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Abstract. A possibility measure can encode a family of probability measures. This fact is the basis for a
transformation of a probability distribution into a possibility distribution that generalises the notion of
best interval substitute to a probability distribution with prescribed confidence. This paper describes
new properties of this transformation, by relating it with the well-known probability inequalities
of Bienaymé-Chebychev and Camp-Meidel. The paper also provides a justification of symmetric
triangular fuzzy numbers in the spirit of such inequalities. It shows that the cuts of such a triangular
fuzzy number contains the “confidence intervals” of any symmetric probability distribution with the
same mode and support. This result is also the basis of a fuzzy approach to the representation of
uncertainty in measurement. It consists in representing measurements by a family of nested intervals
with various confidence levels. From the operational point of view, the proposed representation is
compatible with the recommendations of the ISO Guide for the expression of uncertainty in physical
measurement.

1. Introduction

A crucial step in the design of a problem solving tool where fuzzy sets [39] are
involved is the determination of the membership functions of these fuzzy sets. This
aspect is closely related to the interpretation of membership degrees: according to
the problem, it is mainly devised in terms of similarity, preference, or uncertainty
[13]. In this paper, only the uncertainty semantics will be considered. In this scope,
possibility theory, introduced by Zadeh [40] appears as a mathematical counterpart
of probability theory, that deals with uncertainty by means of fuzzy sets.

However, because of the lack of canonical methods for constructing membership
functions, fuzzy set methods have often been dismissed prematurely by practitioners
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who are unfamiliar with this topic, especially in areas such as measurement. There-
fore, traditional probabilistic methods remain dominant in the field of measurement
and instrumentation and for the representation of uncertainty at large.

When the available information is frequentist, resorting to probabilistic mod-
elling is natural. However, a common practice is to extract, from a probability
distribution, intervals containing the value under concern, with a prescribed con-
fidence level. This practice corresponds to a major departure from the regular
probabilistic representation, since such a “confidence interval” represents a reliable
set of possible values for a parameter. It can be viewed as a probability-possibility
transformation, quite the converse move with respect to the Laplacean indifference
principle, which presupposes uniform probability distributions when there is equal
possibility among cases. However the weak point of the interval representation is
the necessity of choosing a confidence level. It is usually taken as 95% (which
means a .05 probability for the value to be out of the interval). However this choice
is rather arbitrary.

Possibility measures encode families of probability distributions [2], [14] and
can be viewed as a particular case of random sets [1], [9], [38]. Hence it is tempting
to try to generalise our notion of confidence interval using a probability-possibility
transformation. The idea of viewing possibility distributions, especially member-
ship functions of fuzzy numbers, as encoding confidence intervals, is actually not
new. Well before the advent of fuzzy sets, in the late forties, Shackle [34] introduced
the connection between confidence intervals and the measurement of possibility in
his theory of potential surprise, which is a first draft of possibility theory. McCain
[30] also independently pointed out that a fuzzy interval models a nested set of
confidence intervals with a continuum of confidence levels. The idea of relating
fuzzy sets to nested confidence sets via a probability-possibility transformation was
first proposed by Dubois and Prade [9]. Doing so, it is clear that some information
is lost (since a probability family is obtained). However it may supply a nested
family of confidence intervals instead of a single one. The guiding principle for this
transformation is to minimise informational loss. The corresponding transformation
has already been proposed in the past [9], [15], [25], [31]. More recent results have
been obtained by Lasserre [26], Mauris et al. [27], [29] and applied to the problem
of representing physical measurements.

This paper further explores the connection between this probability-possibility
transformation, confidence intervals, and other well-known concepts and results in
probability theory such as probabilistic inequalities. It also demonstrates the pecu-
liar role played by symmetric triangular fuzzy numbers, which appear as the natural
fuzzy counterpart to uniform probability distributions on bounded intervals. Lastly,
it is suggested that possibility distributions, and especially the so-called truncated
triangle possibility distribution, are a natural tool for the non-parametric repre-
sentation of uncertainty measurement. A new procedure is proposed for building
a membership function representing uncertainty in measurement. The procedure
is based on piling up all the confidence intervals of the statistical distribution of
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the measures considered. This approach is well founded at the theoretical level in
the possibility and probability frameworks [1], [19]. At the operational level, it
is compatible with the recommendations of the ISO Guide, for the expression of
uncertainty in measurement [20].

The paper is organised as follows. The second section deals with our proposal to
build a possibility representation of measurement uncertainty, thus making a bridge
between probability theory and possibility theory via the notion of confidence
intervals. Bridges with the well-known Bienaymé-Chebychev and Camp-Meidel
probabilistic inequalities are established. In the third section, it is shown that the
triangular possibility distribution is a legitimate transformation of the uniform
probability distribution with the same support, and that it is an upper bound of
all the possibility transforms associated with all the bounded symmetric unimodal
probability distributions with the same support. Finally, operational considerations
concerning the representation of measurement uncertainty are presented and related
with the ISO guide recommendations in metrology.

2. Probability-Possibility Transformations

The problem of converting possibility measures into probability measures and
conversely has received attention in the past, but not by so many scholars (See
[32], for a recent comparative review). This question is philosophically interesting
as part of the debate between probability and fuzzy sets. Indeed, as pointed out
by Zadeh [40], the membership function of a fuzzy set can be used for encoding a
possibility distribution, and a possibility degree can be viewed as an upper bound on
a probability degree (see [14], for instance). Possibility-probability transformations
can be useful in any problem where heterogeneous uncertain and imprecise data
must be dealt with (e.g. subjective, linguistic-like evaluations and statistical data).
However, as pointed out in Dubois et al. [15], the probabilistic representations
and the possibilistic ones are not just two equivalent representations of uncertainty.
Hence there should be no symmetry between the two mutual conversion procedures,
contrary to some proposals equating both kinds of uncertainty [24]. The possibilistic
representation is weaker because it explicitly handles imprecision (e.g. incomplete
knowledge) and because possibility measures are based on an ordinal structure
rather than an additive one. Turning a probability measure into a possibility measure
may be useful in the presence of other weak sources of information, or when
computing with possibilities is simpler than computing with probabilities [22].
Opposite transformations turning a possibility measure into a probability measure
were also proposed in Dubois and Prade [8], [9] and are of interest in the scope of
decision-making [35], [36].

Dubois et al. [15] suggest that each kind of transformation should be guid-
ed by a particular information principle: the principle of insufficient reason when
going from possibility to probability, and the principle of maximum specificity
when going from probability to possibility. The first principle aims at finding a
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probability measure which preserves the uncertainty of choice between outcomes,
and symmetries observed in a given problem, while the second principle aims at
finding the most informative possibility distribution, under the constraints dictated
by the possibility/probability consistency principle. This paper focuses on trans-
forming a frequentist probability distribution into a maximally specific possibility
distribution whose associated set of probability measures contains the former. A
valid frequentist probability distribution contains all the information that can be
gathered by observing a random phenomenon, and the criterion of maximal speci-
ficity intends to preserve as much original information as possible. This criterion is
not necessarily adapted to the transformation of a subjective probability distribution
reflecting an expert opinion. One may question the Bayesian credo, that any state of
an agent’s knowledge is necessarily representable by a single probability, since the
form of a subjective probability is dictated by the exchangeable betting framework.
In that case, a different criterion was proposed [16], which selects a less precise
possibility measure.

2.1. BASICS OF POSSIBILITY THEORY

Possibility measures [5], [11], [40] are set functions similar to probability measures,
but they rely on an axiom which only involves the operation “supremum.” A
possibility measure Π on a set X (e.g. the set of reals) is characterised by a possibility
distribution π : X → [0, 1] and is defined by:

∀A ⊆ X, Π(A) = sup{π(x), x ∈ A}. (2.1)

On finite sets this definition reduces to:

∀A ⊆ X, Π(A) = max{π(x), x ∈ A}. (2.2)

To ensure Π(X) = 1, a normalization condition demands that π(x) = 1, for some
x ∈ X. The basic feature of a possibility distribution is the preference ordering it
induces on X. Namely π describes what is known on the value of a variable V and
π(x) > π(x′) means that V = x is more plausible than V = x′. When π(x) = 0 it
means that x is an impossible value of the variable V to which π is attached. When
π(x) = 1 it just means that x is one of the most plausible values of this variable.
Due to the definition of the possibility of an event, the possibility representation
can be purely qualitative [12]. It may only use the fact that the unit interval is a
total ordering. The obtained theory of uncertainty is to a large extent less expressive
than probability, but also less demanding in information. Especially, it perfectly
captures ignorance, letting the possibility of any event be equal to 1, except for the
ever-impossible one. A possibility distribution π is more informative than another
one π′ whenever π′ > π. Indeed, the set of possible values of V according to π is
more restricted than the set of possible values of V according to π′. We then say
that π is more specific than π′. In terms of fuzzy sets, this is fuzzy set inclusion of
π in π′.
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While probability measures are self-dual in the sense that P(A) = 1 − P(Ac)
where Ac is the complement of A, possibility measures are not so and N(A) =
1 − Π(Ac) is the degree of necessity! of A [11]. Necessity measures satisfy similar
properties as possibility measures with respect to set-intersection, for instance
N(A) = inf{N(X\{x}), x #∈ A}, noticing that 1 − π(x) = N(X\{x}).

Possibility and probability do not capture the same facets of uncertainty. The
basic feature of probabilistic representations of uncertainty is additivity. Probability
measures use the full strength of the algebraic structure of the unit interval. Uniform
probability distributions on finite sets often model randomness. However, if consid-
ered as modelling belief, uniform probability distributions are also used in the case
of total ignorance. In this situation, the probability of an outcome only depends on
the number of such outcomes. Yet, only a set function that would assign the same
degree to each non-impossible event (elementary or not) can model ignorance (the
lack of knowledge) in a faithful way. The uniform possibility distribution is such
a set function. But there does not exist a probability measure of this kind [17].
Uniform probability distributions only capture the idea of indecisiveness in front
of a choice between outcomes. Hence while probability theory offers a quantitative
model for randomness and indecisiveness, possibility theory offers a qualitative
model of incomplete knowledge.

As it turns out, a numerical possibility measure, restricted to measurable subsets,
can also be viewed as an upper probability function [2], [14], [22]. Formally, such
a real-valued possibility measure Π is equivalent to the family P(Π) of probability
measures such that P(Π) = {P, ∀A measurable, P(A) ≤ Π(A)}. Equivalently, that
P(Π) = {P, ∀A measurable, P(A) ≥ N(A)}. The embedding of fuzzy sets into
random set theory as done by Goodman and Nguyen [19], Wang Peizhuang [38], is
also worth noticing. A possibility measure is actually a nested random set S whose
realisations are its α-cuts Aα = {x, π(x) ≥ α}, that is, π(x) is the probability that the
known value x belongs to the unknown set S (see also Dubois et al. [8], De Cooman
and Aeyels [1]).

A numerical possibility distribution π : R → [0, 1] is called a fuzzy interval as
soon as its α-cuts are (closed) intervals. When the modal value of π (xm such that
π(xm) = 1) reduces to a singleton, it is also called a fuzzy number. Then, if π is
continuous,

N(Aα) = 1 − α, ∀α ∈ (0, 1], and π(x) = sup{Π
(
(Aα)c), x ∈ Aα, α ∈ (0, 1]}.

2.2. BASIC TRANSFORMATION PRINCIPLES

The conversion problem between possibility and probability has roots in the pos-
sibility/probability consistency principle of Zadeh [39], that he proposed in the

! This definition of necessity measures via duality makes sense if the range of Π is upperbounded.
Otherwise, necessity measures must be separately defined (as when possibility and necessity measures
are used as approximations of infinite additive measures [22]).
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paper founding possibility theory in 1978. This principle claims that an event must
be possible prior to being probable, hence suggesting that degrees of possibility,
whatever they are, cannot be less than degrees of probability (Dubois and Prade
[7], Delgado et al. [3]). This is coherent with the fact that possibility measures
can encode upper probabilities. In the following, a probability measure P and a
possibility measure Π are said to be consistent if and only if P ∈ P(Π). This is
the natural encoding of the principle of probability-possibility consistency. It looks
natural to pick the result of transforming a possibility measure Π into a probability
measure P in the set P(Π), and conversely to choose the possibility measure Π
obtained from a probability measure P in such a way that P ∈ P(Π).

The starting point for devising transformation principles is to acknowledge
the informational differences between possibility and probability measures. It is
clear from the above discussion that by going from a probabilistic representation
to a possibilistic representation, some information is lost because we go from
point-valued probabilities to interval-valued ones. The converse transformation
from possibility to probability adds information to some possibilistic incomplete
knowledge.

More precisely, the probability-possibility transformation leads to find a brack-
eting of P(A) for any measurable A ⊆ X in terms of an interval [N(A), Π(A)].
When [N(A), Π(A)] serves as a bracketing of P(A), Π is consistent with P. Because
N(A) > 0 ⇒ Π(A) = 1, this bracketing is never tight since it is always of the form
[α, 1] or [0, β]. In order to keep as much information as possible, one should get
the tightest intervals. It is easy to see that the fuzzy set with membership function π
should be minimal in the sense of inclusion so that π is maximally specific (while
respecting the constraint Π(A) ≥ P(A)). A refinement in this specificity ordering
consists in requesting that this fuzzy set be of minimal cardinality, i.e. that the value∑
x ∈X

π(x) be minimal (in the finite case).

Moreover, the possibility distribution π obtained from p should satisfy the
constraint:

π(x) > π(x′) if and only if p(x) > p(x′) (order preservation)

since the ordering of elementary values is the basic information retained in possi-
bilistic representations. However this condition may be weakened into:

p(x) > p(x′) implies π(x) > π(x′) (weak order-preservation),

in the sense that equally probable events need not be equally possible. The above
principles for possibility/probability transformations sound reasonable but alterna-
tive ones have been proposed. These alternative views are discussed in [15], [32].
The most prominent one, due to Klir [18], [24], [25] is based on a principle of
information invariance. In Klir’s view, the transformation should be based on three
assumptions:
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• A scaling assumption that forces each value πi to be a function of pi / p1 (where
p1 ≥ p2 ≥ · · · ≥ pn) that can be ratio-scale, interval scale, Log-interval scale
transformations, etc.

• An uncertainty invariance assumption according to which the entropy H(p)
should be numerically equal to the measure of information E(π) contained in
the transform π of p. In order to be coherent with the probabilistic entropy, E(π)
can be the logarithmic imprecision index of Higashi and Klir [23], for instance.

• Transformations should satisfy the consistency condition π(u) ≥ p(u), ∀u, stat-
ing that what is probable must be possible.

Klir’s assumptions are debatable. The uncertainty invariance equation E(π) =
H(p), along with a scaling transformation assumption (e.g., π(x) = αp(x) + β , ∀x),
reduces the problem of computing π from p to that of solving an algebraic equation
with one or two unknowns. Then, the scaling assumption leads to assume that π(x)
is a function of p(x) only. This pointwiseness assumption may conflict with the
probability/possibility consistency principle that requires Π ≥ P for all events. See
Dubois and Prade [7, pp. 258–259] for an example of such a violation. Then, the
nice link between possibility and probability, casting possibility measures in the
setting of upper and lower probabilities cannot be maintained.

The second and the most questionable prerequisite assumes that possibilistic and
probabilistic information measures are commensurate. The basic idea is that the
choice between possibility and probability is a mere matter of translation between
languages “neither of which is weaker or stronger than the other” (quoting Klir and
Parviz [25]). It means that entropy and imprecision capture the same facet of uncer-
tainty, albeit in different guises. Our approach does not make this assumption.

2.3. PROBABILITY-POSSIBILITY TRANSFORMATIONS IN THE FINITE CASE

The problem of turning a probability distribution p defined by probability values
p1 ≥ p2 ≥ · · · ≥ pn into a possibility distribution π on a finite set X = x1, x2, …, xn
is thus stated as follows:

Find a possibility distribution π = (π1, π2, …, πn) such that
P(A) ≤ Π(A) ∀A ⊆ X
p and π are order-equivalent
and π is maximally specific (any other solution π′ is such that π ≤ π′).

The solution to this problem exists and is unique. It already appears in [3], [9],
and is given by:

π1 = 1,

πi =
∑

j= i, n

pj if pi−1 > pi

= πi−1 otherwise.
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The proof is easy, noticing that if pi−1 > pi,
∑

j= i, n
pj is the minimal possible value

for Π({xi, …, xn}) = πi.
However, if probabilities pi = pi+1 for some i, requesting weak order preservation

only no longer preserves the unicity of the most specific possibility distribution
consistent with p. Namely, we may choose between

π 1
i =

∑

j= i, n

pj, π 1
i+1 =

∑

j= i+1, n

pj

and

π 2
i =

∑

j= i+1, n

pj, π 2
i+1 =

∑

j= i, n

pj.

In particular there are n! most specific, weakly order-equivalent possibilistic
transforms of the uniform probability distribution, each obtained by means of an
arbitrary permutation σ of elements of X. Namely ∀i, π σ

i = i / n. The obtained
possibility distribution always has minimal cardinality

∑
j= 1, n

πj.

3. Continuous Probability-Possibility Transformations

Physical measurements generally are values in the set R of real numbers. Probability
and possibility distributions considered here will be defined on R. In the continuous
case, our fundamental proposition is to derive a possibility distribution from a
continuous density by means of a nominal (representative) value and the whole set of
confidence intervals (with level ranging from 0 to 1) built around this nominal value.
Only unimodal probability densities are considered. In the case of measurements,
the nominal value will be the modal value xm of the acquired data. For symmetric
densities, the mode is equal to the mean and to the median and therefore this choice
is natural. However, for asymmetric densities this choice is debatable. This paper
nevertheless suggests the mode of the distribution as the most natural nominal
value.

3.1. MAIN RESULTS

Let us first recall our notion of a confidence interval: let p be a unimodal probability
density and x∗ be a “one-point” estimation of the “real” value (for example the
mode or the mean value of the probability density). An interval is defined around
the “one-point” estimation, and its confidence level corresponds to the probability
that this interval contains the “real” value. For a confidence level α, such an interval,
denoted I∗α is called a confidence interval, and its confidence level is P(I∗α ) = α
(95%, 99% are values often used in the measurement area); 1 − P(I∗α ) is the risk
level, that is, the probability for the real value to be outside the interval. In the
following, a nested family {I∗α} of such confidence intervals all containing x∗, is
assumed to be given.
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DEFINITION 3.1. The fuzzy confidence interval induced by a continuous probabil-
ity density p around x∗ is the possibility distribution (denoted π∗) whose α-cuts are
the closed confidence interval I∗α of confidence level P(I∗α ) = α around the nominal
value x∗ computed from p.

According to the definition, a possibility distribution π∗ can be defined as
follows:

π∗(x) = sup{1 − P(I∗α ), x ∈ I∗α}.

The possibility distribution π∗ is continuous and encodes the whole set of
confidence intervals in its membership function. Moreover, π∗(x∗) = 1. It can be
proved that p ∈ P(Π∗) where Π∗ is the possibility measure associated with π∗.

THEOREM 3.1. For any probability density p, the possibility distribution π∗ in
Definition 3.1 is consistent with p, that is: ∀A measurable, Π∗(A) ≥ P(A), Π∗

and P being the possibility and probability measures associated respectively to π∗

and p.

Proof. For any measurable set A ⊆ R, define the set C = {x ∈ R,
π∗(x) ≤ Π∗(A)}. Obviously, A ⊆ C, because ∀A measurable, Π∗(A) = sup

x ∈A
π∗(x) =

Π∗(C). Now, P(C) = Π∗(A). Indeed Cc is the cut of level Π∗(A) of π∗, therefore,
P(Cc) = 1 − Π∗(A), due to Definition 3.1. Finally, Π∗(A) ≥ P(A) since A ⊆ C. !

A similar result was pointed out in the finite setting by Dubois and Prade [6]. A
more general result in the infinite setting is proved by Jamison and Lodwick [22].
In the sequel, we show that ensuring the preservation of the maximal amount of
information in π∗ can motivate the choice of the nominal value as the mode xm of
the probability density. This is justified by the following lemma. In this lemma, the
length of a measurable subset of the reals is its Lebesgue measure.

LEMMA 3.1. For any continuous probability density p having a finite number of
modes, any minimal length measurable subset I of the real line such that P(I) = α ∈
(0, 1], is of the form {x, p(x) ≥ β} for some β ∈ [0, pmax] where pmax = supx p(x).
It thus contains the modal value(s) of p.

Proof. Let I = {x, p(x) ≥ β}. I is a closed interval or a finite union thereof.
Assume that there exists another measurable subset J of R such that P(J) = P(I)
with length(J) < length(I). Considering the three following disjoint domains
of R: I ∩ J, I\J and J\I, we find that since P(J) = P(I) by assumption:
P(J) − P(I) =

∫
J \ I p(x) dx −

∫
I \ J p(x) dx = 0. Now, for x ∈ I\J, p(x) ≥ β , and

for x ∈ J\I, p(x) < β , therefore:
∫

I \ J dx = length(I\J) ≤
∫

J \ I dx = length(J\I).
Hence, length(I\J) + length(I ∩ J) = length(I) ≤ length(J\I) + length(I ∩ J) =
length(J) which contradicts the assumption. !

Remark 3.1. Lemma 3.1 can be easily extended to continuous probability distri-
butions on Rd by replacing the length by the Lebesgue measure on Rd, i.e the
hyper-volume, in the above proof.
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This lemma does not require that the support of P be bounded. It has been
proved in [15] for unimodal probability densities. Here, the proof is valid for any
continuous probability density with a finite number of modes. However the unicity
of the minimal length set Iα such that P(Iα) = α ∈ (0, 1] is not always ensured.
It holds for unimodal continuous probability densities with no range of constant
value. It is also obvious from Lemma 3.1 that for any confidence level α, the
smallest sets Iα such that P(Iα) = α ∈ (0, 1] are nested. The lemma proves that
these most informative (that is, with minimal length) confidence sets are cuts of
the probability density. We call such intervals the confidence intervals around the
mode. The corresponding possibility distribution is denoted π xm and

π xm(x) = 1 − P
(
{y, p(y) ≥ p(x)}

)
.

Since the minimal length sets Iα contain the modal values of p, i.e. xm such
that p(xm) = pmax, whatever the probability density, it gives a justification for
choosing x∗ = xm and building the confidence intervals around modal values even
for asymmetrical or multi-modal densities. Choosing confidence sets of minimal
length ensures that this possibility distribution will be maximally specific. The
degree of imprecision of π is defined by

∫
R π(y) dy =

∫
[a, b] π(y) dy (if [a, b] is the

support of π). It is also equal to
∫

[0, 1] length(Aα) dα, due to Fubini’s theorem. Thus,
minimising the size of the cuts of π consistent with p comes down to minimising
the imprecision of π.

The notion of confidence intervals has been introduced in probability theory
for a long time [21]. In the paper, we use the terminology “confidence interval”
for reliable interval substitutes to probability distributions. It does not correspond
to the traditional terminology. In statistics, a confidence interval has a different,
although related, meaning [21]. Given a parameterized family {pθ} of probability
measures, and an observation x0, the 95% confidence interval is the plausible range
of the parameter θ, defined as {θ, x0 ∈ Iθ} where Iθ is a suitably defined interval
[aθ , bθ] such that Pθ(Iθ ) ≥ 0.95. Here we call Iθ a confidence interval associated
to pθ . Our notion of confidence interval is much closer to Fisher’s fiducial interval
(see again [21]).

A closed form expression of the possibility distribution induced by confidence
intervals around the mode x∗ = xm is obtained for unimodal continuous probability
densities strictly increasing on the left and decreasing on the right of xm:

∀x ∈ [−∞, xm], π xm(x) = π xm(
ƒ(x)

)
=
∫

(−∞, x]
p(y) dy +

∫

(ƒ(x), +∞]
p(y) dy, (3.1)

where ƒ is the mapping defined by: ∀x ∈ [−∞, xm], ƒ(x) = y ≥ xm such that
p(x) = p(y). The function ƒ is continuous and strictly decreasing, therefore a one-
to-one mapping, and from (3.1) is clear that is π xm is continuous and differentiable,
since p is continuous.

Remark 3.2. When p is unimodal, it is increasing before xm and decreasing after
xm. When these monotonicity properties are in the wide sense only, (3.1) no longer
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makes sense because ƒ is no longer a one-to-one mapping. When p is still strictly
monotonic on both sides of xm, but has discontinuities, function ƒ may still makes
sense if defined as ƒ(x) = max{y | p(y) ≥ p(x)}, but it may not be strictly decreasing
any longer.

Remark 3.3. Using the closed form expression (3.1), the confidence interval takes
the following form: Ixm

α = [(π xm
− )−1(1 − α), ƒ

(
(π xm

− )−1(1 − α)
)
] where (π xm

− )−1 is
the inverse function of the increasing part of π xm.

LEMMA 3.2 [15]. If the unimodal density p has a bounded support supp(p) =
[a, b], then ∀c ∈ [a, b], ∀ϕ : [a, c] → [c, b] such that ϕ(c) = c, ϕ is decreasing, let
πϕ, c be the possibility distribution defined by:

πϕ, c(x) = πϕ, c
(
ϕ(x)

)
=

∫

(−∞, x]
p(y) dy +

∫

(ϕ(x), +∞]
p(y) dy.

Then πϕ, c is consistent with p.

Proof. ∀A such that c ∈ A, Π(A) = 1 ≥ P(A) when A is measurable; if
sup A = x < c, and since π is continuous, Π(A) = Π((−∞, x]) = πϕ, c(x) ≥
P((−∞, x]) ≥ P(A). The same holds if x = inf A > c using [x, +∞). Other cases are
proved similarly. So πϕ, c is consistent with p. !

This result also follows from Theorem 3.1 and can be easily adapted to densities
with infinite support. Joining the results of Lemmas 3.1 and 3.2 yields:

LEMMA 3.3. The least specific possibility distribution consistent with a probability
distribution P with unimodal continuous density p (in the sense that P ∈ P(Π)), and
that satisfies the order preservation condition is πϕ, x∗ where ϕ(x) = max{y | p(y) ≥
p(x)}, and x∗ = xm.

Proof. The order preservation condition forces the cuts of π to be of the form
{x | p(x) ≥ p(y)}, ∀y, and the core of π to be {xm}, the modal value of p.
From Lemma 3.2, πϕ, xm with ϕ(x) = max{y | p(y) ≥ p(x)} is consistent with
p. Now if π′ is such that π′(x) < πϕ, xm (x), for x < xm and π′ satisfies order
preservation, we clearly see that π′(x) = π′(ϕ(x)) and Π′((−∞, x] ∪ [ϕ(x), +∞)) <
Πϕ, xm ((−∞, x] ∪ [ϕ(x), +∞)) = P((−∞, x] ∪ [ϕ(x), +∞)), i.e. π′ is not consistent
p. Note that ϕ obtained here is the function ƒ in (3.1). !

The situation can be summarised as follows: In order for π to be consistent
with p, we need that ∀I = [x, y], Π(Ic) ≥ P(Ic) =

∫
(−∞, x] p(t) dt +

∫
(y, +∞] p(t) dt

for the complement of I. Lemma 3.2 says that if this condition is fulfilled for a
nested family of intervals, that are the cuts of π, then π is consistent with p. To
minimise the area under π, it is enough to minimise the size of these intervals,
and Lemma 3.1 tells us that they should be taken as the cuts of the probability
density itself. Lemma 3.3 also points out that this is equivalent to requesting that
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the ordering induced by p be preserved by π. If p is symmetric with mode xm, then
the possibility distribution π xm(x) is then easily defined as

∀x ∈ [−∞, xm], π xm(x) = π xm(2xm − x) = 1 − P([x, 2xm − x]).

So we have proved the following theorem.

THEOREM 3.2. For unimodal continuous probability densities p with no range of
constant value, if x∗ is taken as the mode xm, the possibility distribution induced
by confidence intervals around the mode (cuts of p) is identical to the one obtained
by the maximal specificity probability-possibility transformation, which verifies the
consistency principle and the order preservation condition.

Remark 3.4. For unimodal continuous densities which have ranges of constant value,
Definition 3.1 may not define the possibility distribution everywhere, especially if
the confidence intervals are given from cuts of p. Indeed there may be values β
in ]0, 1] such that P(I) #= β for any cut I of p. Respecting the order preservation
property leads to assign a constant value to π xm(x) in the intervals where π xm is
undefined. Then, π xm is not continuous. Then Lemma 3.3 gives another approach
which is applicable to when p has ranges of constant unequal values. It preserves
the continuity of π xm if these ranges are on the left-hand side of xm but only the
weak order preservation property holds. This technique, based on (3.1), can be
extended to when there are ranges of constant unequal values on each side of π xm

(the domain function ƒ in (3.1) has been arbitrarily chosen on the left side of xm).
When there are ranges of constant equal values of p one on each side of xm (e.g.
symmetric p’s), the continuity of π xm is no longer ensured by using cuts of p, nor
by (3.1).

Dubois et al. [15] already pointed out the relationship between the probability-
possibility transformation based on cuts of p and confidence intervals. However
this connection is but a consequence of their proposal. Here, the converse approach
is used: we start from the notion of confidence intervals as a basis for defining
possibility distributions.

EXAMPLE 3.1. For the triangular probability density with xmean = 0 and σ = 1
defined by ∀x ∈ [−

√
6, +

√
6], p(x) = 1 /

√
6 − |x / 6|, a double-parabolic-shaped

possibility distribution π(x) = 1 + x2 / 6 + 2|x /
√

6|, ∀x ∈ [−
√

6, +
√

6], is obtained
(see Figure 3). The possibility distribution transforms of the reduced Gaussian
and double exponential distributions (xmean = 0 and σ = 1) are also plotted on
Figure 3.

In summary, a statistical interpretation of possibility distributions in terms of
confidence intervals is thus available. Definition 3.1 is more general because no
assumptions are required, but the closed form (3.1) is more operational though it
mainly concerns unimodal distributions with no range of constant density value.
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3.2. FROM POSSIBILITY TO PROBABILITY: THE CONVERSE TRANSFORMATION

The closed form (3.1) enables the converse transformation (possibility-probability)
to be considered. Differentiating π xm(x) stated by (3.1), we obtain for the deriva-
tive π′:

∀x ∈ [−∞, xm], π ′(x) = p(x) − p
(
ƒ(x)

)
ƒ′(x),

∀y ∈ [xm, +∞], π ′(y) = −p(y) + p
(
ƒ−1(y)

)
/ ƒ′

(
ƒ−1(y)

)
.

The latter also reads π′(y) = −p(ƒ(x)) + p(x) / ƒ′(x), since y = ƒ(x), and ƒ′(x) #= 0
due to the strict monotonicity of p(x) before and after xm. Eliminating ƒ′(x) between
the two expressions, we obtain:

∀x ∈ [−∞, xm], p(x) =
(

π′(x) ⋅ π ′
(
ƒ(x)

))/(
π′

(
ƒ(x)

)
− π′(x)

)
.

This expression allows to define the possibility-probability transformation of a
unimodal possibility distribution π by defining a function g as follows:

∀x ∈ [−∞, xm], g(x) = y ≥ xm such that π(x) = π(y).

Therefore π′(x) = π′(g(x))g′(x) because π(x) = π(g(x)), and thus

∀x ∈ [−∞, xm], p(x) = π′(x) /
(
1 − g′(x)

)
, and

∀y ∈ [xm, +∞], p(y) = p(x).
(3.2)

Therefore,
∫

(xm , +∞] p(y) dy = −
∫

(−∞, xm] p(x)g′(x) dx and the function p so
defined satisfies the normalization condition:

∫

(−∞, xm]
p(x) dx +

∫

(xm , +∞]
p(y) dy

=
∫

(−∞, xm]
π′(x) /

(
1 − g′(x)

)
dx −

∫

(−∞, xm]
π′(x) ⋅ g′(x) /

(
1 − g′(x)

)
dx

=
∫

(−∞, xm]
π′(x)

(
1 − g′(x)

)
/
(
1 − g′(x)

)
dx

=
∫

(−∞, xm]
π′(x) dx

= π(xm) − π(−∞) = 1 − 0 = 1.

When p is a continuous unimodal probability distribution, applying successively
(3.1) and (3.2) retrieves p. Note that this possibility-probability transformation is
different from the pignistic transformation proposed by Smets [35]. This is not
surprising because the latter is based on another information principle, i.e. the
insufficient reason principle, and consists in replacing each cut of π by uniformly
distributed densities on this cut.
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3.3. PROBABILISTIC INEQUALITIES VIEWED AS PROBABILITY-POSSIBILITY
TRANSFORMATIONS

Several well-known notions in statistics exist [21] that define bracketing approx-
imations of confidence intervals for unknown probability distributions. When the
probability law of considered measurements is unknown, the confidence intervals
can be supplied by the Bienaymé-Chebychev inequality that can be written as
follows. Let X be the quantity to be estimated and xmean the mean value of its
probability distribution, σ its standard deviation:

P(X ∈ [xmean − kσ, xmean + kσ]) ≥ 1 − 1 / k2, for k ≥ 1.

It allows to define confidence intervals of confidence value 1 / k2 centred on
the mean-value xmean of an unknown probability law whose associated probability
measure is denoted P. Note that P only needs to be known by its mean-value xmean

and its standard deviation σ, and it does not necessarily need to be unimodal nor
symmetric.

If the probability law is known to be unimodal and symmetric, a tighter bound,
the Camp-Meidel inequality can be applied [21]:

P(X ∈ [xmean − kσ, xmean + kσ]) ≥ 1 − 1 / 2.25k2, for k ≥ 1.

The preceding probability inequalities suggest a simple method to build distri-
bution free possibility approximations for probability distributions, due to Theo-
rem 3.1, letting π(xmean − kσ) = π(xmean + kσ) = 1 / k2, for k ≥ 1 for instance.
The confidence intervals for the Camp-Meidel inequality have a smaller length than
those obtained by the Bienaymé-Chebychev inequality. This difference is due to
the richer knowledge available for the probability distribution in the former case.
In some sense, our results in the previous subsections give a systematic method for
building the tightest inequalities adapted to each probability distribution.

4. Symmetric Triangular Fuzzy Numbers

The most usual possibility distribution found in applications of fuzzy sets is the tri-
angular fuzzy number completely defined by its support [x1, x2] and its modal value
xm such that π(xm) = 1. It is often used in granular representations of subsets of the
real line using fuzzy partitions. It is also very often used in fuzzy interval analysis,
because it is a good trade-off between expressiveness and simplicity. Some authors
have tried to justify the use of the triangular shape using some more elaborate,
but still ad hoc rationale [33]. In contrast, the above results lead to a very natural
interpretation of the symmetric triangular fuzzy number as yielding the optimal
distribution-free confidence intervals for symmetric probability distributions with
bounded support.
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4.1. TRIANGULAR FUZZY NUMBERS YIELD A PROBABILISTIC INEQUALITY FOR
BOUNDED SUPPORT SYMMETRIC DENSITIES

First, consider the case of the uniform probability distribution on a bounded interval
[x1, x2]. This is the most natural probabilistic representation of incomplete knowl-
edge when only the support is known. It is non-committal in the sense of maximal
entropy, for instance, and it applies Laplace indifference principle stating that what
is equipossible is equiprobable. The following result shows that triangular fuzzy
numbers are obtained from the probability-possibility transformation under the
weak order preservation condition:

THEOREM 4.1. The possibility distribution transform of the uniform probability
distribution on a bounded interval [x1, x2] around x∗ = xmean is the triangular
possibility distribution (denoted t.p.d.) of mode xmean and whose support is the
support of the probability distribution.

Proof. It is straightforward because integrating a constant (as per (3.1)) gives a
linear function on each side of xmean. !

So the set of confidence intervals of the uniform probability distribution around
its mean-value yields a symmetric triangular fuzzy number. Note that choosing x∗ as
any other value in the support is possible and yields the triangular fuzzy number with
support [x1, x2] and modal value x∗. It is also consistent with p. This is because if
we only request the weak order preservation condition, the most specific possibility
distribution containing the uniform probability distribution is not unique any longer.
Requiring the full order preservation condition yields the non-fuzzy interval [x1, x2],
the uniform possibility distribution. The choice of x∗ = xmean is very natural from
a symmetry argument. Moreover, the uniform probability distribution suggests the
idea that even if as likely as the other values, the central value of the interval is
in some sense more plausible than the other ones. Indeed, it would be strange to
select a representative value of the uniform probability distribution closer to one
boundary than to the other one. On such a basis, we can prove the main result of
this section:

THEOREM 4.2. The triangular symmetric possibility distribution of support [x1 , x2]
and of mode xm = (x1+x2)/2 is the least upper bound of all the possibility transforms
of symmetric probability distributions of mode xm and support [x1, x2].

The proof requires the following lemma (see Figure 1).

LEMMA 4.1. The possibility transform of any unimodal symmetric probability
density has no inflexion point (with vanishing second derivative), and its shape is
convex on the left and the right sides of the modal value.

Proof. From the symmetry assumption, the expression in (3.1) becomes:

∀x ∈ [−∞, xm), π xm(x) = π xm(
ƒ(x)

)
= 2

∫
(−∞, x] p(y) dy,

∀x ∈ [xm, +∞), π xm(x) = π xm(
ƒ−1(x)

)
.
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Figure 1. Possibility transformations of support-bounded probability distributions.

Therefore, the expression of the derivative of the possibility transform is:

∀x ∈ [−∞, xm), π ′(x) = π xm(
ƒ(x)

)
= 2p(x),

∀x ∈ [xm, +∞), π ′(x) = −2p
(
ƒ−1(x)

)
.

Since p(x) is positive and strictly increasing on the interval [x1, xm], the first
and second order derivatives of π xm are strictly positive. Therefore, the possibility
transform is convex on this interval. By the same reasoning, the possibility transform
is convex on the interval [xm, x2]. !

Proof of Theorem 4.2. Using Lemma 4.1, since π xm(x1) = 0 and π xm(xm) = 1, it
is straightforward that π xm lies under the triangular possibility distribution of modal
value xm, and of same support [x1, x2]. Moreover since π xm coincides with it when
the distribution is uniform and that the uniform distribution is the limit of families
of unimodal distributions, the triangular possibility distribution of modal value xm

is the envelope of all π xm for all symmetric distributions of bounded support [x1, x2]
see Figure 2. !

Theorems 4.1 and 4.2 provide a new justification of using symmetric trian-
gular fuzzy sets for uncertainty expression, as expected. Under the assumption
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Figure 2. Nested family of confidence intervals obtained from probabilistic inequalities
(a = 1).

of symmetry, their α-cuts can soundly be viewed as distribution-free confidence
intervals of degree 1 − α for quantities lying in a specified interval. Unfortunate-
ly this result does not carry over to distributions that would not be symmetric:
A non-symmetric unimodal probability distribution is not necessarily consistent
with the corresponding triangular possibility distribution having the same mode
and the same support.

EXAMPLE 4.1. Consider the piecewise linear probability density of support
[−2, +2] defined by

∀x ∈ [−2,−1.5], p(x) = 0.6x + 1.2,
∀x ∈ [−1.5, 0], p(x) = (0.2 / 3)x + 0.4,
∀x ∈ [0, 2], p(x) = −0.2x + 0.4.

A piece-wise parabolic possibility distribution is obtained by applying (3.1). It
gives π xm(−1.5) = 0.3 > πtriangle(−1.5) = 0.25.

Remark 4.1. The technique used in this section can solve the difficulty found in
Section 3 for symmetric densities with ranges of equal constant value on each side
of the mode. Assume xm = 0, without loss of generality. Let [a, b] be a range of
constant value for p on the right side of xm. Then, [−b,−a] is a range of constant
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(identical) value for p on the right side of xm. Then for values x and −x, where
x ∈ [a, b], just let π xm(x) = π xm(−x) = 1 − P([−x, x]). This method can be adapted
to such asymmetric densities with ranges of equal constant value on each side of
the mode as well.

It is interesting to compare the possibility distributions obtained by the Bien-
aymé-Chebychev and Camp-Meidel inequalities with the triangular fuzzy numbers.
The two classical inequalities are valid for larger classes of probability distributions
hence they should yield less specific bounds than the triangular fuzzy number. Con-
sider a uniform probability distribution with support [−a, +a], for some positive
value a. Its variance is σ 2 = a2 / 3. Let πBT and πCM be the probability distri-
butions stemming from the Bienaymé-Chebychev and Camp-Meidel inequalities
respectively:

πBT(x) = min(1, a2 / 3x2),
πCM(x) = min(1, 4a2 / 27x2),

while π xm(x) = max(0, 1−|x| /a). It is easy to verify that indeed πBT(x) ≥ πCM(x) ≥
π xm(x). More specifically, the differences πBT(x) − π xm(x) and πCM(x) − π xm(x) are
both minimal for x = ±2a / 3. And πCM(2a / 3) = π xm(2a / 3): The Camp-Meidel dis-
tribution has a tangency point with the triangular distribution (see Figure 2). So, the
triangular fuzzy number encodes strictly better distribution-free confidence inter-
vals than the Camp-Meidel inequality for support-bounded symmetric distributions
with prescribed support.

4.2. THE TRUNCATED TRIANGULAR POSSIBILITY DISTRIBUTION AND
UNBOUNDED DENSITIES

Quite often, unbounded probability distributions are characterised by a shape
depending on the mean value xmean and the standard deviation σ (which are often
estimated statistically from a set of measurements). The possibility transforms of
the Gaussian and the Laplace (double-exponential) probability distributions (and
also of the uniform and triangular ones) are plotted in Figure 3 for reduced variable,
i.e. xmean = 0 and σ = 1.

An interesting observation is that these possibility transforms cross each other at
the same point [28]: (x5 = xm+1.73σ; ε = 0.086). This property can be used to define
a simple upper bound of these possibility distributions by considering a truncated
triangular possibility distribution (denoted t.t.p.d.) with a truncation point (xε ; ε).
Finally, in order to easily handle the possibility representation, especially for further
computations, the latter has also been restricted to the interval [xm−3.2σ, xm +3.2σ]
which corresponds to the largest 99% confidence interval for the considered four
probability distributions.

The t.t.p.d. thus defined provides a simple distribution-free possibility represen-
tation of measurements whose α-cuts bound the confidence intervals of the four
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Figure 3. Possibility distributions associated to the four considered probability laws.

probability laws. An application of this possibility expression to measurements
acquired by an ultrasonic range sensor has been presented in [27].

Note that the Bienaymé-Chebychev inequality supplies a possibility distribution
that is far worse than the t.t.p.d. in terms of specificity. It is not unexpected because
the t.t.p.d. is an approximation of the set of confidence intervals dedicated to the four
considered probability distributions. However, the Bienaymé-Chebychev inequality
gives a set of confidence intervals valid for any probability distribution one might
choose.

The Camp-Meidel inequality supplies a possibility distribution that it is neither
far from what an upper bound of the four optimal possibility distributions could
be, nor far from the t.t.p.d. Anyway, the t.t.p.d. is more interesting in terms of
specificity. Of course, the t.t.p.d. can only be used when the probability model-
ling of the measurement result can be described by one of these four probability
distributions.

4.3. ADDITIVE PROPAGATION OF SYMMETRIC TRIANGULAR POSSIBILITY
DISTRIBUTIONS

Like in the case of random variables, possibility distributions of functions of pos-
sibilistic variables can be computed by an appropriate tool called the extension
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principle [39]. According to this principle, fuzzy operations are identified with
interval analysis for each cut. It thus provides a graded generalisation of interval
calculus [4]. Moreover, the invariant forms are far more numerous for possibility
propagation than in probability propagation, i.e. not only double exponential, and
Gaussian distributions [10].

A general parameterized representation of fuzzy intervals has been first proposed
in [7], [10]. Let L be any u.s.c. non-increasing mapping from [0, +∞) to [0, 1]
satisfying the following requirements: ∀x > 0, L(x) < 1; ∀x < 1, L(x) > 0;
L(0) = 1. Two cases are considered: either L(1) = 0, or L(x) > 0, ∀x, and then we
assume that lim

x→+∞
L(x) = 0.

Under these requirements, L is said to be a shape function. L(x) = max(1−xn, 0),
max(1 − x, 0)n, for n > 0, e−x, e−x2

, 1
x + 1

are examples of shape-functions. We
consider the class of u.s.c. fuzzy intervals whose membership function A(⋅) can
be described by means of two shape functions L and R and four parameters:
xa

m∗ , xa
m
∗ ∈ R ∪ {−∞, +∞}, s, t ∈ [0, +∞) having the form

A(x) = L
(
(xa

m∗ − x) / s
)

∀x < xa
m∗ ,

A(x) = 1 if x ∈ [xa
m∗ , xa

m
∗],

A(x) = R
(
(x − xa

m
∗) / t

)
∀x > xa

m
∗.

For s = 0 (resp. t = 0), A(x) = 0 when x < xa
m∗ (resp. x > xa

m
∗), by convention. A

fuzzy interval A described as above is called an LR-fuzzy interval and the notation
A = (xa

m∗ , xa
m
∗, s, t)LR is adopted. L and R are called the left shape and the right shape

functions, respectively. The parameters s and t are called the left spread and the
right spread, respectively.

The addition of fuzzy numbers is a possibilistic counterpart to the convolution
of random variables. The sum A ⊕ B of A and B is defined by the sup-min extension
principle:

A ⊕ B(z) = sup
x

min
(
A(x), B(z − x)

)
.

The following result was pointed out in [7], [10] for the addition of L-R fuzzy
numbers of the form A = (xa

m∗ , xa
m
∗, s, t)LR and B = (xb

m∗ , xb
m
∗, u, v)LR:

A ⊕ B = (xa
m∗ + xb

m∗ , xa
m
∗ + xb

m
∗, s + u, t + v)LR.

The cuts (A ⊕ B)α can be obtained by applying interval arithmetic to the α-cuts
Aα and Bα . So, the addition of two triangular symmetric possibility distributions
of support [xa

1 , xa
2] (respectively [xb

1 , xb
2]) and of mode xa

m (respectively xb
m) is the

triangular possibility distribution of support [xa
1 +xb

1 , xa
2 +xb

2] and of mode xa
m+xb

m.

THEOREM 4.3. Let A and B be two symmetric triangular fuzzy numbers. The
membership function of A ⊕ B is a possibility distribution consistent with the sum
(by regular convolution) of any two symmetric probability distributions having the
same supports as A and B respectively.
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Proof. The addition of A and B by the sup-min extension principle yields a
symmetric triangular fuzzy number. Due to Theorem 4.2, the symmetric triangular
fuzzy number is the maximally specific possibility distribution consistent with all
the bounded symmetric probability distributions with the same support. Obviously,
the probability density of the random addition of any two symmetric probability
distributions pa and pb having supports [xa

1 , xa
2] and [xb

1 , xb
2] is symmetric, has

support [xa
1 + xb

1 , xa
2 + xb

2], and therefore is consistent with the triangular distribution
obtained by the addition of the two triangular possibility distributions. Hence A ⊕ B
is less specific than the possibilistic transforms of the result of the convolution of
pa and pb. !

Remark 4.2. The same theorem holds for the subtraction. However it generally will
not hold for other type of operations, nor for any shape-function, nor for asymmetric
fuzzy numbers.

5. Application to the Representation of Uncertainty in Measurement

Generally, the acquisition of information by measurement systems is not perfect, i.e.
not totally corresponding to the observed phenomena. The reasons for imperfection
are various: approximate definition of the measurand, limited knowledge of the
environment context, variability of influence quantities, and so on. These effects lead
to shifts and/or to fluctuations of the values, i.e. uncertainties. Representing these
uncertainties is an old issue in science, but the norm to deal with these uncertainties is
quite recent. Indeed, the ISO Guide for the expression of uncertainty in measurement
[20] prepared under the aegis of the main international organisations in metrology:!

BIPM, IEC, ISO, OIML, has been published in 1993.
According to this ISO Guide, the expression of measurement uncertainty must

satisfy some requirements in order to be widely used at the practical level. The
Guide recommends a parametric representation of the measurement uncertainty
which:

a) characterises the dispersion of the observed values; for example the standard
deviation or half the width of an interval at a given level of confidence,

b) can provide a confidence interval which contains an important proportion of
the observed values,

c) can be easily propagated in further processing.

Thus, the ISO Guide proposed to characterise the measurement result by the
best estimation of the measurand (i.e. in general the mean value) and the standard
deviation. In fact, it simplifies the probability approach by considering only the
first two moments (mean value, variance) of the probability distribution. In the

! BIPM: Bureau International des Poids et Mesures; IEC: International Electro-technical Commit-
tee; ISO: International Organization for standardization; OIML: International Organization of Legal
Metrology.
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fuzzy/possibility representation proposed before, the best estimation is simply the
value which has membership degree 1, i.e. the modal value. Using the horizontal
view of a fuzzy subset, each cut defines an interval of confidence 1− α. Therefore,
the fuzzy/possibility representation is compatible with the Guide, especially with
the second aspect of point (a), and moreover provides the intervals for the whole
set of levels of confidence, and not only for an arbitrary one, e.g. 99%. Note that
there are many probability distributions corresponding to the prescribed mode and
given confidence intervals, e.g. for 0.5 and 0.95. One practical difficulty with the
choice of the mode for a representative value is that it is less easy to estimate than
for instance the mean value. Recent proposals such as so called rough histograms
(Strauss et al. [37]), where the partition underlying histograms is changed into a
fuzzy partition, may provide robust estimators of the mode.

This is coherent with the fact that a possibility distribution is an upper bound of
a family of probability distributions. The level of confidence 1−α is a lower bound
of the probability that the value belongs to the interval Iα . This representation is
thus not equivalent to the definition of one single probability distribution, and is
particularly interesting for the expression of the so-called uncertainty of type B
(i.e. those are evaluated by other means than statistical methods). As illustrated
by many examples in the ISO Guide, an uncertainty of type B is often given by
experts under the form of a few intervals (but not all of them) corresponding
to particular levels of confidence, generally 0 and 1 [27]. Therefore, building a
possibility distribution from these intervals sounds a more natural method than
deriving the standard deviation since the latter requires assumptions on the shape
of the probability law which is often a priori unknown in theses cases. Moreover,
defining a possibility distribution by linear interpolation between the considered
interval bounds is well-founded as demonstrated in Section 3.

6. Conclusion

This paper has proposed a systematic approach for the transformation of a con-
tinuous probability distribution into a maximally specific possibility distribution
that enables upper bounds of probabilities of events to be computed. The obtained
possibility distribution encodes a nested family of tightest confidence intervals
around the mode of the statistical distribution considered. There are of course oth-
er transformations from probability to possibility [6], [15], [16], [31], [32]. The
one proposed here aims at preserving as much of the information contained in
the probability distribution one starts with. Each α-cut of the obtained possibility
distribution is the smallest (hence the most informative) interval one may use in
place of the probability distribution, with a guarantee that the probability that the
unknown parameter of interest lies in this interval is at least 1 − α.

Moreover, a possibility-theoretic interpretation of probabilistic inequalities such
as Bienaymé-Chebychev and Camp-Meidel inequalities has been suggested.
Applied to support-bounded densities, this result provides a new justification of



PROBABILITY-POSSIBILITY TRANSFORMATIONS, TRIANGULAR FUZZY SETS... 295

triangular fuzzy numbers for representing uncertainty within an interval. Indeed,
the triangular possibility distribution is an optimal transform of the uniform prob-
ability distribution and it is the upper envelope of all the possibility distributions
transformed from symmetric probability densities with the same support. It yields
better confidence intervals for this class of distributions than the Camp-Meidel
inequalities.

As an application, a new procedure for a fuzzy/possibility expression of mea-
surement uncertainty has been outlined, based on these results. It uses the truncated
triangular possibility distribution obtained as an approximation of four standard
densities. At the operational level, the proposed expression is compatible with the
ISO Guide of expression of uncertainty in measurement. When the uncertainty
is expressed by a standard deviation only, then a better specificity is obtained by
using the triangular possibility distribution than the ttpd. But, when the uncertainty
is only expressed by the range of the set of measures, then a better specificity is
obtained by using the truncated triangular possibility distribution. It is then useless
to compute a standard deviation from the supplied range of measures in the latter
case. And finally, when the range and the standard deviation are both supplied, then
the greater the standard-deviation/range ratio will be, the more useful the triangular
possibility distribution will be.

Further research should consider the propagation of the proposed fuzzy/
possibility expression of measurement uncertainty, and the extent to which it can
be used as a substitute to a plain random variable propagation. If this question is
simple (as shown above) for operations like the addition or the subtraction which
preserve the symmetry of probability distribution, it is more difficult for operations
like division which do not preserve symmetry. It presupposes a deeper study of the
possibility transforms of unimodal but asymmetric probability distributions. Can
asymmetric triangular fuzzy numbers be used? As mentioned before, an important
point is then to choose the nominal value, i.e. the value x∗ used in definition 1.
Must it be the modal, the mean or the median value ? It seems that this choice must
be made before building a distribution-free possibility representation in order to
be able to find an adequate family of nested intervals to be used in an operational
definition of a consistent possibility distribution.

Acknowledgement

Authors are indebted to V. Lasserre for her early contribution to some parts of this
work.

References

1. De Cooman, G. and Aeyels, D.: A Random Set Description of a Possibility Measure and Its
Natural Extension, IEEE Trans on Systems, Man and Cybernetics 30 (2000), pp. 124–131.

2. De Cooman, G. and Aeyels, D.: Supremum-Preserving Upper Probabilities, Information Sciences
118 (1999), pp. 173–212.



296 DIDIER DUBOIS ET AL.

3. Delgado, M. and Moral, S.: On the Concept of Possibility-Probability Consistency, Fuzzy Sets
and Systems 21 (1987), pp. 311–318.

4. Dubois, D., Kerre, E., Mesiar, R., and Prade, H.: Fuzzy Interval Analysis, in: Dubois, D. and
Prade, H. (eds), Fundamentals of Fuzzy Sets, The Handbooks of Fuzzy Sets Series, Kluwer
Academic Publishers, Boston, USA, 2000, pp. 483–581.

5. Dubois, D., Nguyen, H. T., and Prade, H.: Possibility Theory, Probability and Fuzzy Sets:
Misunderstandings, Bridges and Gaps, in: Dubois, D. and Prade, H. (eds), Fundamentals of
Fuzzy Sets, The Handbooks of Fuzzy Sets Series, Kluwer Academic Publishers, Boston, USA,
2000, pp. 343–438.

6. Dubois, D. and Prade, H.: Consonant Approximations of Belief Functions, Int. J. Approximate
Reasoning 4 (1990), pp. 419–449.

7. Dubois, D. and Prade, H.: Fuzzy Sets and Systems: Theory and Applications, Academic Press,
New York, 1980.

8. Dubois, D. and Prade, H.: Fuzzy Sets, Probability and Measurement, European Journal of
Operational Research 40 (1989) pp. 135–154.

9. Dubois, D. and Prade, H.: On Several Representations of an Uncertain Body of Evidence, in:
Gupta, M. M. and Sanchez, E. (eds), Fuzzy Information and Decision Processes, North-Holland,
1982, pp. 167–181.

10. Dubois, D. and Prade, H.: Operations on Fuzzy Numbers, Int. J. Systems Science 9 (1978)
pp. 613–626.

11. Dubois, D. and Prade, H.: Possibility Theory: An Approach to Computerized Processing of
Uncertainty, Plenum Press, New York, 1988.

12. Dubois, D. and Prade, H.: Qualitative Possibility Theory and Its Applications to Constraint
Satisfaction and Decision under Uncertainty, Int. Journal of Intelligent Systems 14 (1999),
pp. 45–61.

13. Dubois, D. and Prade, H.: The Three Semantics of Fuzzy Sets, Fuzzy Sets and Systems 90 (1997),
pp. 141–150.

14. Dubois, D. and Prade, H.: When Upper Probabilities Are Possibility Measures, Fuzzy Sets and
Systems 49 (1992), pp. 65–74.

15. Dubois, D., Prade, H., and Sandri, S.: On Possibility/Probability Transformations, in:
Lowen, R. and Roubens, M. (eds), Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1993,
pp. 103–112.

16. Dubois, D., Prade, H., and Smets, P.: New Semantics for Quantitative Possibility Theory, in:
Proc.of the 6th European Conference on Symbolic and Quantitative Approaches to Reasoning
and Uncertainty (ESQARU 2001), Toulouse, France, LNAI 2143, Springer-Verlag, Berlin, 2001,
pp. 410–421.

17. Dubois, D., Prade, H., and Smets, P.: Representing Partial Ignorance, IEEE Trans. on Systems,
Man and Cybernetics 26 (1996), pp. 361–377.

18. Geer, J. F. and Klir, G.: A Mathematical Analysis of Information-Preserving Transformations
between Probabilistic and Possibilistic Formulations of Uncertainty, Int. J. of General Systems
20 (1992), pp. 143–176.

19. Goodman, I. R. and Nguyen, H. T.: Uncertainty Models for Knowledge-Based Systems, North-
Holland, Amsterdam, 1985.

20. Guide for the Expression of Uncertainty in Measurement, ISO 1993, 1993.
21. Kendall, M. and Stuart, A.: The Advanced Theory of Statistics, Ed. Griffin and Co., 1977.
22. Jamison, K. D. and Lodwick, W. A.: The Construction of Consistent Possibility and Necessity

Measures, Fuzzy Sets and Systems 132 (2002), pp. 65–74.
23. Higashi, M. and Klir, G.: Measures of Uncertainty and Information Based on Possibility Distri-

butions, Int. J. General Systems 8 (1982), pp. 43–58.
24. Klir, G. J.: A Principle of Uncertainty and Information Invariance, Int. Journal of General Systems

17 (1990), pp. 249–275.
25. Klir, G. J. and Parviz, B.: Probability-Possibility Transformations: A Comparison, Int. J. of

General Systems 21 (1992), pp. 291–310.
26. Lasserre, V.: Modélisation floue des incertitudes de mesures de capteurs, Ph. D. Thesis, University

of Savoie, Annecy, France, 1999.



PROBABILITY-POSSIBILITY TRANSFORMATIONS, TRIANGULAR FUZZY SETS... 297

27. Mauris, G., Berrah, L., Foulloy, L., and Haurat, A.: Fuzzy Handling of Measurement Errors in
Instrumentation, IEEE Trans. on Measurement and Instrumentation 49 (2000), pp. 89–93.

28. Mauris, G., Lasserre, V., and Foulloy, L.: A Fuzzy Approach for the Expression of Uncertainty
in Measurement, Int. Journal of Measurement 29 (2001), pp. 165–177.

29. Mauris, G., Lasserre, V., and Foulloy, L.: Fuzzy Modeling of Measurement Data Acquired from
Physical Sensors, IEEE Trans. on Measurement and Instrumentation 49 (2000), pp. 1201–1205.

30. McCain, R. A.: Fuzzy Confidence Intervals, Fuzzy Sets and Systems 10 (1983), pp. 281–290.
31. Moral, S.: Constructing a Possibility Distribution from a Probability Distribution, in: Jones, A.,

Kauffmann, A., and Zimmermann, H. J. (eds), Fuzzy Sets Theory and Applications, D. Reidel,
Dordrecht, 1986, pp. 51–60.

32. Oussalah, M.: On the Probability/Possibility Transformations: A Comparative Analysis, Int.
Journal of General Systems 29 (2000), pp. 671–718.

33. Pedrycz, W.: Why Triangular Membership Functions?, Fuzzy Sets and Systems 64 (1994),
pp. 21–30.

34. Shackle, G. L. S.: Decision Order and Time in Human Affairs, Cambridge University Press,
1961.

35. Smets, P.: Constructing the Pignistic Probability Function in a Context of Uncertainty, in: Hen-
rion, M., Schachter, R. D., Kanal, L. N., and Lemmer, J. F. (eds), Uncertainty in Artificial
Intelligence, North-Holland, Amsterdam, 1990, pp. 29–40.

36. Smets, P.: Decision Making in a Context Where Uncertainty Is Represented by Belief Functions,
in: Srivastava, R. P. (ed.), Belief Functions in Business Decisions, Physica-Verlag, Heidelberg,
2001.

37. Strauss, O., Comby, F., and Aldon, M.-J.: Rough Histograms for Robust Statistics, in: IEEE Int.
Conf. On Pattern Recognition (ICPR’00), Barcelona, 2000, pp. 2684–2687.

38. Wang, P. Z.: From the Fuzzy Statistics to the Falling Random Subsets, in: Wang, P. P. (ed.),
Advances in Fuzzy Sets, Possibility Theory and Applications, Plenum Press, New York, 1983,
pp. 81–96.

39. Zadeh, L. A.: Fuzzy Sets, Information and Control 8 (1965), pp. 338–353.
40. Zadeh, L. A.: Fuzzy Sets as a Basis for a Theory of Possibility, Fuzzy Sets and Systems 1 (1978),

pp. 3–28.


