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Background

» standard modalities of epistemic logic since [Hintikka, 1962]:

Kipo = “agent i knows that ¢"
B;p = ‘“agent i believes that ¢"
» ...but there is more: cf. Yanjing Wang's "“beyond
knowing-that" research program

» know whether [Fan et al., 2013, Fan et al., 2015]

» know what [Wang and Fan, 2014]

» know value [van Eijck et al., 2017]

» know how [Fervari et al., 2017, Wang, 2018]

> know why [Xu et al., 2021]

>
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‘Know wh' logics

P> two possibilities:

1. reduce to 'know that' = quantification [Hintikka, 1962]
2. new modality [Wang, 2016]

P either studied in isolation, or together with ‘know that’
P logics are typically exotic

» non-normal modalities
» non-trivial completeness proofs

P interesting for philosophical logic
» which primitive concepts?

» which interplay with logics of action?
> ..

» impact on computer science and Al?
» knowledge representation, planning,. ..
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This talk: modalities of the ‘know whether’ kind

» motivation: ‘know whether’ more primitive than ‘know that’

» knowing the truth value of a proposition more basic than
knowing that the truth value equals 1
“To know is to know the value of a variable” [Baltag, 2016]

> related to:
» non-contingency logics
[Montgomery and Routley, 1966, Humberstone et al., 1995]
» logic of ignorance [Kubyshkina and Petrolo, 2019]
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Knowledge and belief about a proposition

» ‘know whether’ has no belief-counterpart in natural language
(just as the other ‘know wh' modalities) [Egré, 2008]

» therefore:
KA;p = “agent i has knowledge about ¢"
BA;o = “agent i has belief about ¢”

~"

alternatively: "/ is opinionated about "
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‘About’ modalities: expressivity

1. ‘belief about’: weaker [Fan et al., 2015]

BA;p < BijpVB;—p
B,'QO(—)?

2. 'knowledge about': equi-expressive

KAip < KoV Ki=p
Kip < ¢ AKAjp

but:

» ‘knowledge about’ can express things more succinctly
[van Ditmarsch et al., 2014]
P equivalent presentations may lead to new insights

> cf. Kosta DoSen: “Had Gentzen used Tarski's consequence
operator Cn(I'), he wouldn’t have found the cut rule”
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This talk

1. new axiom relating individual and common knowledge
» more intelligible
» based on: AH & E. Perrotin “On the axiomatisation of
common knowledge”, Proc. AiML 2020
2. interesting lightweight fragments
P> same complexity as propositional logic
» based on: M. C. Cooper, AH, F. Maffre, F. Maris, E. Perrotin,
P. Régnier “A lightweight epistemic logic and its application to
planning”, Artificial Intelligence, 2021
3. analysis of of epistemic-doxastic situations
» three independent dimensions
» based on: AH & E. Perrotin, “True belief and mere belief
about a proposition and the classification of epistemic-doxastic
situations”, Filosofiska Notiser 8:1, 2021
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Part 1 Relating individual and common knowledge

Part 2 Lightweight fragments

Part 3 The three dimensions of epistemic-doxastic situations
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Language of ‘knowledge that' and ‘common knowledge
that’

> grammar:
p = ploeleAe|Kip | EKp|CKo

where p ranges over a countable set of propositional variables
and i over a finite set of agents

P reading:
Kip = "agent i knows that ¢"
EKp = ‘itisshared knowledge that ¢ = A\;cp. Kit
CKy = ‘“itis common knowledge that ¢" = A,-q EK¥p
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Individual knowledge: S5

‘ S5(K) = modal logic S5 for the modal operators K;

» truth axiom:
Kio — ¢

P positive introspection axiom:
Kip = KiKjp
P negative introspection axiom:

—Kip = K;i=Kjp
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Shared knowledge: contains KTB

> axiom Def(EK): EKp <> A, Kip
» normal modal operator:

> axiom K(EK) provable
> rule of necessitation RN(EK) derivable

» truth axiom provable:
EKy — ¢
» axiom B(EK) provable:
v - EK-EK —p

P neither positive nor negative introspection provable
» when knowledge is shared then this is not necessarily known
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Common knowledge: should contain S5

» truth axiom:
CK ¢ — ¢ should be valid

P positive introspection axioms:

CK ¢ — EKCK ¢ should be valid
CK ¢ — CK CK ¢ should be valid

= fixed-point axiom follows:

FP CKyp — EK(p ACKy)

12/41



Minimal axiom system with induction rule

S5(K) and Def(EK), plus:

FP CKy — EK(p A CK )
RGFP from ¢ — EK (¢ A %), infer ¢ — CK ¢

[Halpern and Moses, 1992, Fagin et al., 1995]

» sound and complete for S5 models

» rule of necessitation RN(CK) derivable
> axioms X(CK), T(CK), 4(CK), 5(CK) provable
» induction axiom schema GFP provable
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Minimal axiom system with induction axiom

S5(K) and Def(EK), plus:

K(CK) modal logic K for CK
FP CKy — EK(p A CKy)
GFP CK(p - EKp) — (¢ — CKyp)

[Lehmann, 1984, Halpern and Moses, 1985]

» sound and complete for S5 models
» induction rule RGFP provable

> original presentation has moreover axioms T(CK), 4(CK),
5(CK) = redundant!
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Common knowledge: status of GFP/RGFP?

P induction axiom schema intuitive in temporal logics
(well-founded orderings)
> epistemic logics:
> difficult to justify
» difficult to paraphrase
RGFP from ¢ — EK (p A %), infer ¢ — CK
“If it is the case that ¢ is ‘self-evident’, in the sense that if it is
true, then everyone knows it, and, in addition, if  is true, then

everyone knows 1), we can show by induction that if @ is true,
then so is EKX(y) A @) for all k.” [van Ditmarsch et al., 2015]
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A more intuitive axiomatisation of S5 common knowledge

S5(K) and Def(EK), plus:

S4(CK) modal logic 54 for CK
FPo CKy — EKyp
GFPy  CKEKA o — CKA o

“If it is common knowledge that there is shared knowledge
about ¢ then there is common knowledge about ¢.”

where:

CKAp=CKypVCK-p “there is common knowledge about ¢”
EKA ¢ = ( /\ Kip) v /\ Ki—y) “there is shared knowledge about ¢”

i€Agt i€Agt

o N (Ko v King)

icAgt
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A more intuitive axiomatisation of S5 common knowledge

S5(K) and Def(EK), plus:

S4(CK) modal logic s4 for CK
FPo CKp — EKyp
GFP, CKEKAy — CKA g

» sound for S5 models
» GFPq provable in the axiom system with induction axiom GFP
» complete for S5 models

» induction axiom GFP provable
» proof uses S4 axioms for CK
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Soundness: proof of GFPg

Proposition
GFPq is provable from GFP.
Proof.

1.

EKA ¢ — ((¢ = EKp) A (¢ — EK—p))

2. CKEKA ¢ — (CK (¢ — EK ) A CK (—p — EK —p))
3.
4. CKEKA ¢ — (CK ¢ V CK —)

CKEKA ¢ — ((¢ = CKp) A (mp — CK—yp))

T(EK)
from 1
from 2 by GFP

from 3
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Completeness: a key lemma

Lemma

The schema CK (¢ — EK ¢) — CK (=¢p — EK =) is provable
from the schemas K(CK), 4(CK), RN(CK), T(CK), and FP.
Proof.

1. CK (¢ = EKp) - EK (¢ — EK ) by FP
2. EK(p = EK¢) = (EK-EK ¢ — EK =)

3. —p — EK-EK B(EK)
4. CK (¢ = EKp) = (- — EK—p) from1, 2, 3
5. CKCK (¢ — EKg) — CK (=g — EK —) from 4 by RN(CK)
6. CK (¢ — EK ) — CK CK (¢ — EK ) 4(CK)
7. CK(¢ — EKy) = CK (¢ — EK—p) from 5 and 6
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Completeness: proof of GFP

Proposition
GFP is provable from GFPy.
Proof.

1. (CK (¢ — EKyp) ACK(—p — EK—p)) — CKEKA ¢

2. CK(p — EK ) — CKEKA
3. CK(¢ = EKp) - CKAp
4. CK (¢ = EKp) = (p — CKyp)

from 1 by key lemma
from 2 by GFPg
from 3 by T(CK)
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Conclusion of Part 1

» more intelligible axiomatisation of the relation between
individual and common knowledge

» more intuitive than the standard induction principles
P intuitive axiomatisation of the pure logic of knowlege about

>

fragment with only KA;, CKA (no K;, CK)

» hypothesis: logic of individual knowledge is S5
> GFPy is sound for knowledge (logics with T(K) axiom)

>

conjecture: incomplete

» GFP, is unsound for logics without T(K)!

>
>
>

suppose BiCBp AB,CB-p = no common belief about p
consequence: BiCBEBp A B, CBEB —p
consequence: BiCBEBAp A B, CBEBAp

(where EBAp = EBpV EB —p)
consequence: CBEBA p
GFPo would allow to infer common belief about p!
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Part 1 Relating individual and common knowledge

Part 2 Lightweight fragments

Part 3 The three dimensions of epistemic-doxastic situations
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Lightweight fragments: motivation

> epistemic reasoning is difficult:

> satisfiability is PSPACE hard if there are multiple agents;
EXPTIME complete if formulas may contain CK
[Halpern and Moses, 1992, Fagin et al., 1995]
» planning is undecidable with DEL event models
[Bolander and Andersen, 2011, Aucher and Bolander, 2013]
P even for heavily restricted event models
[Bolander et al., 2015, Bolander et al., 2020]

P quest for lightweight fragments of the epistemic language
» cf. description logics
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‘Knowledge that’ literals
[Lakemeyer and Lespérance, 2012, Muise et al., 2015]

Au=p |- KiA

» formula = boolan combination of epistemic literals
» no conjunction or disjunction in scope of epistemic operators
P complexity: same as propositional logic

P view epistemic atoms as propositional variables
> plus theory: =(K;A A K;=A), K/K;A < KA, etc.

P cannot express “l know you know more than me”
-Kip A =Kj=p A K,'(ij V Kj—\p)

however: is fundamental in dialogues (and more generally in
interaction between agents)
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‘Knowledge about’ atoms
[Herzig et al., 2015, Cooper et al., 2021]

> grammar:
a=p|KAa| CKA«

» formula = boolan combination of epistemic atoms

P can express some disjunctions in scope of epistemic operator:
-Kip A =K;—=p A K,‘(ij V Kj—\p)
expressed as

-KAip ANK;KA;p
= =KA;p ANKA;p NKA;KA;p
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‘Knowledge about’ atoms: axiomatisation

KA;KA;«o

CKACKA«

CKAKA KA«

CKAa — KA,'Oé

CKA o — CKAKA;«

Aicage(KAja ACKAKA;a) — CKAa  (GFPg)

» sound and complete axiomatisation of the validities of the
fragment
» N.B: axiom GFPy is in the fragment (while GFP is not)
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‘Knowledge about’ atoms: complexity

P basically: epistemic atoms can be viewed as propositional
logic variables
P take care of introspection: simulated by truth conditions
P take care of inductive closure: inductively closed valuations of
‘knowledge about' atoms
» complexity of model checking, satisfiability, planning: same as
propositional logic
» 1. prove fmp
2. guess valuation and model check
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Conclusion of Part 2

P interesting fragment of epistemic logic
» based on ‘knowledge about’ atoms
» satisfiability NP-complete
» planning PSPACE-complete

» enough for many applications

» gossip problem (including higher-order knowledge)
> ...
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Part 1 Relating individual and common knowledge

Part 2 Lightweight fragments

Part 3 The three dimensions of epistemic-doxastic situations

29/41



Which possible relations between state of affairs and
agent?

» cf. act positions [Demolombe and Jones, 2002]:

o NEip A
e A-Eip A-Ei=p | mp A-Ejp A—Ei—p

where Ej¢ = “/ brings it about that ¢”

» cf. Kanger-Lindahl theory of normative positions:
“method for mapping out in a systematic and exhaustive
fashion the complete space of all logically possible norma-
tive relations” [Sergot and Richards, 2001, Sergot, 2001]

> here:
» which epistemic situations?
» which doxastic situations?
» which epistemic-doxastic situations?
= ‘knowledge/belief about’ modalities provide interesting
insights
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Which epistemic situations?

» 4 possible relations between state of affairs and knowledge
state:

o ANKigp —¢ ANKj=p
PN =Kip A=Kimp | = A=Kip A =Kimp

P> with ‘knowledge about':

» 22 independent combinations of ¢ and KAy
e ANKAjp | ~p ANKAjp
e N KAjp | o A =KAo
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Which doxastic situations?

» 6 possible relations between state of affairs and belief state

wABjp o ABj—p
eA-BioAN=Bimp | 2o A-BipA-Bi—p
e ANBi—yp o ABiyp

» requires 3 dimensions
» cannot be independent
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Which epistemic-doxastic situations?

» 8 possible relations:

oA Kip =0 AKi—p
P ABjp A —Kjp —p A Bj—p A -Ki=p
A BioA=Bj—p | mpA-BjpA-Bj—p

» 8 =23 = which are the 3 dimensions?
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Which epistemic-doxastic situations?

» two new modalities:

TBA; ¢ = (p ABjp) V (mp A B =p)
= "/ has a true belief about ¢"
MBA; ¢ = (B¢ A =Kjp) V (Bj —~p A =Ki=p)
= "/ has a mere belief about ¢"
= "/ has a falsifiable belief about ¢"

= "/ has a belief about ¢ but does not know whether ¢"

> just as ‘belief about’:

1_E3/\;‘ﬂ99 Ad 1_E31\;99
hﬂ[;/\/‘7¢><—> “ﬂ[;/\igﬁ
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Epistemic-doxastic situations: 3

> 23 epistemic-doxastic situations:

dimensions

o ANTBA; o A —-MBA; ¢
o ANTBA; o AMBA,; ¢

e A-TBA; o A -MBA; ¢
wA-TBA; o A MBA; ¢

o ANTBA; o A —-MBA; ¢
- ATBA; o AMBA,; ¢
o A-TBA; o A -MBA; ¢
o A-TBA; o A MBA; ¢

P needs getting used to, but is natural. ..
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Example: the Sally-Ann Test

false belief task
[Wimmer and Perner, 1983, Baron-Cohen et al., 1985]

1. Sally puts the marble in the basket
TBAsb A—-MBAgsb
2. Sally goes out for a walk
TBAsb AMBAsb

3. Ann takes the marble out of the basket and puts it into the
box
- TBAsb AMBAsb
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Full expressivity

> knowledge:

KA;p < TBA; o A —-MBA; ¢
Kip <> TBA; o A=MBA; p A

> belief:

BA;» < TBA; oV MBA, ©
Bipo <+ (¢ ANTBA;p)V (—p A=TBA; o A MBA, ¢)

...remember: B;p cannot be expressed with BA; alone
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An epistemic-doxastic logic

> logic:

KD5(B) the principles of modal logic KD5 for B;
S4(K) the principles of modal logic S4 for K;
KiB Kijp = Bjp
BiKB B,'g0—> K,‘B,’(p
BiBK Bjp — B;K;p
» belief definable from knowledge [Lenzen, 1978, Lenzen, 1995]:

B¢ < —K;=Kjp

> alternative axiomatisation: S4.2(K) plus B; ¢ <> =K;=K;¢

» complexity of satisfiability: PSPACE-complete
[Shapirovsky, 2004, Chalki et al., 2021]

38/41



Reduction of ‘about’ modalities

» reduction of consecutive modal operators to length 1:

TBA; TBA; ¢ <> TBA,; oV ~MBA; ¢
MBA, TBA; ¢ <> MBA, ¢

TBA; MBA, ¢ <+ -MBA; ¢

MBA, MBA, ¢ <> MBA, ¢

» cf. ‘know that’ modalities: length 2

> > 2 because —K;—=K;p not reducible
» < 2 because all 34(K) axioms are valid
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Conclusion of Part 3

» logic of ‘true/mere belief about’:
» natural in knowledge representation
> nice combinatorics:

» boolean combinations of ¢, TBA; ¢, MBA; ¢ are exclusive
and exhaustive

» paves the road towards lightweight fragment

» formulas = boolean combinations of true/mere belief atoms
> reduction to propositional logic
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Conclusion: new perspectives provided by
‘knowledge/belief about’ modalities

1. alternative to greatest fixed-point axiom GFP that ‘talks’

» sound for knowledge
» complete if individual knowledge is S5
» unsound for belief

2. interesting lightweight fragments of epistemic logic
» same complexity as propositional logic

3. 'true belief about’ and ‘mere belief about’ modalities
P epistemic-doxastic situations
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