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Abstract

Possibilistic logic is a weighted logic introduced and developed since the mid-1980s, in the setting of
arti(cial intelligence, with a view to develop a simple and rigorous approach to automated reasoning from
uncertain or prioritized incomplete information. Standard possibilistic logic expressions are classical logic
formulas associated with weights, interpreted in the framework of possibility theory as lower bounds of
necessity degrees. Possibilistic logic handles partial inconsistency since an inconsistency level can be computed
for each possibilistic logic base. Logical formulas with a weight strictly greater than this level are immune
to inconsistency and can be safely used in deductive reasoning. This paper (rst recalls the basic features of
possibilistic logic, including information fusion operations. Then, several extensions that mainly deal with the
nature and the handling of the weights attached to formulas, are suggested or surveyed: the leximin-based
comparison of proofs, the use of partially ordered scales for the weights, or the management of fuzzily
restricted variables. Inference principles that are more powerful than the basic possibilistic inference in case of
inconsistency are also brie.y considered. The interest of a companion logic, based on the notion of guaranteed
possibility functions, and working in a way opposite to the one of usual logic, is also emphasized. Its joint
use with standard possibilistic logic is brie.y discussed. This position paper stresses the main ideas only and
refers to previous published literature for technical details.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The handling of uncertainty in a logical setting has a long history already. Recently, the logical
treatment of probabilistic information has been studied in Arti(cial Intelligence by di8erent authors
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(e.g., [5,74,75,98,78,34,69]. However, there are at least three worth noticing diGculties when casting
the probability calculus into a logical framework.

First, probabilities do not (t very well with logical entailment, in the sense that a set of propo-
sitions true with a probability greater or equal to some threshold, say �, is not deductively closed.
Indeed from the constraints Prob(¬p∨ q)¿� and Prob(p)¿�, one can only deduce in general that
Prob(q)¿max(0; 2� − 1), where max(0; 2� − 1)¡� (except if � = 1 or 0). This means that proba-
bilistic reasoning does not maintain probability bounds across inference steps.

Second, the probabilistic counterpart of the resolution rule is not suGcient as a local computation
tool for computing the best lower bound of the probability of a formula from a set of probabilistic
constraints [45].

Lastly, there is a strong discrepancy between the probability of a material conditional Prob(¬p∨ q)
and a conditional probability Prob(q|p), which raises the question of the proper modelling of an
uncertain rule ‘if p then q’ [94]. Moreover, in a logical setting, probabilistic conditional constraints
cannot be expressed by means of a weight attached to a classical formula, since the conditioning
bar ‘|’ is not a Boolean logical connective.

Nevertheless, the idea of reasoning from sets of (classical) logic formulas strati(ed in layers
corresponding to di8erent levels of con(dence is very old. Rescher [101] proposed a deductive
machinery on the basis of the principle that the strength of a conclusion is the strength of the
weakest argument used in its proof, pointing out that this idea dates back to Theophrastus (372-287
BC), a disciple of Aristotle. However, Rescher [101] did not provide any semantics for his proposal.
The contribution of the possibilistic logic setting is to relate this idea (measuring the validity of
an inference chain by its weakest link) to fuzzy set-based necessity measures in the framework of
Zadeh [107] ’s possibility theory, since the following pattern, (rst pointed out by Prade [100], then
holds:

N (¬p ∨ q) ¿ � and N (p) ¿ � imply N (q) ¿ min(�; �);

where N is a necessity measure; see also Refs. [48,49]. This interpretive setting provides a semantic
justi(cation to the claim that the weight attached to a conclusion should be the weakest among the
weights attached to the formulas involved in a derivation.

The possibilistic logic framework can be used for modelling pieces of knowledge pervaded with
uncertainty, when uncertainty is represented in the setting of possibility theory. The weight � in the
constraint N (p)¿� estimates the extent to which it is certain that p is true considering the available,
possibly incomplete information about the world. Possibilistic logic is also useful when representing
preferences expressed as sets of prioritized goals, as (rst pointed out by Lang [84]. In this case, the
weight � is to be understood as the priority level of goal p. Violating the goal, i.e. choosing an
interpretation violating p, will result in downgrading the satisfaction level of this choice at least to
level 1−�. This is due to the fact that the associated possibility measure of ¬p, �(¬p) = 1−N (p)
is then less than or equal to 1 − �. The function 1 − (·) is thus used as an order-reversing map for
the scale to which the weights belong.

This position paper intends to provide an overview of possibilistic logic, emphasizing its main
features in a knowledge representation perspective, and referring to the literature for technical details.
The paper is organized in three main sections. Section 1 summarizes the basics of possibilistic logic.
Section 2 brie.y surveys various extensions, while the third one introduces bipolar possibilistic logic,
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an extended framework that o8ers a more powerful representation setting both for uncertainty and
preference modelling.

2. Basics of possibilistic logic

After a short refresher on possibility theory, syntactic and semantic aspects are summarized, as
well as the handling of information fusion in possibilistic logic.

2.1. Background on possibility theory

A necessity measure N on formulas is a function from the set of logical formulas of a language to
a totally ordered bounded scale (with 0 and 1 as bottom and top elements), which is characterized
by the axioms

(i) N (T) = 1,
(ii) N (⊥) = 0 where T and ⊥ stand for tautology and contradiction respectively,

(iii) N (p∧ q) = min(N (p); N (q)),
(iv) p ≡ q ⇒ N (p) =N (q) (syntax-independence) where ≡ denotes equivalence in classical logic.

We use the real interval [0; 1] as the range of necessity measures in the following (except in
Section 3), but this is not compulsory. A (nite or not totally ordered scale bounded by a bottom
and a top element is enough. A possibility measure � is associated with N by duality, namely

�(p) = 1 − N (¬p);

where 1 − (·) is the order-reversing map of the scale. It expresses that the absence of certainty
in favour of ¬p makes p possible. Thus, possibility measures � are such that �(p∨ q) =
max(�(p); �(q)), for all propositions p and q. Due to syntax-equivalence, possibility and necessity
measures can be de(ned on sets of interpretations. Possibility (and necessity) measures on (nite
sets (in the case of a (nitely generated language) are associated with possibility distributions in the
sense that

�(p) = max{	(!) with ! |= p}
where ! |=p means that p is a model of p, i.e. an interpretation where p is true.

Possibility measures � (resp. necessity measures N ) are the only set-functions compatible with
comparative possibility (resp. necessity) relations, as shown in [36]. A comparative possibility rela-
tion ¿� is a complete non-trivial transitive relation on propositions such that for all p; q; r,

p¿� q ⇒ p ∨ r ¿� q ∨ r;

where p¿� q expresses that p is at least as possible as q [93]. The dual comparative necessity
relation ¿N is de(ned by p¿N q⇔¬q¿� ¬p. Comparative necessity relations are closely related
to epistemic entrenchment relations, which are the basis of belief revision theory [67]. Namely, let
K be a belief set de(ned as a closed set of formulas in propositional logic (i.e., K contains all
its logical consequences), and let K∗

p be another belief set representing the result of revising K by
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the input information p. The postulates of revision theory, among other requirements, demand that
p∈K∗

p . It can be shown [52] that if the revision operation satis(es these postulates, then

q ∈ K∗
p if and only if p ∧ q ¿� p ∧ ¬q;

for some comparative possibility measure. In other words, q is in the revised belief set if ¬q is
more inconsistent with p than q (where ¿� is the strict part of the possibility relation ¿�).

This form of belief revision can be connected with the de(nition of conditional possibility mea-
sures. Indeed, in the qualitative setting, conditioning obeys a Bayesian-like property [76]:

�(p ∧ q) = min(�(q|p); �(p)); (1)

By virtue of the minimal speci(city principle, looking for the maximal degree of possibility
(compatible with the above equation), we obtain, assuming �(p)¿0 [50]:

�(q|p) = 1 if �(p) = �(p ∧ q);

= �(p ∧ q) ¡ 1 if �(p) = �(p ∧ ¬q) ¿ �(p ∧ q):

This de(nition makes sense in a (nite setting only. 1 Since by de(nition N (q |p) = 1−�(¬q |p),
it is clear that N (q |p) =N (¬p∨ q) if N (¬p∨ q)¿N (¬p), and 0 otherwise; hence

�(p ∧ q) ¿ �(p ∧ ¬q) ⇔ N (q |p) ¿ 0:

Note that conditional necessity cannot be de(ned directly by an equation similar to (1) where N
would replace �, since N (q |p) would be non-trivially de(ned only if p is somewhat certain (i.e.
if N (p)¿0). Worse, such an equation becomes min(N (q |p); N (p)) = min(N (q); N (p)) whose
least solution is always N (q |p) =N (p∧ q), which comes down to using �(q |p) =�(¬p∨ q),
and does not enrich the possibility calculus at all. Nevertheless, de(ned as the dual to conditional
possibility induced by Eq. (1), conditional necessity satis(es the equation min(N (q |p); N (p)) =
min(N (q); N (p)).

In the possibility theory setting, observe that under the de(nition induced by Eq. (1), there is
a closer agreement between the conditioning bar and the material implication than with probabil-
ity. Moreover the constraint �(p∧ q)¿�(p∧¬q), which expresses that in the context where p is
true, having q true is strictly more possible than q false, has been shown to be a proper encoding
of a default rule “generally, if p then q” in a nonmonotonic reasoning perspective [14,15,64,54].
Possibilistic conditioning thus signi(cantly di8ers from the possibility of a material implication. The
price paid for this qualitative de(nition of conditioning is that one cannot have 0¡N (q |p)¡N (q),
which induces serious limitations from a learning point of view. This can be remedied in a numer-
ical setting by using the product instead of the minimum operation in (1) for de(ning conditional
possibility.

2.2. Syntactic aspects

A (rst-order possibilistic logic formula is essentially a pair made of a classical (rst order logic
formula and a weight expressing certainty or priority. As already said, in possibilistic logic [44,45,49],

1 Moreover, in an in(nite setting, the maxitivity axiom �(p∨ q) = max(�(p); �(q)) is extended to a supremum over
in(nite unions of sets, but sup-decomposability is generally not preserved via ordinal conditioning.
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weights of formulas p are interpreted in terms of lower bounds �∈ (0; 1] of necessity measures, i.e.,
the possibilistic logic expression (p; �) is understood as N (p)¿�, where N is a necessity measure.
Constraints of the form �(p)¿� could be also handled in the logic but they correspond to very
poor pieces of information [51,87], while N (p)¿� ⇔ �(¬p)61−� expresses that ¬p is somewhat
impossible and is much more informative.

An axiomatisation of (rst order possibilistic logic is provided by Lang [85]; see also [44]. In the
propositional case, the axioms consist of all propositional axioms with weight 1. The inference rules
are:

• (¬p∨ q; �); (p; �)� (q;min(�; �)) (modus ponens)
• for �6�; (p; �)� (p; �) (weight weakening),

where � denotes the syntactic inference of possibilistic logic. The min-decomposability of necessity
measures allows us to work with weighted clauses without lack of generality, since N (

∧
i=1; n pi)¿ �

i8 ∀i; N (pi)¿�. It means that possibilistic logic expressions of the form (
∧

i=1; n pi; �) can be inter-
preted as a set of n formulas (pi; �). In other words, any weighted logical formula put in conjunctive
normal form is equivalent to a set of weighted clauses. This feature considerably simpli(es the proof
theory of possibilistic logic. The basic inference rule in possibilistic logic put in clausal form is the
resolution rule:

(¬p ∨ q; �); (p ∨ r; �) � (q ∨ r;min(�; �)):

Classical resolution is retrieved when all the weights are equal to 1. Other valid inference rules
are for instance:

• if p entails q classically, (p; �)� (q; �) (formula weakening)
• (∀xp(x); �)� (p(s); �) (particularization)
• (p; �); (p; �)� (p;max(�; �)) (weight fusion).

Observe that since (¬p∨p; 1) is an axiom, formula weakening is a particular case of the resolution
rule (indeed (p; �); (¬p∨p∨ r; 1)� (p∨ r; �)). Formulas of the form (p; 0) that do not contain any
information (∀p;N (p)¿0 always holds), are not part of the possibilistic language.

Refutation can be easily extended to possibilistic logic. Let K be a knowledge base made of
possibilistic formulas, i.e., K = {(pi; �i)}i=1; n. Proving (p; �) from K amounts to adding (¬p; 1),
put in clausal form, to K , and using the above rules repeatedly until getting K ∪{(¬p; 1)} � (⊥; �).
Clearly, we are interested here in getting the empty clause with the greatest possible weight [38]. It
holds that K � (p; �) if and only if K� �p (in the classical sense), where K� = {p | (p; �)∈K and
�¿�}. See Lang [86] for algorithms and complexity issues.

An important feature of possibilistic logic is its ability to deal with inconsistency. The level of
inconsistency of a possibilistic logic base is de(ned as

Inc(K) = max{�|K � (⊥; �)} (by convention max ∅ = 0):

More generally, Inc(K) = 0 if and only if K∗ = {pi | (pi; �i)∈K)} is consistent in the usual sense.
This would not be true in case �i did represent a lower bound of the probability of pi in a proba-
bilistically weighted logic.
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A nonmonotonic inference notion can be de(ned as K �pref p if and only if K � (p; �) with
�¿Inc(K). It can be rewritten as K cons � (p; �), where K cons =K − {(pi; �i) with �i6Inc(K)} is
the set of weighted formulas whose weights are above the level of inconsistency (they are thus not
involved in the inconsistency). Indeed, Inc(K cons) = 0. This inference is nonmonotonic because due
to the non-decreasingness of the inconsistency level when K is augmented, K �prefp may fail to
imply K ∪{(q; 1)} �prefp.

2.3. Semantics

Semantic aspects of possibilistic logic, including soundness and completeness results with respect
to the above syntactic inference machinery, are presented in [85,87,45,44]. From a semantic point of
view, a possibilistic knowledge base K = {(pi; �i)}i=1;n is understood as the possibility distribution
	K representing the fuzzy set of models of K :

	K(!) = min
i=1;n

max(�[pi](!); 1 − �i); (2)

where [pi] denotes the sets of models of pi so that �[pi](!) = 1 if !∈ [pi] (i.e. ! |=pi), and
�[pi](!) = 0 otherwise. The degree of possibility of ! according to (2) is computed as the comple-
ment to 1 of the largest weight of a formula falsi(ed by !. Thus, ! is all the less possible as it
falsi(es formulas of higher degrees. In particular, if ! is a counter-model of a formula with weight
1, then ! is impossible, i.e. 	K(!) = 0. It can be shown that 	K is the largest possibility distribution
such that NK(pi)¿�i; ∀i = 1; n, i.e., the possibility distribution which allocates the greatest possible
possibility degree to each interpretation in agreement with the constraints induced by K (where NK

is the necessity measure associated with 	K , namely NK(p) = minv∈[¬p] (1−	K(v))). It may be that
NK(pi)¿�i, for some i, due to logical constraints between formulas in K .

Moreover, it can be shown that 	K = 	K ′ if and only if, for any level �; K� and K ′
� are logi-

cally equivalent in the classical sense. K and K ′ are then said to be semantically equivalent. The
semantic entailment is then de(ned by K |= (p; �) if and only if NK(p)¿�, i.e., if and only if
∀!; 	K(!)6max(�[p](!); 1−�). Besides, it can be shown that Inc(K) = 1−maxu 	K(!). Soundness
and completeness are expressed by

K � (p; �) ⇔ K |= (p; �):

This form of possibilistic entailment attaches to all formulas weights that are at least equal to
the inconsistency level of the base. The inconsistency-free formulas, which are above this level,
entail propositions that have higher weights. Biacino and Gerla [26] provide an algebraic analysis
of possibility and necessity measures generated by this form of inference.

Thus, a possibilistic logic base is associated with a fuzzy set of models. This fuzzy set is under-
stood as either the set of more or less plausible states of the world (given the available information),
or as the set of more or less satisfactory states, according as we are dealing with uncertainty or with
preference modelling.

Conversely, consider a fuzzy set F representing a fuzzy piece of knowledge, with a membership
function �F de(ned from a 8nite set � of states to some valuation scale L. It models either a piece
of uncertain or vague knowledge, or a utility function associated with some criterion. The fuzzy set
F can be equivalently seen as a (nite family of nested level cuts F�i = {! : �F(!)¿�i} where �F is
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ranging on the (nite scale L′ = {�0 = 0¡�1¡ · · ·¡�n = 1} ⊆ L. F can be equivalently represented
by the set of constraints N (F�i)¿1− �i−1 for i = 1; : : : ; n, where N is the necessity measure de(ned
from 	 = �F . This gives birth to a possibilistic logic base of the form K = {(pi; 1 − �i−1)}i=1; n,
where pi denotes a proposition whose set of models is F�i . A fuzzy statement is thus semantically
equivalent to a possibilistic logic base.

The semantic counterpart of the nonmonotonic inference K �pref p (that is, K � (p; �) with �¿
Inc(K)) is de(ned as K |=pref p if and only if NK(p)¿Inc(K). The set {!; 	K(!) maximal} forms
the set of best models B(K) of K . It turns out that K |=pref p if and only if B(K) ⊆ [p] if and only
if K �pref p.

2.4. Other forms of a possibilistic logic base

The possibilistic logic framework can be made fully qualitative by referring only to a complete
preordering of formulas inducing a strati(cation of the set of formulas (then the possibility distribu-
tion is replaced by a well-ordered partition [58]). One may use a symbolic discrete linearly ordered
scale. If L is not a numerical scale, 1− (·) is to be replaced by the order-reversing map of the scale.
But such a scale may as well be mapped to the unit interval.

A possibilistic logic base can be also changed into a possibilistic directed acyclic graph [8,10].
Such a graph [68] exhibits a conditional independence structure just like for Bayesian nets [35,103].

A set of comparative constraints expressing that some propositions are more possible than others
can also be encoded as a possibilistic logic base. Namely, a comparative possibilistic base is of
the form C = {pi¿qi; i = 1; : : : ; n} where pi and qi are mutually exclusive propositions and pi¿qi

means �(pi)¿�(qi). For instance, this type of knowledge can be obtained as �(p∧ q)¿�(p∧¬q)
from default rules of the form “if p then usually q” as pointed out in Section 2.1. Two types of
inference of a rule “if p then usually q” from C can be de(ned: a cautious one according to
which C implies that �(p∧ q)¿�(p∧¬q) [64,54]; another one whereby �∗(p∧ q)¿�∗(p∧¬q)
for the least speci(c possibility distribution in agreement with C [14,15]. An algorithm computes
�∗, which comes down to turning a set of default rules into a possibilistic knowledge base and
checking whether K ∪{(p; 1}} �pref q [14,17]. These two types of inference are closely related to
the preferential approach to nonmonotonic reasoning [90]. See [15].

All these representations prove to be equivalent to a possibility distribution that rank-orders the
possible worlds according to their level of plausibility or priority. Moreover there exist procedures
for the direct translation of one representation into another [11].

2.5. Information fusion in possibilistic logic

Since possibilistic logic bases are semantically equivalent to fuzzy sets of interpretations, it makes
sense to use fuzzy set aggregation operations for merging the bases. Pointwise aggregation operations
applying to fuzzy sets can be also directly performed at the syntactic level. Let c© be a non-decreasing
fuzzy set aggregation operator such that 1 c©1 = 1. The aggregation of (p; �) and (q; �) is expressed
at the semantic level by:

�(p;�)⊕(q;�)(!) = max(�[p](!); 1 − �) c© max(�[q](!); 1 − �); (3)
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denoting by ⊕ the associated aggregation at the syntactic level. The fuzzy set of interpretations
de(ned by (3) is equivalent to the following possibilistic logic base:

{(p; 1 − ((1 − �) c©1)); (q; 1 − (1 c©(1 − �))); (p ∨ q; 1 − (1 − �) c©(1 − �))}:

This idea was (rst pointed out by Boldrin [28]; see also [29]. Note that the combination amounts
to adding the formula p∨ q with a level of certainty or priority possibly higher than the one of p,
and the one of q. Indeed, since c© is a non-decreasing operation, 1 − ((1 − �) c©(1 − �)) is greater
than or equal to 1− ((1−�) c©1) as well as 1− (1 c©(1−�)). If c©= min, this third weighted clause
is redundant with respect to the two others, as expected since (3) is then a particular case of (2).

This result can be easily generalized [18] to two possibilistic bases K1 = {(pi; �i) | i∈ I} and
K2 = {(qj; �j) | j∈ J}. It can be, for instance, applied to triangular norm and triangular co-norm oper-
ations. Triangular norms are associative non decreasing symmetric operations tn such that tn(1; �) = �
and tn(0; 0) = 0. The main triangular norms are min, product and max(0; � + �− 1). Let 	tn and 	ct

be the result of the combination of 	K1 and 	K2 based on the triangular norm operation tn, and the
dual triangular conorm operation ct(�; �) = 1 − tn(1 − �; 1 − �) respectively. Then, 	tn and 	ct are,
respectively, associated with the following possibilistic logic bases:

• Ktn =K1 ∪K2 ∪{(pi ∨ qj; ct(�i; �j)) | (pi; �i)∈K1 and (qj; �j)∈K2},
• Kct = {(pi ∨ qj, tn(�i; �j)) | (pi; �i)∈K1 and (qj; �j)∈K2}.

With tn = min and ct = max, we get

• Kmin =K1 ∪K2 ∪{(pi ∨ qj, max(�i; �j)) | (pi; �i)∈K1 and (qj; �j)∈K2} semantically equivalent to
K1 ∪K2,

• Kmax = {(pi ∨ qj;min(�i; �j)) | (pi; �i)∈K1 and (qj; �j)∈K2}.

As can be seen, Kmin =K1 ∪K2 agrees with (2), while the disjunction of two possibilistic logic
bases amounts to taking the disjunction of all pairs of formulas made from the two bases associated
with the smallest of the two weights. This method also provides a framework where symbolic
approaches for fusing classical logic bases [82] can be recovered by making the priorities implicitly
induced from Hamming distances between sets of models, explicit [9,81].

3. Extensions of possibilistic logic

Possibilistic logic can be viewed as a special case of a labelled deductive system [66]. As such,
di8erent types of extensions of possibilistic logic can be considered.

A (rst type of extension preserves classical logic formulas and weights interpreted in terms of
necessity measures, but exploits re(ned or generalized scales, or yet allows weights to have unknown,
or variable values. The latter trick enables a form of hypothetical reasoning to be captured, as well
as some kinds of fuzzy rules. Another extension consists in embedding possibilistic logic in a wider
object language adding new connectives between possibilistic formulas. On the contrary, one may
consider counterparts to possibilistic logic for non-classical logics, such as many-valued logics. This
type of generalization sheds light on the di8erence between many-valued and possibilistic logics.
A last kind of extension consists in keeping the language and the semantics of possibilistic logics,
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while altering the inference relation with a view to make it more productive. Such inference relations
that tolerate inconsistency can be de(ned at the syntactic level. Besides, proof-paths leading to
conclusions can be evaluated by more re(ned strategies than just their weakest links. We brie.y
outline these extensions in the following.

3.1. Weights in partially ordered scales

It has been observed for a long time that the totally ordered scale used in possibilistic logic could
be replaced by a complete distributive lattice with zero and unit elements. At least three examples
of the interest of such a construct can be found in the literature:

• A multiple-source possibilistic logic [43] where the weight attached to each formula is replaced
by the fuzzy set of sources that more or less certainly support the truth of the formula;

• A timed possibilistic logic [40] where the weight attached to each formula is replaced by the
fuzzy set of time points where the formula is known as being true with some certainty level;

• A logic of supporters [83] where the weight attached to each formula is replaced by the set of
irredundant subsets of assumptions that support the formula.

A formal study of logics where formulas are associated with general ‘weights’ in a complete
lattice has been carried out by Lehmke [92]. Necessity values attached to formulas can be encoded
as a particular case of such ‘weights’. More generally, a partially ordered extension of possibilistic
logic whose semantic counterpart consists of partially ordered models has been recently proposed by
Benferhat et al. [24] (this issue).

When information comes from di8erent sources, it may be not easy to assess the levels of cer-
tainty (or priority) of the formulas, using the same linearly ordered scale. One way to solve this
diGculty, is to associate each formula pi with an unknown symbolic level #i, assumed to be-
long to some linearly ordered scale $. The fact that some formulas are known to be more cer-
tain than others, or equally certain as others, will be represented by constraints Cj on the #i’s.
For instance, suppose that we have inferred (q;max(min(#i; #j; #k);min(#m; #n)) and that #i6#j and
#i¡#k are known constraints, then we have established (q; #i), i.e. that N (q)¿#i¿0, since formu-
las are associated with lower bounds of necessity degrees. However, we may thus infer formulas
with certainty levels that are not comparable, e.g. (q; #i) and (p; #m) if no (in)equality relation
between #i and #m can be deduced from the set of constraints. Observe also that an inferred for-
mula is a meaningful result only if it can be established from the constraints that its certainty
level is above the inconsistency level of the base. For instance, from {(q; #k); (p; #i); (¬p; #j)} we
can safely infer (q; #k) only if it can be shown from the constraints that #k ¿min(#i; #j). This
idea has been formalized and extended by Benferhat et al. [13] where sets of sources are attached
to formulas and a set of constraints under the form of a partial order on the set of sources is
given.

Other similar extensions may be of interest. For instance, we can perform a sensitivity analysis
on standard possibilistic logic by using the following extension of the resolution rule:

(¬p ∨ q; [�; �′]); (p ∨ r; [�; �′]) � (q ∨ r; [min(�; �);min(�′; �′)]):



10 D. Dubois, H. Prade / Fuzzy Sets and Systems ( ) –

ARTICLE IN PRESS

3.2. Hypothetical reasoning and fuzzily restricted variables

It has been noticed that subparts of classical logic formulas may be ‘moved’ to the weight part
of a possibilistic logic formula; For instance, the possibilistic formula

(¬p(x) ∨ q(x); �)

is semantically equivalent to

(q(x);min(�P(x); �));

where �P(x) = 1 if p(x) is true and �P(x) = 0 if p(x) is false. It expresses that q(x) is �-certainly
true given the proviso that p(x) is true. This is the basis of the use of possibilistic logic in hypo-
thetical reasoning [39], which enables us to compute under what conditions a conclusion could be at
least somewhat certain, when information is missing for establishing it unconditionally. This equiv-
alence makes sense for the following reason. Since (p∧ q; �) is semantically equivalent to the base
{(p; �); (q; �)}, the (implicitly) universally quanti(ed formula (¬p(x)∨ q(x); �) stands indi8erently
for ((∀x) (¬p(x)∨ q(x); �)) (where the scope of the quanti(er does not include the weight), and
(∀x) (¬p(x)∨ q(x); �) (where the scope of the quanti(er includes the weight). However, rewriting
(¬p(x)∨ q(x); �) as (q(x);min(�P(x); �)) is only compatible with the latter understanding.

Hypothetical reasoning can be also combined with the handling of inconsistency in possibilistic
reasoning. For instance, consider the following possibilistic logic base

K = {(¬h ∨ p; �); (¬q; �); (¬p ∨ q; 1)}:
Observe that it entails (¬h;min(�; �)), as well as (¬p; �) and (¬q; �). However, regarding h as

an hypothesis that may be true or false, i.e., rewriting the (rst formula as (p;min(v(h); �)) with
v(h) = 1 if h is true and v(h) if h is false, we can no longer conclude that ¬h is somewhat certain.

Now, we can reason case by case. Namely, if h is false, we still conclude (¬p; �) and (¬q; �)
as expected. But, under the hypothesis that h is true, the base Kh = {(p;min(v(h); �)); (¬q; �),
(¬p∨ q; 1)} has a non-zero level of inconsistency Inc(Kh) = min(v(h); �; �) = min(�; �). Assume
�¿�, then the conclusions (p; �) and (q; �) are now valid since their level of certainty is above the
level of inconsistency Inc(Kh) = �. Thus, we have established in our example that if h is true then
p∧ q is somewhat certain, while if h is false then ¬p∧¬q is somewhat certain. This method has
been applied to updating problems where possibilistic logic formulas describe the way a system is
plausibly evolving [55].

Variable weights can be also useful for fuzzifying the scope of a universal quanti(er. Namely, an
expression such that (¬p(x)∨ q(x); �) can be read ∀x∈P(q(x); �) where the set P={x |p(x) is true}.
Making one step further, P can be allowed to be fuzzy [46]. The formula (q(x); �P(x)) then expresses
a piece of information of the form ‘the more x is P, the more certain q(x) is true’.

The fuzzy restriction on the scope of an existential quanti(er was introduced in the following way
[60]. From the two premises ∀x∈A, ¬p(x; y)∨ q(x; y), and ∃x∈B, p(x; s0), we can conclude that
∃x∈B, q(x; s0) provided that B ⊆ A. Let p(B; s0) stand for that ∃x∈B, q(x; s0). Letting A and B
be fuzzy sets, the following pattern can be established:

(¬p(x; y) ∨ q(x; y);min(�A(x); �)); (p(B; s0); �)
(q(B; s0);min(NB(A); �; �)

;
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where NB(A) = inf t max(�A(t); 1 − �B(t)) is the necessity measure of the fuzzy event A based on
fuzzy information B. See [1,3] for the development of similar ideas in a logic programming per-
spective. In particular the above pattern can be strengthened, replacing B by the cut B� in NB(A),
and extended to a sound resolution rule [1,3,4].

3.3. Putting possibilistic and many-valued logics together

There is a major di8erence between possibilistic logic and weighted many-valued logics of Pavelka
style [99,71], fuzzy Prolog languages like Lee’s fuzzy clausal logic [89], although they look alike
syntactically. Namely, in the latter, a weight t attached to a (many-valued) formula p often acts as a
truth-value threshold, and (p; t) in a fuzzy knowledge base expresses the requirement that the truth-
value of p should be at least equal to t for (p; t) to be valid. So in such fuzzy logics, while truth
is many-valued, the validity of a weighted formula is two-valued. 2 On the contrary, in possibilistic
logic, truth is two valued (since p is Boolean), but the validity of (p; �) with respect to classical
interpretations is many-valued (Dubois and Prade, [59]) as per Eq. (2). In some sense, weights may
defuzzify many-valued logics, while they fuzzify Boolean formulas in possibilistic logic. Moreover
inferring (p; �) in possibilistic logic can be viewed as inferring p with some certainty, quanti(ed by
the weight �, while in standard many valued logics, a formula can be either inferred or not [71].

However, it is possible to cast possibilistic logic inside a (regular) many-valued logic such as
GPodel or Lukasiewicz logic. The idea is to consider many-valued atomic sentences * of the form
(p; �) where p is a formula in classical logic. Then, one can de(ne well-formed formulas of the
form *∨  ; *∧  ; *→  , etc. where the “external” connectives linking * and  are those of the
chosen many-valued logic. From this point of view, possibilistic logic can be viewed as a fragment
of GPodel or Lukasiewicz logic that uses only one external connective: conjunction ∧ interpreted as
minimum. This approach involving a Boolean algebra embedded in a non-classical one has been
proposed by Boldrin and Sossai [30,31] with a view to augment possibilistic logic with fusion
modes cast at the object level. Hajek et al. [72] use this method for both probability and possibility
theories, thus understanding the probability or the necessity of a classical formula as the truth degree
of another formula.

Liau and Lin [97] have augmented possibilistic logic with weighted conditionals of the form
p−(c)→ q and p−〈c〉→ q that encode Dempster rule of conditioning, and correspond to constraints
�(p∧ q) = c · �(p) and �(p∧ q)¿c · �(p) and c is a coeGcient in the unit interval. Liau [95]
considers more general conditionals where a t-norm is used instead of the product. Note that if p=T
(tautology), then T−(c)→ q stands for �(q)¿c, and ¬(T−〈c〉→¬q) for N (q)¿c. This augmented
possibilistic logic enables various forms of reasoning to be captured such as similarity-based and
default reasoning.

An alternative approach is to cast a many-valued logic in the setting of possibility theory by chang-
ing the classical logic formula p present in the possibilistic logic formula (p; �) into a many-valued
formula, in GPodel or Lukasiewicz logic, for instance. Now (p; �) is still interpreted as N (p)¿�, but
N (p) is the degree of necessity of a fuzzy event as proposed by Dubois and Prade [51]. A many-

2 In Pavelka-like languages (p; �) can be encoded as �→p adding a truth-constant to the language. Using Rescher–
Gaines implication (�→p has validity 1 if p has truth-value at least �, and 0 otherwise), (p; �) is Boolean. Of course,
using another many-valued implication, (p; �) remains many-valued.
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valued formula can be obtained in (rst-order logic by making a fuzzy restriction of the scope of an
existential quanti(er. Alsinet [1,2] cast GPodel many-valued logic in the framework of possibilistic
logic. Besnard and Lang [25] have proposed a possibilistic extension of paraconsistent logic in the
same spirit.

Lehmke [91,92] has tried to cast Pavelka-style fuzzy logics and possibilistic logic inside the
same framework, considering weighted many-valued formulas of the form (p; .), where p is a
many-valued formula with truth set T , and . is a “label” de(ned as a monotone mapping from
the truth-set T to a validity set L. T and L are supposed to be complete lattices, and the set
of labels has properties that make it a fuzzy extension of a (lter in LT. Labels encompass what
Zadeh [106] called “fuzzy truth-values” of the form “very true”, “more or less true”. Then they are
continuous increasing mappings from T = [0; 1] to L= [0; 1] such that .(1) = 1. A (many-valued)
interpretation Val, associating a truth-value /∈T to a formula p, satis(es (p; .), to degree #∈L,
whenever .(/) = #. When T = [0; 1]; L= {0; 1}, .(/) = 1 for /¿t, and 0 otherwise, then (p; .) can
be viewed as a weighted formula in some Pavelka-style logic. When T = {0; 1}; L= [0; 1]; .(/) = 1−�
for / = 0, and 1 for / = 1, then (p; .) can be viewed as a weighted formula in possibilistic logic.
Lehmke [91] has laid the foundations for developing such labelled fuzzy logics, which can express
uncertainty about (many-valued) truth in a graded way. It encompasses proposals of Esteva et al.
[62] who suggested that attaching a certainty weight � to a fuzzy proposition p can be modelled by
means of a labelled formula (p; .), where t(q) = max(1−�; /), in agreement with semantic intuitions
formalized in [51].

Lastly, possibilistic logic can be cast in the framework of modal logic. Modal accounts of quali-
tative possibility theory involving conditional statements were already proposed by Lewis [93] (this
is called the VN conditional logic, see [58,63]). Other embeddings of possibilistic logic in modal
logic are described in [32,70,73].

3.4. Inconsistency tolerant inference relations in possibilistic logic

The handling of inconsistency in possibilistic logic is rather coarse: all formulas in K whose
certainty level is equal to or less than the inconsistency level, are inhibited. However the useful subset
K cons of K (formulas above the inconsistency level) is not one of its maximal consistent subsets. In
classical logic, several inconsistency-tolerant inference relations have been proposed [102,16].

The (rst idea is to delete from K all minimal subsets of inconsistent formulas. It only remains
the subset of formulas not involved in any con.ict. Applying this idea to possibilistic logic, leads to
the subset K free of possibilistic formulas containing K cons, as well as all other possibilistic formulas
(called free) below the inconsistency level and not involved in any con.ict. Another idea is to
consider that K implies p in the classical case if and only if p is implied by all its inclusion-maximal
consistent subsets. Let K =K1 ∪K2 ∪ · · · ∪Km be the possibilistic knowledge base, partitioned into
subsets of formulas of equal weight, and MC(K) be a maximal consistent subset of K . The extension
of the notion of maximal consistent subsets to such layered bases was proposed by Brewka [33]:
the so-called preferred subsets of K are of the form

Kpref
j = MC(K1) ∪ MC(K1 ∪ K2) ∪ · · · ∪ MC(K1 ∪ K2 ∪ · · · ∪ Kj):



ARTICLE IN PRESS
D. Dubois, H. Prade / Fuzzy Sets and Systems ( ) – 13

Of course K free ⊆Kpref
j ∀j. A more drastic selection of consistent subsets consists in considering

those ones, M#(K) of maximal cardinality. Lexicographically preferred subsets [42] of a possi-
bilistic knowledge base are K lex

j , built like Kpref
j , replacing MC by M#. Then the inconsistency-

tolerant inference of (p; �) from a possibilistic base K means, with increasing inferential power:
K cons � (p; �); K free � (p; �); Kpref

j � (p; �) ∀j or K lex
j � (p; �) ∀j. See [6] for a semantic study of

these extensions of possibilistic inference. They collapse down to standard possibilistic inference
if Inc(K) = 0.

A more local treatment of inconsistency in classical logic consists in inferring p from an incon-
sistent base K provided that there is a consistent subset of K inferring p but no consistent subset
inferring ¬p. This is called argued inference [16]. In the possibilistic case a consistent subset A
of K with Inc(K) = 0 is called a reason for p of strength �, if A� (p; �). Then p is an argued
consequence of K if there is a stronger reason for p than for ¬p in K [19]. Again it is more
productive than possibilistic inference.

Another extension of possibilistic inference has been proposed for handling paraconsistent informa-
tion [19,20]. It is de(ned as follows. First, for each formula pi such that (pi; �i) is in a possibilistic
logic base K , compute (pi; 1i; 2i) where 1i (resp. 2i) is the highest degree to which pi (resp. ¬pi)
is supported in K . More precisely pi is said to be supported in K at least at degree 3i if there is
a reason for pi of strength 3i. Let K◦ be the set of bi-weighted formulas that is thus obtained. A
formula (pi; 1i; 2i) in K◦ is said to have a paraconsistency degree equal to min(1i; 2i). K◦ contains
both (pi; 1i; 2i) and (¬pi; 2i; 1i) if min(1i; 2i)¿0.

For instance, take K = {(p; �1); (¬p∨ q; �2), (¬p; �3), (¬r; �4), (r; �5), (¬r ∨ q; �6)} with �1¿�2¿
�3¿�4¿�5¿�6¿0. Then K◦ = {(p; �1; �3), (¬p∨ q; �2; 0), (¬p; �3; �1), (¬r; �4; �5), (r; �5; �4), (¬r ∨
q; �2; 0)}.

The weights 1i and 2i can be extended to consistent subsets A of bi-weighted formulas in K◦:
• The defeasibility degree of A accounts for the most weakly supported formulas in A:

DEF(A) = −Log(min{1i | (pi; 1i; 2i) ∈ K◦ and pi ∈ A})3;

• The safety degree of A accounts for the most severely attacked formulas in A:

SAFE(A) = −Log(max{2i | (pi; 1i; 2i) ∈ K◦ and pi ∈ A}):

Let label(q) = {A⊆K◦ |A is a reason for q, and DEF(A) is minimal}. Let A∗ ∈Label(q) such that
SAFE(A∗) is maximal. Then q is said to be a DS-consequence of K◦ (or K), denoted, K◦ �DS q if
DEF(A∗)¡SAFE(A∗). 4 It can be checked that �DS extends the entailment in possibilistic logic.

In the above example, Label(q) = {A; B} with A= {(p; �1; �3), (¬p∨ q; �2; 0)} and B = {(r; �5; �4),
(¬r ∨ q; �2; 0)}. So, DEF(A) = −Log �2, SAFE(A) = −Log �3, and DEF(B) = −Log �5, SAFE(B) =
− Log �4. Then, K◦ �DS q. If we (rst maximize SAFE and then minimize DEF, the entailment
would not extend possibilistic entailment. Indeed in the above example, we would select B, but
SAFE(B)¿DEF(B) does not hold, while K � (q; �2) since �2¿Inc(K) = �3.

3Benferhat et al. [19,20] use an integer scale for weights attached to formulas, with the convention that larger weights
account for weaker support. In order to keep the terminology consistent with this paper we use a logarithmic scale reversal
function for measuring defeasibility and safety here.

4 DS stands for defeasibility (rst, then safety.
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Another entailment relation denoted �ss, named safely supported consequence, a less demanding
one than �DS, is de(ned by K◦ �ss q i8 ∃A∈ label(q) such that DEF(A)¡SAFE(A). In the case
of classical knowledge bases, �ss is equivalent to �DS and comes down to the classical entailment
from K free. Moreover, K◦ �ss q implies that q is an argued consequence of K , not the converse. It
can be shown that the set {q |K◦ �ss q} is consistent, while the set of argued consequences may be
not. The reason for this di8erence is that in the argued consequence, there is no constraint on the
subsets serving as reasons for a conclusion. However, if a formula pi appearing in K is involved in
a con.ict, and belongs to the reason A for p, this reason becomes unsafe. It may prevent a subset
A from being used as a reason for p. Formulas in K◦ are basically inhibited if 1i = 2i. Indeed, if
(pi; 1i; 1i)∈K◦ and pi ∈A, then SAFE(A) = DEF(A). So, even if A is used as a reason for p in
proving that p is an argued consequence of K , it cannot be used for proving that p is a safely
supported consequence of K . More details on this topic can be found in [19,20].

3.5. Leximin-based comparison of proofs

An obvious consequence of the possibilistic logic resolution rule is that only the smallest weight of
the formulas used in the proof is retained. Thus no di8erence is made between, for instance getting
(q; �) from (¬p∨ q; 1) and (p; �), or getting it from (¬s∨ r; 1), (¬r ∨ q; �) and (s; �) assuming �¿�,
although we may (nd the (rst proof stronger. This idea an be captured by using a new resolution
rule

(¬p∨ q; Q); (p∨ r; R); (q∨ r; QR);

where Q and R are lists of weights, and QR is the list obtained as the concatenation of Q and R. In
the above example, the (rst proof yields (q; (1; �)), while the second ones leads to (q; (1; �; �)). We
have then to rank-order the proofs according to their strength.

Let Q and R be two lists of weights attached, respectively, to two proofs of the same proposition,
say q. Then Q and R can be ordered using an extended leximin de(ned as follows. Let Q= (�1; : : : ; �m)
and R= (�1; : : : ; �n). Note that we may have several times the same value in Q or R and n �=m
generally. First, assume m6 n without loss of generality, and then add (n − m) times 1 to the
ordered list Q. Let Q= (�1; : : : ; �m; : : : ; 1) be the resulting list of length n. Next, Q and R must be
increasingly reordered, i.e. �4(i)6�4(i+1) and �.(i)6�.(+1). Let these reordered lists be (�1; : : : ; �n)
and (21; : : : ; 2n). Then the leximin ordering of two lists (11; : : : ; 1n) and (21; : : : ; 2n) of equal length,
being increasingly ordered, is de(ned by

�¿leximin � i8 11 ¿ 21 or ∃i such that ∀j = i; 1j = 2j and 1i+1 ¿ 2i+1:

In the above example, we have (�; 1; 1)¿leximin(�; �; 1). As we can see, no di8erence is made
between a short proof and a longer proof involving fully certain pieces of information, when both
involve the same weight(s) smaller than 1; for instance, the proofs of (q; �) from (¬p∨ q; 1) and
(p; �), and from (¬s∨ r; 1), (¬r ∨ q; �) and (s; 1) will be ranked in the same way. This framework
may be of interest in argumentation systems for comparing sets of arguments supporting conclusions.
It is possible to state the above de(nitions in terms of multisets of weights instead of lists.
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4. Bipolar possibilistic logic

Variants of possibilistic logic may be obtained by no longer interpreting weights as lower bounds of
necessity measures, but as constraints on other set functions in possibility theory, such as �(p)¿ �.
Yet another set function expressing guaranteed possibility is considered here. In Section 2, it has been
recalled how a possibility measure � and a necessity measure N can be de(ned from a possibility
distribution 	. However, given a (non-contradictory, non-tautological) proposition p, the qualitative
information conveyed by 	 pertaining to p can be assessed not only in terms of possibility and
necessity measures, but also in terms of two other functions. Namely, 5(p) = min!∈[p] 	(!) and
∇(p) = 1 − 5(¬p). 5 is called a ‘guaranteed possibility’ function [53].

Starting with a set of constraints of the form 5(pj)¿�j for j = 1; : : : ; n, expressing that (all) the
models of pj are guaranteed to be possible at least at level �j, and applying a principle of maximal
speci(city that minimizes possibility degrees, the most informative possibility distribution 	∗ such
that the constraints are satis(ed is obtained. Note that this principle is the converse of the one used
for de(ning 	K in (2), and is in the spirit of a closed-world assumption: only what is said to be
(somewhat) guaranteed possible is considered as so. Namely

	∗(!) = max
j=1;n

min(�[pj](!); �j): (4)

By contrast with � and N , the function 5 is nonincreasing (rather than nondecreasing) w.r.t.
logical entailment. Fusion of such possibility-pieces of information is disjunctive rather than con-
junctive (as expressed by (4) by contrast with (2)). 5 satis(es the characteristic axiom 5(p∨ q) =
min(5(p); 5(q)), and the basic inference rules, in the propositional case, associated with 5 are

• [¬p∧ q; �], [p∧ r; �]� [q∧ r;min(�; �)] (resolution rule)
• if p entails q classically, [q; �]� [p; �] (formula weakening)
• for �6 �; [p; �]� [p; �] (weight weakening)
• [p; �]; [p; �]� [p;max(�; �)] (weight fusion).

where [p; �] stands for 5(p)¿�. The (rst two properties show the reversed behaviour of 5-based
formulas w.r.t. usual entailment. Indeed, if all the models of q are guaranteed to be possible, then
it applies as well to any subset of models, e.g. the models of p, knowing that p entails q. Besides,
observe that the formula [p∧ q; �] is semantically equivalent to [q;min(v(p); �)], where v(p) = 1 if
p is true and v(p) = 0 if p is false. This means that p∧ q is guaranteed to be possible at least
at level �, if q is guaranteed to be possible at this level when p is true. This remark can be used
in hypothetical reasoning, as in the case of standard possibilistic formulas. So, 5-based formulas
behave in a way that is very di8erent and in some sense opposite to the one of standard (N -based)
formulas (since the function 5 is nonincreasing). Indeed 5-based formulas are useful for encoding
positive information. They guarantee the fact that interpretations are indeed feasible, while N -based
formulas re.ect negative information (in the sense that N (p)¿ �⇔�(¬p)6 1 − � expresses that
the models of ¬p are somewhat impossible). See [37].

When dealing with uncertainty, this leads to a twofold representation setting distinguishing between
what is not impossible because not ruled out by our beliefs (this is captured by constraints of the
form N (pi)¿�i associated with 	∗ in the sense of (2)), and what is known as feasible because it
has been observed (expressed by constraints of the form 5(qj)¿�j associated with 	∗ in the sense
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of (4)). In other words, it o8ers a framework for reasoning with rules and cases (or examples) in
a joint manner.

Possibilistic logic can be used as a framework for qualitative reasoning about preference [96,22,47].
When modelling preferences, bipolarity enables us to distinguish between positive desires encoded
using 5, and negative desires (states that are rejected) where N -based constraints describe states that
are not unacceptable [12]. Deontic reasoning can also be captured by possibilistic logic as shown
by Liau [96]. Namely, necessity measures encode obligation and possibility measures model implicit
permission. Dubois et al. [37] have pointed out that 5 functions may account for explicit permission.

In all cases, some consistency between the two types of information (what is guaranteed possible
cannot be ruled out as impossible) should prevail, namely

∀!; 	∗(!) 6 	∗(!)

and should be maintained through fusion and revision processes [61].

5. Conclusion

The basic notions and ideas underlying the current state of development of possibilistic logic
have been recalled. Clearly, possibilistic logic enjoys properties that keep it close to classical logic,
although the introduction of weights (of di8erent kinds) substantially increases its representation
capabilities, especially for inconsistency handling.

Applications of this framework can be found in default reasoning [14,15,17,95,97], in description
logics [77], .exible constraint satisfaction problems (Schiex, [104]; see also [27]), decision under
uncertainty and preference modelling [96,7,47]. Based on conditioning, the revision of a possibilistic
knowledge base by some input information (possibly uncertain), which can be viewed as an asym-
metrical fusion process, can be also handled directly at the possibilistic level [56,23]. A possibilistic
logic counterpart of Kalman (ltering, involving a prediction step, followed by a revision step has
been proposed recently for handling updating in dynamic worlds [21].

Generally speaking, possibilistic logic provides a rich qualitative framework that augments the
classical logic setting with capabilities for modelling plausibility or preference orderings in a .exible
way, without a dramatic increase of computational complexity [86]. Possibilistic logic programming
can be envisaged [41] and some programming environments based on possibility theory have been
developed [1].

Possibilistic logic has been used in some applications to information systems. An early application
to scenario identi(cation under multiple-source uncertain information was carried out by Fulvio
Monai and Chehire [65]. The representation framework of possibilistic logic can also be used for
expressing to what extent it is certain that a database contains only valid, or complete information
about a given topic [57]. Jahnke and Heitbreber [79] combine fuzzy Petri nets and possibilistic logic
in an application to database reverse engineering. Wong and Lau [105] apply possibilistic logic to
modelling agent behaviour in electronic commerce transactions. Lau et al. [88] exploit its capacity to
handle inconsistency and belief revision in the modelling of information-(ltering agents. Jahnke and
Walenstein [80] have found it appropriate for use in the problem of modernizing poorly documented
information systems.
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[63] L. Fariñas del Cerro, A. Herzig, A modal analysis of possibility theory, in: Ph. Jorrand, J. Kelemen (Eds.),
Fundamentals of Arti(cial Intelligence Research (FAIR’91), Lecture Notes in Computer Science, Vol. 535, Springer,
Berlin, 1991, pp. 11–18.



20 D. Dubois, H. Prade / Fuzzy Sets and Systems ( ) –

ARTICLE IN PRESS
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