) / (P(CA) +
                                             P(CB) – P(CA) ⋅ P(CB))

  = 1 / (1/P(CB) + 1/P(CA)−1).                 (72)

This bound improves the one used in [9]:

P(CA∪B) ≥ max(0, P(CA) + P(CB) – 1).

Indeed on [0, 1], ab / (a+b−ab) ≥ max(0, a+b−1) holds. The
following relations are assumed:

(P(CA), 1) ∈ Cl[M] ,                           (73)
(P(CB), 1) ∈ Cl[N] .                         (74)

Now, from (73) and (74), we can derive the following
relations:

(73) ⇒R18,R2
  (1 / P(CA), 1) ∈ Cl[M]                       (75)

(74) ⇒R18,R2
  (1 / P(CB), 1) ∈ Cl[N]                       (76)

(76) ⇒R4
  (1 / P(CB) − 1, 1) ∈ Ne[N]                       (77)

{(75), (77)} ⇒R13
 

  (1 / P(CA) + 1 / P(CB) − 1, 1) ∈ Cl[M⊕NÁ1]
               (78)

(78) ⇒R18
    (1, 1 / (1/P(CA) + 1 / P(CB) – 1)) ∈ Cl[M⊕NÁ1]

                                   (79)
(79) ⇒ (1, P(CA∪B)) ∈ Cl[M⊕NÁ1].                       (80)                      

(using (61) and (72))
    

Since the fuzzy number M⊕NÁ1 is not symmetric, then (80)
implies that

(P(CA∪B), 1) ∈ Cl[1/(M⊕NÁ1)].                   (81)

Now, in terms of α-cuts, (81) writes P(CA∪B) ∈
[(1−ε)(1−η)/(1−εη), 1/(1−ε−η)] , from which we deduce that

P(CA∪B) ∈ [(1−ε)(1−η)/(1−εη), 1]
                = [1 − (ε+η−2εη) / (1−εη), 1],
  
which exactly coincides with the optimal result obtained by
Gilio in [15].

Thus, using our inference system,  we can derive the
following three rules:

A→M B, (A∩B)→N C ⇒ A→MN C
A→M B, A→N C ⇒ (A∩B)→M(NÁ1)⊕1 C
A→M B, B→N C ⇒ (A∪B)→1/(M⊕NÁ1) C,

where A→M B reads (P(BA),1)∈ Cl[M] . These rules enable
to give a fuzzy semantics to Adams' qualitative probabilistic
logic, and to numerically assess the validity of conclusions.
Chaining deteriorates the validity of his axioms, since Cl[M]
⊆ Cl[M 2]  and Cl[M] ⊆  Cl[M(MÁ1)⊕1].

Remark: The use of the negligibility variant NE leads to the
same fuzzy interpretation of Adams' axioms, as above [17].

Note that if we use symmetric approximations of rules R12

and R13, namely rules (R12) and (R13a) respectively, we obtain
suboptimal similar derivations, with tolerance parameter MN
for the three conclusions.

IX. CONCLUSION

In this paper, we have shown that fuzzy relations can
provide an appropriate semantics for inference rules for
reasoning about relative orders of magnitude. Modeling
closeness and negligibility relations in this fuzzy semantics
captures in a rigorous way some attenuation of transitivity for
the closeness relation, as well as its reinforcement for the
negligibility relation. It also provides a natural interface
between numbers and qualitative terms. The consistency
between the symbolic and the numerical level is maintained
by a fuzzy arithmetical semantics of inference with fuzzy
relative comparators, in full accordance with the
combination/projection principle.

Besides, the semantic requirements on the tolerance
parameter ensure the semantic meaningfulness of the produced
conclusions (e.g., we can check if the obtained relation of
closeness is not too permissive). Indeed even if we start from
semantically valid relations, it may happen that after several
reasoning steps, the result is no longer semantically valid
(i.e., the tolerance parameter is not included in the validity
interval), in spite of its being syntactically inferred. One way
to address this problem is to pursue the inference process,
restricted to the valid α-cuts of the tolerance parameter. The
use of fuzzy numbers also make it possible to evaluate the
degree validity of conclusions. Another way to use the rules
consists in delaying the computation of the numerical
semantics of the tolerance parameter associated to a
conclusion, to the end of the reasoning step. Then, we can
figure out for which initial interval(s) tolerance the provided
relation is still semantically meaningful.

Relative orders of magnitude using fuzzy relations, is a
promising approach for solving some ambiguity problems in
qualitative reasoning. This approach can also mechanize the
commonsense reasoning of engineers simplifying complex
equations and computing approximate solutions. Moreover,
this approach can be applied to provide a fuzzy finistic
semantics to plausible reasoning with qualitative probabilities.
An implementation of the developed inference machinery has
been undertaken [18]. The software realized so far can solve
linear equations under closeness and negligibility
assumptions. The current work concerns the reasoning strategy
of the inference machinery for the handling of larger and more
complex examples.     

Lastly, our approach to order of magnitude reasoning, may
be viewed as a simple illustration of the idea of computing
with words ("negligible" and "close to") recently emphasized
by Zadeh [37]. It is done in full agreement with the numerical
semantics underlying these words [7]. The symbolic side of
the computation emphasizes the granular nature of closeness
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and negligibility [8]. Indeed, sets of close, or negligible
values (w.r.t. another value) are manipulated as a whole. It is a
form of fuzzy granulation, which plays a central role in human
cognition and reasoning, as recently emphasized by Zadeh
[38].
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APPENDIX

Proof of proposition 3.5 (Section 3.2): The condition Cl ⊆
Co is equivalent to

µM(t) ≤ 1 − max (µM(1 + t), µM(1 + 1/t))
⇔ max (µMÁ1(t), µ1/(MÁ1)(t)) ≤ 1 − µM(t),

      (since µf(M)(t) = µM(f-1(t)))

⇔ MÁ1 ⊆   M  and 1/(MÁ1) ⊆   M ,

where the overbar denotes the fuzzy set complementation. Let
us use α-cuts, and the fact that F ⊆ G is equivalent to Fα  ⊆
Gα for all α > 0. Any α-cut of M is of the form [1−ε,
1/(1−ε)]  where ε ∈ [0, 1]. Hence for α-cuts the two
inclusions write:
[−ε, ε/(1−ε)] ⊆ ]−∞, 1−ε[ ∪]1/(1−ε), +∞[   and
]−∝, −1/ε] ∪[(1−ε)/ε, +∝[ ⊆  ]−∞, 1−ε[ ∪]1/(1−ε), +∞[ .
Note that −1/ε < 1−ε is always true for ε ∈ [0, 1[. The two
inclusions hold if and only if ε/(1−ε) ≤ 1−ε and (1−ε)/ε ≥
1/(1−ε). They are both equivalent to ε2−3ε+1 ≥ 0, which is
true if and only if ε ∈ [0, (3−√5)/2].
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Proof of proposition 3.7 (Section 3.3):
The fuzzy sets inclusions (12) to (14) hold if and only if

 i) M ⊆ N ⊆ MN,
ii) N ⊇ M ⊇ (MÁ1)(NÁ1)⊕1,
iii) N ⊆ M(NÁ1)⊕1,

are verified respectively. Again, we use α-cuts of M (resp. N)
of the form [1−ε, 1/(1−ε)]  (resp. [1−η, 1/(1−η)]  where ε
(resp. η) lies in [0, (3−√5)/2]. The corresponding α-cuts of
the fuzzy sets MN, (MÁ1)(NÁ1)⊕1 and M(NÁ1)⊕1 are of the
form [(1−ε)(1−η), 1/((1−ε)(1−η))], [1−(εη/(1−η)),
1+(εη/((1−ε)(1−η)))], and [1−(η/(1−ε)), 1+(η/((1−ε)(1−η)))]
respectively.

i) Since M ⊆ N, we just show that N ⊆ MN. This is
equivalent to [1−η, 1/(1−η)] ⊆ [(1−ε)(1−η), 1/((1−ε)(1−η))].
The inequalities (1−ε)(1−η) ≤ 1−η and 1/(1−η) ≤
1/((1−ε)(1−η)) are obvious.

ii) We must prove that M ⊇ (MÁ1)(NÁ1)⊕1. This is
equivalent to [1−ε, 1/(1−ε)] ⊇ [1–(εη/(1–η)),
1+(εη/((1–ε)(1-η)))]. The inequalities 1–ε ≤ 1–(εη/(1-η)) and
1+(εη/((1–ε)(1–η))) ≤ 1/(1–ε) are both equivalent to η/(1–η)
≤ 1 ⇔ η ≤ 1/2 which is true since 0 ≤ η ≤ (3–√5)/2 ≤1/2.

iii) N ⊆ M(NÁ1)⊕1 holds if and only if [1–η, 1/(1–η)]
⊆ [1–(η/(1–ε)), 1+(η/((1–ε)(1–η)))]. The inequalities 1–
(η/(1–ε)) ≤ 1–η and 1/(1–η) ≤ 1+(η/((1–ε)(1–η))) are
equivalent to 1/(1–ε) ≥ 1 and η/(1–η) ≤ η/(1–ε)(1–η)
respectively, which are both equivalent to 1–ε ≤ 1 which is
true.

Proof of rule R9 (Section 4): Note that
µNe[M](x, x + y) = µM(1 + x/(x + y)) = µM(2 − y/(x + y))
= µ2ÁM(y/(x+y)), since µM(f–1(t)) = µf(M)(t)
≠ µ2ÁM((x+y)/y),

due to the fact that 2ÁM is not symmetric (in the sense of (2)).
Hence we cannot get that µNe[M](x, x + y) = µNe[2ÁM](x, y). The
equality approximately hold when ε is small. Indeed any α-
cut of a symmetric M is of the form [1−ε, 1/(1−ε)]  and the
corresponding level cut of 2ÁM is [(1−2ε)/(1−ε), 1+ε] ;
observe that (1−2ε)/(1−ε) ≅ 1/(1+ε) neglecting ε2.
To get a sound rule, 2ÁM is changed into a less restrictive
symmetric tolerance parameter M2, a symmetric fuzzy number
which contains 2ÁM if and only if ε ∈ [0, (3−√5)/2]. Indeed,
the corresponding level cut of M2 is [(1−ε)2, 1/(1−ε)2] , it  is
easy to see that the inequality (1−ε)2 ≤ (1−2ε)/(1−ε) is
equivalent to ε2−3ε+1 ≥ 0 the characteristic validity equation
of proposition 3.5. Now, we show that 1/(1−ε)2 ≥ 1+ε. Since
1/(1−ε)2 ≥ 1/(1−ε), it suffices to show that 1/(1−ε) ≥ 1+ε.
This is equivalent to 1−ε2 ≤ 1 which is true. So,
[(1−2ε)/(1−ε), 1+ε] ⊆ [(1−ε)2, 1/(1−ε)2]  holds, which
implies that 2ÁM ⊆ M2 provided that when M lies in the
validity interval V. Then, we can infer, since M2 is symmetric:
µNe[M](x, x + y) = µ2ÁM(y/(x+y)) ≤ µM2(y/(x+y)) = µNe[M2](x, y).
This means that (a, b) ∈ Ne[M2] .    
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